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Abstract—Functional verification has become one of the most
time-consuming tasks in the VLSI design flow accounting for up
to 57% of the total project time. The largest component of this
task is that of design debugging due to its resource intensive
manual nature. With the ever growing size of modern designs
and their error traces, the complexity of the debugging problem
poses a great challenge to automated debugging techniques.
To overcome this challenge, this work introduces a novel path
directed abstraction and refinement algorithm for design debug-
ging to manage excessive error trace lengths. A sliding window
of the error trace is iteratively analyzed in a time-windowing
framework, which is made possible by the use of the path directed
abstraction. This abstraction forms a concise approximation
of non-modeled parts of the error trace, while simultaneously
providing an efficient representation for refinement. The result is
an algorithm that dramatically reduces the memory requirements
of debugging, while mitigating the incomplete results of past
techniques. Experimental results on industrial designs with long
error traces show that the proposed approach can analyze traces
that are 64.6% longer while simultaneously decreasing peak
memory usage compared to previous work.

Index Terms—Debugging, Diagnosis, Verification, Abstraction,
Refinement, RTL, VLSI

I. INTRODUCTION

Modern System-on-Chip (SoC) designs have grown into

enormously complex systems consisting of tens of millions of

gates and multiple embedded processors. This sudden growth

of complexity and size has put a large strain on our ability

to verify the functional correctness of these designs. As a

result, functional verification takes up to 57% of the total

project time, inevitably leading to increased cost and lengthier

time-to-market [1]. To mitigate the cost and time associated

with this process, several impressive innovations in the past

decade have been developed in order to cope with the growing

size of modern SoC designs. Novel methodologies [2], [3],

languages [4], [5] and algorithms [6]–[9] have all contributed

to the dramatic increase in verification efficiency. Despite this

effort, one area that has seen significantly less progress is that

of design debugging. This task still accounts for up to 32%
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of the total verification time resulting in a major bottleneck in

the design cycle [1].

Design debugging is the process of identifying which com-

ponents of a design are erroneous after a failure has been

detected during verification. Current state-of-the-art industrial

debugging tools aid this process by allowing the engineer to

manually navigate the failure. Tools [10] such as graphical

waveform viewers, design tracing and navigation, and “what-

if” analysis engines provide the user with intuitive methods

for navigating the design complexity in order to determine the

root-cause of failure. In contrast, automated design debugging

techniques [11]–[14] aim to identify erroneous components

that could potentially cause the observed functional failure

without any user intervention. However, the applicability of

these techniques has struggled to keep pace with the massive

design sizes and error trace lengths of modern SoCs. In partic-

ular, contemporary automated debugging techniques [13], [15]

make extensive use of formal methods and time-frame expan-

sion to model the sequential behavior of the design. For current

industrial design sizes and error trace lengths, the complexity

of the debugging problem may increase dramatically leading

to performance issues deeming these techniques sometimes

impractical.

Tackling these two major components of debugging com-

plexity (i.e., design size and error trace length) has been the

focus of recent research efforts. Abstraction and refinement

techniques [16], [17] have been developed to tackle the design

size aspect of debugging complexity. These methods perform

analysis on an abstract model of the design that is significantly

smaller than the concrete one. Subsequently, they iteratively

refine the abstraction to determine a sufficient set of com-

ponents to solve the debugging problem. Orthogonally, time-

windowing [18], [19] aims to deal with the excessive error

trace length aspect of the debugging complexity. Instead of

analyzing the entire error trace at once, they iteratively analyze

a sliding window of time-frames along its length. To properly

model the propagation of the error, time-frames not included

in the current window are approximated using various meth-

ods. The use of approximation greatly reduces the memory

requirements of automated debugging but it can also lead to

poor resolution. This translates to the algorithm marking too

many additional components as potentially erroneous, negating

the benefits of localization in the first place.

In this work, we introduce a novel abstraction and

refinement algorithm for design debugging built upon a

time-windowing framework to manage excessive error trace

lengths [20]. The key innovation of the algorithm is a path-

directed abstraction that conceptually represents relevant struc-
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tural circuit paths in the time-frame expanded circuit. This

abstraction provides a concise approximation of non-modeled

time-frames while simultaneously providing an efficient rep-

resentation for refinement, which consists of adding back

omitted structural circuit paths. The result is an algorithm

that dramatically reduces the memory requirements of debug-

ging, while mitigating the incomplete results of past time-

windowing techniques.

Due to the inherent iterative nature of the algorithm,

performance remains the crucial issue behind its practical

implementation. This paper additionally introduces several key

optimizations to the basic refinement strategy that significantly

reduce the number of iterations needed to achieve complete

results. However, in certain worst case scenarios, the algorithm

may still suffer from an excessive number of refinement steps.

To mitigate this worst case scenario, a flexible path-directed

algorithm is presented that allows a trade-off between perfor-

mance and resolution by limiting the amount of refinement

steps per problem instance. This novelty is shown experimen-

tally to dramatically reduce the run-time requirements while

having minor effects on the final resolution.

An extensive set of experimental results on large hardware

designs from OpenCores [21] and industrial partners illustrates

the benefits of this work. The proposed approach can analyze

error traces that are 64.6% longer while simultaneously using

significantly less memory when compared to previous work.

Additionally, the refinement strategy of the flexible algorithm

is able generate only 1.5% additional spurious solutions com-

pared to 114.7% when no refinement is used.

The remaining sections are as follows. Section II presents

background material. Section III and Section IV describe the

proposed approach and refinement improvements, respectively.

Section V presents a new flexible algorithm that allows a

trade-off between performance and quality of results while

Section VI presents experimental results. Finally, Section VII

concludes this work.

II. PRELIMINARIES

A. Design Debugging

Different types of debugging (or diagnosis) are performed

at various stages of the design cycle based upon the type of

malfunction [22]. In the post-silicon stage, the implementation

is a fabricated silicon chip with extremely limited observ-

ability and controllability. Fault diagnosis [12] aims to find

manufacturing defects in these chips using fault models (e.g.,

stuck-at faults) that formally describe how a fault alters design

behavior. While (post-)silicon debug techniques [22] aim to

increase observability and controllability in order to help the

engineer determine the cause of functional errors that escape

pre-silicon verification in a silicon prototype.

In contrast, pre-silicon stages of design (e.g., RTL) utilize

simulation and formal techniques to detect functional errors,

which have high observability and controllability. In this

stage of design, techniques for automated logic or design

debugging [13], [15] aim to find the root-cause of functional

errors by using error models to formally describe how an error

can alter design behavior. Although fault models can be used

to model functional design errors [23], modern techniques for

design debugging rely on model-free SAT-based methods [13].

These SAT-based techniques model the error as an arbitrary

non-deterministic (model-free) function that does not make

any assumptions on the specific type of fault/error. In this

paper, we focus on design debugging and not fault diagnosis

or post-silicon debug.

A design component is said to be a suspect, if changing

that component’s functional behavior can fix an observed

failure detected during verification. Given a specification (e.g.

SystemVerilog, SystemC, Matlab, etc.), its synthesizable im-

plementation (e.g. RTL, gate-level netlist) and an input vector,

automated design debugging methods aim to return all such

suspects. More specifically, these techniques require a logic

netlist derived from the design implementation, and an error

trace consisting of an initial state assignment, input vector

for each clock cycle, as well as an expected output vector

derived from the specifications for each clock cycle. The

expected output vector must differ from the behavior of the

implementation under the initial state and input vector (or else

there is no failure detected).

B. SAT-based Design Debugging

SAT-based design debugging [13] formulates the design

debugging problem as a SAT instance for a given fixed number

of errors. This construction formally models the unrolled

design, error trace and, additionally, error models to identify

locations of potential functional errors. Due to the output

value(s) mismatch between the design and expected outputs

for a given error trace, this instance will be UNSAT when all

error models are off. However when an error model is on, it

effectively replaces the associated component with an arbitrary

non-deterministic function. If this non-deterministic function

can fix the observed failure, then the entire instance will be

SAT. Thus, each solution of this SAT instance corresponds to

set of suspects that can potentially explain the observed failure.

More formally, let T describe the transition relationship of

a sequential circuit C in conjunctive normal form (CNF). And

let Xi, Y i and Si denote a predicate in CNF on the primary

inputs, primary outputs and state elements of C for the ith

clock cycle, respectively, which encodes the respective values

from the error trace. These can be encoded by a conjunction

of unit clauses for each of the respective pin/state values.

The SAT instance is constructed in several steps. First,

an error model is added for each design component (e.g.,

gate, module, etc.) by augmenting its corresponding clauses

in T . This is done by generating a new suspect variable

(ei), and adding it to each clause corresponding to that

design component. When a suspect variable is active, it allows

the component’s outputs to be free, effectively encoding an

arbitrary non-deterministic (model-free) function. Otherwise,

the component’s behavior remains unchanged. We denote this

enhanced transition relationship by Ten. Note that this tech-

nique can be used to model RTL errors by adding one suspect

variable to each clause corresponding to a RTL construct such

as a Verilog assignment or module [24]. The mapping between

RTL construct and clauses can be obtained by using a standard
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RTL frontend to translate RTL to gates, and subsequently gates

to clauses.

Next, Ten is replicated for the length of the error trace

(i.e., time-frame expanded), where each copy is labeled T i
en

for the ith copy. During this process, the suspect variables

are not replicated because each one of them corresponds to

a single, potentially erroneous, design component regardless

of the underlying time-frame. Additionally, constraints for the

initial state (Su), vector of inputs (Xi) and vector of expected

or correct outputs (Y i) from the error trace are added. Finally,

cardinality constraints [25] (denoted by Φ(N)) are used to

limit the number of active suspect variables to exactly N ,

indicating the search for exactly N simultaneous errors in the

circuit. The following equation models an error trace indexed

from cycle u to cycle v:

Debugvu(N) = Su ∧ Φ(N) ∧

v∧

i=u

(Xi ∧ Y i ∧ T i
en) (1)

A solution to this instance is defined to be the set of active

suspect variables in a SAT assignment, which corresponds to

the associated set of suspects that can explain the observed

failure. Note that in Eq. 1, the observed failure on a primary

output must occur within cycles u to v in order to generate a

mismatch on the outputs between the expected and erroneous

circuit behavior. If this is not the case, the equation is trivially

satisfiable when N = 0 (and thus for all N >= 0) indicating

that the failure cannot be observed in the modeled window

and an extended error trace must be used.

C. Time Diagnosis and Time-Windowing

An alternate formulation of the debugging problem, known

as time diagnosis [26], can be generated by using a variation of

Eq. 1. The key difference is that when unrolling the enhanced

transition relationship, the suspect variable for a component is

shared only within a fixed time-window of clock cycles rather

than the entire error trace. That is, each component has several

associated suspect variables, where each variable corresponds

to a different time-window. This models the excitation of an

error within a time-window, but not across time-windows.

This formulation has been shown [26] to dramatically reduce

problem complexity while still being able to model real-life

bugs with long error traces. Due to its relation to this work,

we provide more detail on the underlying formulation.

To model a single time-window Eq. 1 can be used. However,

as previously mentioned, if the failure is not observed within

this window, the instance will be trivially satisfiable. To rem-

edy this issue, one can model subsequent suffix time-windows

so that the observed failure at the mismatched primary outputs

is included. For time-windows of width w, we can model the

pth window in the sequence by the following equation:

Wp =

(p+1)·w−1∧

i=p·w

(Xi ∧ Y i ∧ T i) (2)

Note that if N = 0 is set in Eq. 1, it simplifies to a time-frame

shifted version of Eq. 2 (with the addition of the initial state

constraints Su) because it eliminates all additional circuitry

relating to error models.

By combining Eq. 1 and 2, one can overcome the issue of

debugging a time-window that does not contain the observed

failure. This formulation is shown with respect to a set of

time-windows from p to q with a width of w:

T imeDebugqp(N) = Debug
(p+1)·w−1
p·w (N) ∧

q∧

i=p+1

Wi (3)

This formulation permits the effects of the error models in

time-window under analysis (e.g., p) to propagate and affect

the observed failure in a subsequent suffix time-window (e.g.,

q).

Example 1 Figure 1(a) visualizes Eq. 3 when p = q = 1,

w = 1 and N = 1. The circuit under debug has three

internal gates (g1, g2, g3), one input (x0), one output (y0),

and three state-variables (s0, s1, s2). In this circuit, g1 and g2
form module A and g3 forms module B. The error models

are denoted by ⊗. There are two suspect variables, ea, eb
corresponding to module A and B respectively. The suspect

variable ea, corresponds to the two outputs of g1 and g2 from

module A. Similar is the situation for suspect variable eb and

gate g3. Error trace values for the initial state, input and

expected outputs are shown in that the figure.

When the instance in Figure 1(a) is passed to a SAT-solver,

one solution is returned, namely eb = 1, that corresponds

to module B being a suspect. When eb is added as a unit

clause to block it from appearing again, the instance is UNSAT

indicating that no more solutions are found.

Figure 1(b) shows a visualization of Eq. 3 with the next

time-window where p = 0, q = 1, w = 1 and N = 1. In

this instance, the suspect variables now only correspond to

modules in the earliest time-frame. When sent to the SAT-

solver, one solution is returned where ea = 1. After blocking

it as a solution, the instance is UNSAT indicating that all

solutions have been found.

Time-windowing techniques [18] use a similar formulation

to Equation 3. For a given time-window width, they divide

the error trace into multiple non-overlapping time-windows.

Each window is iteratively analyzed starting from the last

time-window in the error trace that contains the observed

failure (i.e., p = q for Eq. 3). This “sliding window” of

time-frames moves towards earlier time-windows (p = q, p =
q−1, . . . , p = 0) iteratively analyzing the error trace. To ensure

that the current time-window under analysis (e.g., window p)

can propagate the effect of its error models to the observed

failure (e.g., window q), various methods are used to model

the suffix time-windows.

In the most basic formulation, suffix time-windows in the

trace are explicitly modeled as in Eq. 3. This results in

iteratively solving instances of Eq. 3, where each iteration

results in a larger problem size. The proposed strategy leads

to complete results but suffers from performance and memory

issues in later iterations. Subsequent formulations forego the

need to explicitly model suffix time-frames and instead rely

on approximations to model later time-windows (Wi). This

ensures that the effect of the error models in the window under

analysis can propagate and affect the observed failure. The
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Fig. 1. Time Diagnosis Example

approximations effectively reduce the problem size but at the

cost of poor quality of results since they provide no means of

refinement.

D. Conflict Graphs, UNSAT Cores, and Counter-Example

Guided Abstraction and Refinement

Modern SAT-solvers [27] use a conflict-driven clause learn-

ing process whereby new clauses are learnt during backtrack-

ing in the search process. In the case of an UNSAT instance,

a proof of unsatisfiability can be extracted that shows how

original clauses can be resolved together to produce the empty

clause. This requires keeping track of all resolution steps

performed to generate the learnt clauses. However, if this

information is not retained, a partial proof can be obtained

that shows how a combination of original and learnt clauses

can be resolved to generate the empty clause. We denote this

proof graph as the conflict graph. This partial proof can be

extracted using the final implication graph of a SAT solver

that led to the UNSAT result.

Alternatively, given an unsatisfiable (UNSAT) Boolean for-

mula φ in conjunctive normal form (CNF), an UNSAT core

is a subset of clauses that are unsatisfiable. With respect

to debugging, an UNSAT core intuitively represents paths

in which a counter-example can excite an error, traverse its

effects through the design components and cause a failure at

the observation points (e.g., primary outputs).

Conflict graphs and UNSAT cores are related in that they

both represent how an instance is UNSAT. They also both

represent an over-approximation of the original SAT instance

due to the fact that the clauses are either a subset of the original

instance (UNSAT cores), or implied from the original instance

(conflict graphs). However due to the restriction that UNSAT

cores must contain all original clauses, they incur additional

overhead during the solving process to maintain the necessary

bookkeeping information for generating original clauses. In

this work, we use conflict graphs instead of UNSAT cores to

efficiently generate an approximation of an UNSAT instance.

SAT-based Counter-Example Guided Abstraction and Re-

finement (CEGAR) [28] is an iterative model checking al-

gorithm composed of three general steps: abstraction, model

checking and refinement. The initial abstraction begins with

an over-approximation of the concrete problem. During the

model checking phase, if no counter-example is found, then

the target property is proved due to the over-approximate

abstraction. Otherwise it produces a counter-example, which

may be spurious and must be verified. This is done by ap-

plying the counter-example to an unrolled concrete transition

relationship. If this instance is SAT then the counter-example

is valid. In the UNSAT case, the counter-example is spurious

and refinement begins which much strengthen the abstraction

to ensure that the spurious counter-example is not found. After

refinement, this process repeats until either a valid counter-

example is found, or the property is determined to be valid.

III. PATH DIRECTED ABSTRACTION AND REFINEMENT

This section presents a design debugging abstraction and

refinement algorithm built upon both a CEGAR [28] and time-

windowing framework with the debugging model from Eq. 3.

This key idea is shown in Figure 2 with an error trace

containing k + 1 time-frames. In this example, the trace is

divided into k+1
w

non-overlapping time-windows with w = 2.

As with other time-windowing techniques, the algorithm iter-

atively analyzes non-overlapping time-windows starting from

the latest window. The abstract time diagnosis instance for

time-window i
w

is shown in greater detail. This instance is

constructed by concretely modeling the current window (e.g.,

cycles i and i + 1) and abstracting all later time-windows in

the suffix (e.g., cycles i+2 to k). This abstraction is iteratively

refined in a CEGAR-like abstraction and refinement loop with

three overall steps:

1) Abstraction: Generate an abstract time diagnosis in-

stance by concretely modeling the current time-window

combined with an over-approximate abstraction for the

later suffix time-windows. This abstraction is conceptu-

ally based upon structural circuit paths that directly led

to the observed failure in the error trace.

2) Debugging: Find all solutions to the abstract time di-

agnosis debugging instance. Since this instance over-

approximates Eq. 3, it generates a superset of the so-

lutions compared to explicit modeling. To ensure only

valid solutions are returned, each solution must then be

verified in the refinement phase.

3) Refinement: For each solution, propagate its associated

satisfying assignment forward to concretely modeled

time-windows in separate SAT instances. If each instance

is SAT, then the solution is valid and can be blocked

from appearing in future iterations. Otherwise, a conflict

is generated indicating that the abstraction is not sufficient

to prove the current solution. In this case, refinement

occurs where additional paths (in the form of clauses
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Fig. 2. Path Directed Abstraction and Refinement

involved in the conflict graph) are added back to the

abstraction.

4) Repeat steps (2)-(3) until no more new valid solutions are

found in step (2).

After all solutions have been found for the current time-

window, the algorithm moves on to an earlier time-window re-

using the refined abstraction generated for suffix time-windows

from the current iteration.

The following subsections describe the formulation, theoret-

ical results and pseudo-code for the path-directed abstraction

and refinement algorithm in greater detail.

A. Path-based Abstraction

The path-based abstraction approximates Eq. 3 by replacing

consecutive windows of time-frames (Wi) with an abstract

version, denoted by AbsWi. This is initially formulated by

adding paths in the time-frame expanded circuit that are

directly involved in the observed failure. Practically, this is

a set of clauses extracted from the SAT-solver conflict graph

generated while modeling the observed failure. The rest of this

subsection describes this process in greater detail.

Consider the first abstract time-window occurring at the end

of the trace (AbsWq) for cycles q ·w to (q + 1) ·w− 1. This

abstract window is first needed for use in the next iteration

once we have finished analyzing window p = q using Eq. 3.

Notice that in this case by setting N = 0 in Eq. 3, it simplifies

to Wq with the addition of the initial state constraints. This

precisely models the circuit behavior for cycles q · w to (q +
1)·w−1 that led to the observed failure. The resulting conflict

graph from the SAT-solver will contain clauses that are directly

involved in the observed failure at the primary outputs. These

clauses, excluding the initial state constraints, form the initial

abstraction AbsWq .

In general, the abstraction is formed by maintaining a set

of clauses for each time-window that has been previously

analyzed. When a time-window has completed analysis, we

set N = 0 for that instance and clauses within that window

are extracted. This is shown in the following equation:

AbsWi = Conflicti(AbsDebug
q
i (N = 0)) (4)

Here, Conflicti denotes all clauses with variables within

time-frames i to i+w−1 involved in the conflict of the input

formula, excluding the initial state constraints. This can be ex-

tracted by analyzing the conflict graph of the SAT-solver when

it returns UNSAT, extracting only clauses that correspond to

the relevant time-frames. AbsDebug
q
i (N) denotes the abstract

debugging instance for the previously analyzed time-window.

In the base case for i = q, this simplifies to Eq. 1.

Using Eq. 4, the initial abstract debugging problem can be

created, shown in the following formula:

AbsDebugqp(N) = Debug
(p+1)·w−1
p·w (N) ∧

q∧

i=p+1

AbsWi (5)

This formula mirrors Eq. 3 except it uses the abstract windows

for later time-frames instead of explicitly modeling them. It

results in a greatly reduced memory footprint because the

abstract windows typically are much smaller than the explicit

model. In addition, since each abstract window (AbsWi)

contains either clauses that were in the explicit model of

that window (Wi) or implied by it, Eq. 5 is in fact an over-

approximation of Eq. 3 as stated in the next lemma.

Lemma 1 Let E be a set of N active suspect variables found

in a satisfying assignment to T imeDebugqp(N), then there is a

satisfying assignment to AbsDebugqp(N) that will also contain

the active suspect variables from E .

Proof: Let A be the satisfying assignment to

T imeDebugqp(N). We will show that each of the sub-

formulas of AbsDebugqp(N) is satisfiable under A.

Debug
(p+1)·w−1
p·w (N) is SAT under A because it is a

subset of the clauses in T imeDebugqp(N). Each AbsWi is

derived from extracting clauses from a SAT-solver conflict

graph that are within the same time-frames modeled by Wi.

This means that these clauses are either a subset of Wi or

implied by the overall problem. Therefore, if all Wi are SAT

under A, so are all AbsWi. Since each component of is SAT

under A so is AbsDebugqp(N) with active suspect variables

E .

Lemma 1 implies that the initial abstract instance will

return a superset of debugging solutions when compared to

explicit modeling. This abstraction resembles the method for

approximating time-frames in [18] because they both over-

approximate a suffix of time-frames and are derived from an

UNSAT problem. However, they differ in the method used to

computer the approximation. While [18] calculated an inter-

polant directly from the proof of unsatisfiability, our method

uses the conflict graph. This method is more efficient because

it removes the need to record and traverse the UNSAT proof

to calculate the interpolant, while still retaining equivalent

information. Additionally, the abstraction allows an efficient

means to incrementally refine the problem efficiently, which

will be described in later sections.

Due to the abstraction providing a superset of the debugging

solutions, each solution must be verified to ensure it is not

spurious. To accomplish this, the satisfying assignment of each

solution is propagated forward to each subsequent concretely

modeled time-window. If a solution is indeed spurious, the

resulting conflict will act as a refinement step, a process

discussed in the following subsection.
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Example 2 Consider the debugging instance from Figure 1(a)

in Example 1. Once this instance returns UNSAT, the algo-

rithm sets N = 0, it runs a SAT-solver and it extracts clauses

involved in the resulting conflict graph to generate AbsW1.

In the next iteration of the main loop, it generates an

abstract debugging problem using Eq. 5 with p = 0, q =
1, w = 1 and N = 1. A visualization of this instance is found

in Figure 3. Here, most of circuitry from time-frame 1 has

been abstracted leaving only the path directly involved in the

conflict from the SAT-solver. Note this path is not unique and

another conflict graph has the potential to generate a different

path.

B. Path Directed Refinement

Due to the use of abstract windows in Eq. 5, a satisfy-

ing assignment, denoted by A, may not correspond to one

in the concrete instance and therefore may be spurious. A

straightforward method to verify A would be to apply it to the

entire concrete instance in Eq. 3. However, this would negate

the benefit of a reduced memory footprint since the instance

would involve explicit modeling of all time-frames. Instead, by

utilizing the previous abstract windows, it is possible to create

several smaller SAT instances that can equivalently verify A.

In order to propagate A forward, only a subset of assign-

ments are actually needed. Notice that in Eq. 5, time-frames

from p ·w to (p+1) ·w− 1 are modeled explicitly, while the

remaining are not. This means that an assignment for the first

p·w to (p+1)·w−1 time-frames on the abstract model should

also work for the respective frames on the concrete model in

Eq. 3. However, the only way for these concrete time-frames

to affect forward time-frames are through the state variables

at time-frame (p+1) ·w. If these state assignments are used to

constrain subsequent concretely modeled time-frames, then we

can iteratively propagate the effect of the original assignment

forward to each concretely modeled time-window. We denote

this subset of assignments of A on state variables for time-

frame i by cubei.

To accomplish this propagation, we create multiple in-

stances each of which models precisely w concrete time-

frames and uses the abstract windows for the others. This

construction is represented by the following equation:

Propqr = cuber·w ∧Wr ∧

q∧

i=r+1

AbsWi (6)

The state assignment cube(p+1)·w, extracted from A, is prop-

agated using the above equation to generate Prop
q
p+1. If this

results in SAT, another cube, cube(p+2)·w, will be extracted

and propagated to the next instance, Prop
q
p+2, and so on, until

all time-frames have been verified. If all subsequent instances

result in SAT, then the original abstract satisfying assignment

can be extended to one in the the concrete model. This is

stated more precisely in the following lemma.

Lemma 2 Let E be a set of N active suspect variables found

in a satisfying assignment of AbsDebugqp(N). If

AbsDebugqp(N), Prop
q
p+1, . . . , Propqq are SAT, then there

is a satisfying assignment to T imeDebugqp(N) that will also

contain the active suspect variables from E .

Proof: Let Ap,Ap+1, . . . ,Aq be the satisfying assign-

ments to AbsDebugqp(N), Prop
q
p+1, . . . , Propqq, respectively.

We show how to construct an assignment A to

T imeDebugqp(N) from Ap,Ap+1, . . . ,Aq .

From Ap, we add all assignments to variables involved in

the subformula Debug
(p+1)·w−1
p·w (N) to A. From each of the

subsequent Ar, we add assignments to all variables of Wr

from the respective instance Propqr. Notice the overlapping

variables that were added to A are precisely the state variable

from the cubes cubep·w, cube(p+1)·w, . . . , cubeq·w. But from

the formulation of Prop
q
r−1, each cube cuber·w is generated

from an instance that is constrained by the previous cube,

cube(r−1)·w, except for the first one derived from the assign-

ment Ap. This means that there is no conflict between these

overlapping state variables because each one is implied by the

previous one in the sequence which originates from Ap.

The final constructed assignment A composes a full assign-

ment to T imeDebugqp(N) since it contains assignments to all

variables in each component of the formula. Moreover, A is

a valid satisfying assignment to each of the components of

T imeDebugqp(N). We can see this because we constructed A

by extracting exactly the assignments involved in the concrete

parts of the abstract formulas which are identical to the

concrete model. These concrete parts compose exactly the

clauses of T imeDebugqp(N), so it too is SAT under A with

active suspect variables E .

After a set of active suspect variables is found, they are

blocked so that the next solution can be found for AbsDebugqp.

Notice that the propagation generates a separate instance for

every w time-frames resulting in exactly w concretely modeled

time-frames for any given instance. This key point ensures

that the memory footprint of the entire process is kept to a

minimum.

On the other hand, if Propqr is UNSAT, this means that

the original assignment A cannot be extended to the concrete

model. In this case, the abstract window was not sufficiently

refined and additional clauses must be added. Similar to the

initial abstraction, we extract clauses from the SAT-solver

conflict graph and add them to the abstract window. Intuitively,

this indicates that additional paths are required. This is shown

in the following equation:

ˆAbsW r = AbsWr ∪ Conflictr(Propqr) (7)
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Notice that the refined abstract window, ˆAbsW r, still is an

over-approximation of the concrete window because it only

contains clauses that are either a subset, or implied by, the

concrete window it models.

With the refined abstract window ˆAbsW r, we can similarly

refine all previous abstract windows. This can be accomplished

by re-creating Eq. 6 with j < r and the current refined abstract

window ( ˆAbsW r). Since A is known to be invalid, each one

of these instances will be UNSAT because they are just an

extension of the assignment A. After the abstract windows

have been updated, the refined formula defined by updating

Eq. 5 can be solved for all solutions again. These solutions

similarly can be either be confirmed or used to refine the

abstract time-windows until the refined instance, ˆAbsDebug
q
p,

is unsatisfiable.

Once all solutions are found, ˆAbsDebug
q
p is UNSAT indicat-

ing that debugging has been completed on this time-window.

The next theorem confirms the completeness of our approach,

that is, the set of solutions found in the refined abstract model

equals to the one found for the concrete model.

Theorem 1 Let solsabs be the set of confirmed debugging

solutions returned by iteratively debugging and refining
ˆAbsDebug

q
p and let solstime be the set of debugging solutions

returned by T imeDebugqp. If the final refined abstract instance
ˆAbsDebug

q
p is UNSAT by blocking all solutions in solsabs,

then solsabs = solstime.

Proof: From Lemma 1, we know that solsabs ⊇ solstime.

From Lemma 2, we also know that any set of debugging

solutions E found and verified by ˆAbsDebug
q
p is also valid for

T imeDebugqp i.e., solsabs ⊆ solstime. Therefore, solsabs is

both a superset and subset of solstime, so solsabs = solstime.

Example 3 Building upon the abstract problem from Exam-

ple 2, when the instance in Figure 3 is given to the SAT-

solver, this instance returns one solution where ea = 1 since

eb was already blocked from the previous time-window. The

associated cube with this satisfying assignment is cube1 =
s10∧s

1
1∧s

1
2. This cube is verified by generating a new instance

using Eq. 6 with r = q = 1, it is shown in Figure 4(a) and one

can show that it is UNSAT. The clauses from the conflict graph

are extracted and the abstract window AbsW1 is refined.

Figure 4(b) visualizes the refined abstract debugging prob-

lem ˆAbsDebug
1

0(N = 1). This instance again finds a solution

with ea = 1 and a new cube, ˆcube1 = s10 ∧ s11 ∧ s12.

This cube is verified using Eq. 6 which returns SAT. Thus

ea = 1 is confirmed as a solution matching the results from

Section 1. Once this solution is blocked, the refined instance

returns UNSAT indicating that this time-window has completed

analysis.

C. Overall Algorithm

Algorithm 1 presents pseudo-code for the path directed

abstraction and refinement algorithm for time-windows from
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Fig. 4. Refinement Example

p to q. The main loop from lines 3-13 iterates through each

time-window analyzing them separately. Line 4 constructs

the initial abstract instance using Eq. 5 with any previously

generated abstract windows (AbsWi). In the first iteration, this

equation simplifies to Eq. 1 where the very last time-window

is analyzed. The inner WHILE loop (lines 5-11) finds all

satisfying assignments and confirms each one by passing the

result to the VERIFY procedure (Algorithm 2). If the assign-

ment is not confirmed, then the procedure refines the relevant

abstract windows. Once all the current assignments have been

verified, the refined abstract problem is reconstructed (line 10),

blocking any solutions that were confirmed from being found

again. When the algorithm has finished analyzing the current

time-window, it exits the WHILE loop and generates the initial

abstraction for the current window on line 12 for use in the

next time-window.

The pseudo-code for the VERIFY procedure is shown in

Algorithm 2. The procedure begins by extracting the state

cube for window p + 1 from the assignment A on line 2.

The outer FOR loop (lines 3-13) propagates the cube forward

to subsequent windows using Eq. 6 (line 4). If any of the

subsequent time-windows are UNSAT (line 5), then the abstract

windows are refined by iterating backwards through the win-

dows (lines 6-9). Each backward iteration reconstructs Eq. 6

with the refined abstract windows on line 7. The refinement

step (line 8) extracts clauses from each of these UNSAT

instances to update the abstract window. The procedure either

returns the confirmed solution (line 14) or will return an empty

solution otherwise (line 10).
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Algorithm 1 Path Directed Abstraction and Refinement

1: procedure PATHDEBUG

2: sols← ∅

3: for p ∈ q, q − 1, . . . , 1, 0 do

4: inst← AbsDebugqp∧BLOCK(sols)
5: while inst is SAT do

6: Assignments←SOLVEALL(inst)
7: for A ∈ Assignments do

8: sols← sols ∪ VERIFY(A, p, q)
9: end for

10: inst← AbsDebugqp∧BLOCK(sols)
11: end while

12: AbsWp ← Conflictp(inst)
13: end for

14: return sols

15: end procedure

Algorithm 2 Solution Verification

1: procedure VERIFY(A, p, q)

2: cube(p+1)·w ←EXTRACTCUBE(A, p+ 1)
3: for i ∈ p+ 1, p+ 2, . . . , q − 1, q do

4: inst← Prop
q
i

5: if inst is UNSAT then

6: for j ∈ i, i− 1, . . . , p+ 2, p+ 1 do

7: inst← Prop
q
j

8: AbsWj ← AbsWj ∪ Conflictj(inst)
9: end for

10: return ∅

11: end if

12: cube(i+1)·w ←EXTRACTCUBE(inst, i+ 1)
13: end for

14: return EXTRACTSUSPECT(A)
15: end procedure

IV. IMPROVED REFINEMENT

A key step in Algorithm 1 is the VERIFY procedure which

propagates state cube assignments forward to later time-

windows. If any of the later windows are UNSAT, then the

conflict graph can be used to extract clauses to refine the

abstract windows. This section presents several methods to

improve the basic refinement strategy to either reduce the

overall number of iterations in Algorithm 1, or improve its

performance.

A. Finding Additional Conflicts using Necessary Assignments

As described previously, given an UNSAT instance of Eq. 6,

one can extract conflicts to refine the current abstract window.

However, since only one conflict is extracted per instance of

Eq. 6, this may require many calls to the VERIFY procedure,

decreasing the overall performance of the algorithm. To miti-

gate this problem, one can extract multiple conflicts out of an

UNSAT instance of Eq. 6.

One method to accomplish this task is to remove literals in

the propagated assignment (cubei for i = r · w in Eq. 6) that

were involved in the conflict and send the instance to the SAT

solver again. If this less constrained problem is still UNSAT,

then an additional conflict can be extracted to strengthen the

refined abstraction. However, one drawback of this method is

that the two conflicts will not have any overlapping literals in

cubei i.e., the cube literals involved in the two conflicts are

disjoint. This restricts the number of conflicts (and thus paths)

that can be found because in many cases additional conflicts

only occur when the literals overlap.

Alternatively, a more costly method would be to try all

possible subsets of cubei and see if any one of these results in

an UNSAT instance. However, this method can be inefficient

especially when the number of literals involved in the original

conflict grows. A more efficient method for finding these types

of conflicts is possible by determining additional information

with regards to the literals of cubei.

Consider the EXTRACTCUBE procedure on line 2 of Algo-

rithm 2. For each assignment A, we wish to store additional

information about the extracted cube to distinguish which

literals are due to the effect of the active error model (ei)

from the assignment, and which are necessary regardless of

the assignment to the error model’s free variables. When

finding additional conflicts, one can simply remove only those

cube literals that are not within this necessary assignment.

This allows for additional overlapping conflicts from cubei to

be efficiently generated without the need to try all possible

subsets of the cube literals.

Although it is possible to compute these necessary assign-

ments to cubei precisely using multiple SAT calls [29], a more

efficient approximate method is used. Consider the following

equation of the abstract problem where the active suspect

variable ei are constrained for a given assignment:

AbsDebugqp ∧ ei (8)

This instance has multiple SAT assignments due to the free

variables from the error models disconnecting the active

suspect’s fan-in from its fan-out. One important observation

is that these free variables do not necessarily affect every

state variable in the extracted cube (cubei). Thus, an efficient

method to determine which assignments are necessary is to run

the solver’s Boolean constraint propagation (BCP) engine on

the above instance. This will determine a large set of directly

implied assignments to the extracted cube state variables

(cubei), thus producing a subset of the state cube that are

necessary for every assignment involving ei.

This same process can be repeated for Eq. 6 as well by

using only the necessary literals of the initial state cube:

Propqr = Fixed(cuber·w) ∧Wr ∧

q∧

i=r+1

AbsWi (9)

Here Fixed extracts only the literals that were marked as

necessary. Similarly, the solver’s BCP engine can be run on

this instance to determine which literals in the resulting SAT

assignment are necessary, and which ones are due to the effect

of ei. This will allow one to calculate the necessary variables

for the next state cube cube(r+1)·w.

Using this information for each UNSAT instance of Eq. 6,

additional overlapping conflicts can be extracted by removing
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non-necessary literals in cubei that were involved in the

conflict, and re-running the SAT engine. This process can

be repeated until either all non-necessary literals have been

removed, or the instance becomes SAT.

B. Finding Additional Conflicts using Multiple State Cubes

As mentioned in the previous sub-section, each state cube

(cubei) consists of both literals that are affected by the error

models, and literals that are not affected (i.e., necessary

literals). Since the error model allows its corresponding circuit

lines to be free, multiple assignments are possible to these

subset of cube literals that are affected by the error models.

In fact given a cubei, the corresponding suspect variable may

in fact be a solution but due to the approximate nature of the

abstraction, a non-valid assignment to the free variables (with

respect to the concrete problem) was chosen. This results in

the subsequent propagation instances of Prop
q
j (i.e., Eq. 6), to

be UNSAT allowing refinement to take place. Eventually, the

abstraction will be refined enough to exclude these spurious

non-valid assignments, however, this may require many itera-

tions. To overcome this issue, we can speculatively generate

multiple additional state cubes from an original cube (cubei)

in an effort to find additional conflicts.

For a given cubei, an additional cube can be speculatively

generated by inverting a non-necessary literal of the cube. The

intuition here is that a single bit flip from a non-necessary

literal has a high likelihood of being a valid solution to

the abstract problem AbsDebugqp (and thus a valid cube).

However, it is possible that this assignment is not a solution

to the abstract problem. In this case, it is not relevant so long

as the speculatively generated cube results in a conflict to

allow additional paths to be refined. These additional paths

may not necessarily be used directly for the current suspect

variable ei, but may be useful in later time-windows or for

other suspect variables. Since the conflicts are still with respect

to Eq. 6, any refinement still maintains the over-approximate

nature of the abstraction. This results in a net benefit because

these additional cubes are efficient to calculate and accelerate

refinement.

The additional cubes can be applied to Eq. 6 on line 7 of

Algorithm 2. If the resulting instances are UNSAT, additional

clauses can be extracted from the conflict-graph accelerating

refinement in an efficient manner.

C. Improving the Initial Abstraction

The initial abstraction for each time-window (as calculated

on line 12 of Algorithm 1) is derived from a single conflict

graph. This typically is a very weak abstraction because it

contains only a small subset of paths involved in the original

failure. An efficient means to generate a stronger initial

abstraction would greatly increase performance by reducing

the number of refinement iterations needed to analyze later

time-windows.

Observe that each abstract time-window has the same un-

rolled circuit, differing only in the error trace values that are

applied. This leads to the idea that many of the paths that are

needed for an error to propagate are similar between different

time-windows. More precisely, we can use the previously

refined abstract time-windows ( ˆAbsW p+1) to strengthen the

initial abstraction for the current time-window (AbsWp).

For AbsWp, many of the clauses from the previous refined

window, ˆAbsW p+1, will be valid. We can use these clauses

to strengthen AbsWp by shifting the literals in the respec-

tive clauses to the corresponding circuit lines in the current

window. However, not all of the clauses will be valid due

to differences in the error trace values. Therefore, each clause

from ˆAbsW p+1 must be checked in order to ensure its validity.

This can be accomplished efficiently in the following way.

For each clause in ˆAbsW p+1, remap its variables so they

correspond to the same circuit lines in the current window

(AbsWp). Next, negate the clause and add the corresponding

literals to the abstract debug problem as shown in the next

equation:

AbsDebugqp ∧ clausei (10)

If this instance is UNSAT, then the clause is implied by the

abstract problem and can be added to the current abstract

window (AbsWp). Since this needs to be performed for many

clauses, an efficient approximate method to accomplish this is

to use the SAT solver’s BCP engine to propagate the literals

in clausei. If the result is UNSAT, then we can add the clause

to the current abstract window. Otherwise, do not add it. This

will not necessarily determine if the clause is implied by the

abstract problem in all cases, but rather provides an efficient

means to gather a large subset of them compared to explicit

calls to the SAT-solver.

D. Leveraging the SAT-solver for Efficient Implementation

Beyond improvements to refinement, an essential aspect in

realizing the proposed algorithm is making extensive use of

the SAT-solver. Two key implementation notes are discussed

in this sub-section. The first improvement involves extensive

use of unit assumptions and incremental SAT capabilities of

modern solvers [27], [30]. This capability of modern solvers is

used wherever possible to reduce the number of newly created

instances, greatly reducing the computational friction between

different SAT instances. One example of where this provided

significant benefit is a modification of Algorithm 1. During

the VERIFY procedure instead of verifying one assignment

at a time, multiple assignments can be verified using one

instance of Prop
q
i . This is accomplished by setting each cube,

cubei·w, as unit assumptions and re-solving the instance using

incremental SAT. This greatly reduces the overhead of re-

solving the same instance (with the exception of the state cube)

multiple times.

The second improvement involves clause subsumption [27].

During refinement, many new clauses are added to the ab-

straction. Some are redundant due to overlapping paths. To

ensure that the abstraction does not contain this unnecessary

bloat, subsumption is used to reduce duplicate information

being stored. This step can be performed each time an abstract

window is refined, maintaining an efficient abstraction.
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V. FLEXIBLE PATH DIRECTED DEBUG

Algorithm 1 provides a complete method to find the exact

set of suspects as the explicit formulation of Eq. 3 while

dramatically reducing the problem size. However in certain

worse-case scenarios, the iterative nature of calling the VER-

IFY procedure will result in long run-times. In this section,

we introduce a novel flexible algorithm that allows a trade-off

between performance and quality of results to mitigate these

problematic cases.

The worse-case scenario in Algorithm 1 occurs when an

excessive number of iterations of the WHILE loop on line 5

occurs. This can happen when a suspect requires an excessive

number of paths to prove that it is valid. The algorithm will

continually attempt to refine the abstract problem and will

eventually converge to prove or disprove the solution’s validity

but may require a long run-time.

To overcome this issue, consider the case where a suspect

is verified on an abstract model. The fact that it is verified on

the abstract model does give some confidence that it is valid,

especially if it is on a partially refined model. This translates

to the suspect being valid among a subset of paths that were

present in the abstraction, but not necessarily among all paths

in the concrete model.

Using this idea, if a suspect has been propagated forward

multiple times without ruling it out, then it can be recorded

as partially verified, and skipped for future iterations of the

algorithm. In this manner, we remove the worse-case scenario

by limiting how many times a given assignment for a suspect

can be propagated forward. Practically, this results in a small

number of suspects being skipped while providing a large

benefits in run-time.

Algorithm 3 shows pseudo-code for the modified algorithm

named FLEXIBLE PATHDEBUG. This algorithm defines two

new variables, the skip limit parameter and skips set. The

skip limit parameter defines the trade-off between quality of

results and performance. In the case of skip limit =∞, the

behavior mimics Algorithm 1. In the case of skip limit = 0,

no verification is done on the solutions resulting in a similar

algorithm to [18] where no refinement is present. For values

in between these two limits, the user can define an refinement

strategy that trade-offs between complete results and a loose

abstraction. The skip set contains all suspects that were

skipped due to the skip limit. This distinguishes them from

the suspects that have been fully verified giving additional

information to the user.

In Algorithm 3, the main loop along with the WHILE

loop retain the same functionality of analyzing time-windows

and verifying satisfying assignments. However, the algorithm

differs on line 8 where it checks if the assignment’s suspect has

reached the skip limit. If it is within the limit, the algorithm

runs the VERIFY procedure as before (line 9). Otherwise, the

suspect associated with this solution is added to the skips set

(line 11). The skips set is then blocked on line 14 so that it

does not show up again as an assignment in the WHILE loop.

Finally, the algorithm will return both the sols and skips set

to the user in order to distinguish between solutions that have

been verified and ones that have not.

Algorithm 3 Flexible Path Directed Abstraction and Refine-

ment
1: procedure FLEXPATHDEBUG

2: sols← ∅, skips← ∅

3: for p ∈ q, q − 1, . . . , 1, 0 do

4: inst← AbsDebugqp∧BLOCK(sols)
5: while inst is SAT do

6: Assignments←SOLVEALL(inst)
7: for A ∈ Assignments do

8: if countsol(A)++< skip limit then

9: sols← sols ∪ VERIFY(A, p, q)
10: else

11: skips← skips ∪ SOL(A)
12: end if

13: end for

14: inst← AbsDebugqp∧BLOCK(sols ∪ skips)
15: end while

16: AbsWp ← Conflictp(inst)
17: end for

18: return sols,skips

19: end procedure

VI. EXPERIMENTS

This section presents the experimental results for the pro-

posed algorithms. All experiments are run on a single core of

an Intel Core i5 3.1 Ghz quad-core workstation with 8 GB

of RAM and a timeout of 7200 seconds. All experiments use

MINISAT [30] as the SAT solver with a Verilog frontend to

allow for diagnosis of RTL designs.

The effectiveness of the techniques are shown on industrial

Verilog RTL designs from OpenCores [21] as well as two

commercial designs (fxu, comm) provided by our industrial

partners. Table I presents relevant design statistics for each

of the RTL designs. The three columns show the design

name, number of gates, and the total number of potential error

locations where error models are applied.

Each debugging instance is created by randomly selecting

a line in the RTL and inserting a typical industrial RTL

error (wrong state transition, incorrect operator, erroneous

instantiation etc.). It is important to emphasize that each

RTL error typically corresponds to multiple gate-level errors

locations, effectively allowing for diagnosis of multiple errors.

Next, the buggy RTL is simulated with its accompanying

testbench to observe the failure and record its error trace.

Finally, each resulting instance is run through a cone of

influence reduction [31] to remove logic that is not involved

in the observed failure. This may result in different effective

problem sizes for different instances of the same design.

Finally, each instance is run through the respective debugging

algorithm with N = 1 to compare the performance and quality

of results.

A. Refinement Improvements

The first set of experiments shows the effect of the refine-

ment improvements from Section IV. This results are shown in

Table II. The basic algorithm from Section III is compared to
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TABLE I
DESIGN CHARACTERISTICS

design # gates (k) # susps

ac97 22.9 1380

comm 164.4 20155

div64 59.7 197

fdct 239.5 4662

fpu 72.5 1982

fxu 447.3 33087

mips sys 50.3 2636

rsdecoder 14.5 2040

usbfunct 35.8 4061

vga 48.8 1731

the same algorithm but with the refinement improvements from

Section IV-A to IV-C. To ensure comparable results, instances

are selected such that they are able to run to completion

without causing a time-out or mem-out using 10 time-windows

of size w = 10 (i.e., an error trace of 100 time-frames).

The first column in Table II shows the instance name. The

next six columns show the run-time, peak memory usage,

and number of calls to VERIFY procedure in Algorithm 2

for both the basic algorithm and the one with the refinement

improvements.

The benefits of the refinement improvements manifest them-

selves in both the run-time and number of calls to VERIFY

with an average decrease of 33.4% and 66.0% respectively.

The average peak memory increased slightly by 1.5%, which

is an acceptable trade-off for the increased performance. The

reduction in run-time is primarily caused by the reduced

number of calls to VERIFY showing the efficacy of the

improvements to quickly refine the abstraction.

From Table 2, the refinement improvements do incur some

overhead as can be seen in ac97_1, where the number of

calls to VERIFY are identical, but the improvements take

longer to run. This can be explained by the fact that ac97_1

case does not require much refinement, and the improvements

have little effect in these cases. However for most of the

other instances, the extra work required for the refinement

improvements show a large reduction in run-time improve-

ment. For usbfunct_2, the refinement improvements from

Section IV-C led to no calls to the VERIFY procedure. This

was caused by all valid solutions being found in the first

analyzed time-window, as well as the improvements creating a

strong initial abstraction for each time-window which filtered

out any potential spurious solutions. However, without the

refinement improvements spurious solutions are generated that

must then be excluded through further refinement by calls to

the VERIFY procedure.

B. Window Size

The next set of experiments profiles the effects when

varying the width of the time-windows (w). The same nine

instances from Section VI-A are used to ensure that all

instances are able to run to completion without causing a

time-out or memory-out condition for the given window sizes.

The trace size is set to 100, while varying the width of each

window for w = 5, 10, 25, 50, 100. In the case of w = 100, the

problem does not use a time-windowing technique and models

the entire trace directly.

TABLE II
REFINEMENT IMPROVEMENT EXPERIMENTS

no optimizations optimizations

instance time mem verify time mem verify
(s) (MB) (s) (MB)

ac97 1 47 703 14 54 722 14

ac97 2 132 716 115 81 775 29

div64 1 392 1366 110 275 1368 55

div64 2 206 1352 213 72 1270 6

fpu 1 108 1450 25 59 1475 3

rsdecoder 2 1354 729 1468 1582 861 552

usbfunct 1 106 1122 29 83 1102 20

usbfunct 2 88 1051 36 45 1040 0

vga 2 3544 1155 3733 657 1060 352

Table III shows the run-time and peak memory results of

the experiments. The first column shows the instance name,

followed by the run-time in seconds and peak memory for each

of the different values of w. Overall, using a time-windowing

technique dramatically reduces the peak memory usage of the

algorithm resulting in an average decrease of 62.0%, 60.1%,

52.0%, and 36.4% in peak memory for w = 5, 10, 25, 50,

respectively, compared to w = 100 (i.e., no time-windowing).

This decrease is directly related to the reduction in problem

size due to using time-windowing. Figure 5 shows this relative

decrease in peak memory for several instances.

As the window width w shrinks, the peak memory does

not approach 1
w

of the peak memory of directly modeling

the entire trace. This is caused by two reasons. First, the

data structures used to hold the RTL constructs, error trace,

and internal netlist are always present in memory resulting

in a lower bound regardless of window size. Secondly, the

abstraction is still present in memory. Regardless of how many

time-frames are explicitly modeled, the abstraction must still

contain enough clauses in order to verify each solution. This

places an additional constraint on the lower bound of the

problem. Despite this bound, the time-windowing technique

still produces dramatic decreases in peak memory.

When comparing the run-time, the results show an overall

increase when compared to using no time-windowing (w =
100). For w = 5, 10, 25, 50, time-windowing increases run-

time on average by 216.6%, 46.0%, 25.1%, and 183.54%,

respectively. In some cases time-windowing produced faster

run-times such as div64_1, and in other cases slower run-

times such as vga_2. The former case occurs primarily when

the abstract problem is small enough allowing the solver to run

faster to outweigh the overhead of multiple SAT instances. In

the latter case, multiple SAT instances increase the run-time,

especially in cases where many calls to VERIFY are needed.

Here explicit modeling of the trace (w = 100) produces sig-

nificantly better results in terms of run-time due to the solver

having access to the entire problem in memory. However, it

should be noted that the primary benefit of time-windowing

techniques are targeted for large industrial instances where it

is not possible to model the entire trace explicitly. In these

cases, time-windowing makes analysis possible while explicit

modeling is unable to handle these problems.

The run-time performance of an instance across different

window widths varies significantly as in the case of vga_2

as well as the large difference in the average run-time. The run-
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TABLE III
WINDOW SIZE EXPERIMENTS

w = 5 w = 10 w = 25 w = 50 w = 100

instance time mem time mem time mem time mem time mem
(s) (MB) (s) (MB) (s) (MB) (s) (MB) (s) (MB)

ac97 1 80 692 54 722 39 875 39 1226 30 1893

ac97 2 104 699 81 775 51 923 43 1219 32 1883

div64 1 531 1250 275 1368 161 1832 444 2556 1782 4673

div64 2 244 1225 72 1270 75 1690 86 2400 106 4127

fpu 1 82 1279 59 1475 58 1904 61 2741 89 4521

rsdecoder 2 1875 873 1582 861 1494 919 802 1025 623 1342

usbfunct 1 124 961 83 1102 58 1285 78 1751 144 2841

usbfunct 2 72 954 45 1040 36 1304 35 1771 53 2838

vga 2 2709 1136 657 1060 671 1226 3639 1531 195 2230
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Fig. 5. Relative Memory for Different Window Sizes

time is dependent primarily on the number of SAT instances

that are created and the size of each one of those instances.

For smaller window widths, the size of each instance is small

and runs quickly, but many small SAT instances are created

(primarily in the VERIFY procedure). Inversely for longer

window widths, the size of each instance is large and takes

longer to run, but the number of SAT instances is significantly

less. In addition to these two effects, the conflict driven

refinement procedure is dependent on the solution found in the

abstract problem. This adds additional variability, where in a

worst cast, significantly more calls to the VERIFY procedure

may be needed. However, as shown in the next section, using

the flexible algorithm from Section V (Algorithm 3), this

variability can be reduced.

C. Flexible Path Directed Debug

This set of experiments investigates the FLEXPATHDEBUG

algorithm from Algorithm 3 with respect to the skip limit pa-

rameter. Instances are chosen that are able to run to completion

for all values of skip limit without a time-out or memory-

out condition. The trace is set to analyze 100 time-frames with

w = 10. Four different sets of experiments are conducted for

skip limit = 0, 5, 10,∞. Note that skip limit = ∞ corre-

sponds to the basic PATHDEBUG algorithm from Algorithm 1,

while skip limit = 0 is comparable to the approximate

time-windowing technique from [18] where no refinement is

present.

Table IV shows the results of the experiments. The first

column shows the instance name, followed by four sets of

columns corresponding to the run-time, peak memory, number

of verified and un-verified solutions (i.e., sols and skips from

Algorithm 3) for the four different values of skip limit.

When looking at the skip column, small values of

skip limit have a large effect on the number of un-verified

solutions. On average, the number of skipped solutions are

114.7%, 1.6% and 1.5% times the size of skip limit = ∞
(i.e., the exact set of solutions) for skip limit = 0, 5, 10,

respectively. This shows that refinement can greatly reduce the

number of spurious solutions compared to past approximate

time-windowing techniques such as [18] where no refinement

is present. On the other hand, even for small values of

skip limit the number of skipped solutions is greatly reduced.

In terms of run-time, the average run-time reduction for

skip limit = 0, 5, 10 relative to skip limit = ∞ is 52.4%,

9.72% and 7.5% respectively. As expected skip limit = 0
is able to show the greatest run-time reduction at the cost

of greatly decreased quality of results. For other values of

skip limit, the refinement can dramatically reduce the run-

time as in the case of comm_1 and vga_2, where a small

subset of suspects causes the algorithm to spend significantly

more time in the VERIFY procedure. This worst-case scenario

is exactly the case PATHDEBUG aims to address.

When looking at peak-memory, the average reduction is

5.4%, 0.6%, and 0.5% for skip limit = 0, 5, 10 respectively.

When no refinement is present (skip limit = 0), a slight

decrease in peak memory is shown due to the fact that the

abstraction is smaller compared to when refinement is present.

D. Trace Length

The final set of experiments investigates the maximum

length of error trace each technique can analyze until ei-

ther a time-out, memory-out or entire trace is analyzed.

The experiments compares the WINDOWEXPANSION time-

windowing technique from [18] (a complete debugging algo-

rithm), the basic PATHDEBUG algorithm from Section III, and

the flexible algorithm FLEXPATHDEBUG from Section V with

skip limit = 5. All instances derived from designs in Table I

are used in this set of experiments. The window size is set to

w = 10.

Table V shows the results of experiments. The first col-

umn shows the instance name, while the next eight columns

show the run-time, peak memory, number of solutions, and

number of cycles analyzed for the WINDOWEXPANSION and

PATHDEBUG algorithms respectively. The last five columns
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TABLE IV
FLEXIBLE PATHDEBUG EXPERIMENTS

skip limit = 0 skip limit = 5 skip limit = 10 skip limit = ∞

instance time mem sols skip time mem sols skip time mem sols skip time mem sols skip
(s) (MB) (s) (MB) (s) (MB) (s) (MB)

ac97 1 27 720 15 11 54 722 26 0 54 722 26 0 54 722 26 0

ac97 2 25 722 9 11 81 775 11 0 81 775 11 0 81 775 11 0

div64 1 146 1334 23 17 275 1368 36 0 275 1368 36 0 275 1368 36 0

div64 2 63 1260 18 3 72 1270 21 0 72 1270 21 0 72 1270 21 0

fpu 1 50 1444 29 3 59 1475 32 0 59 1475 32 0 59 1475 32 0

rsdecoder 2 54 579 132 275 1582 861 381 0 1582 861 381 0 1582 861 381 0

comm 1 1139 5152 32 201 3442 5176 74 2 3986 5248 74 2 6169 5475 74 0

comm 2 1062 5190 32 203 3449 5315 75 2 3981 5318 75 2 6168 5373 75 0

usbfunct 1 52 1080 98 11 86 1099 105 1 83 1102 105 0 83 1102 105 0

usbfunct 2 45 1040 10 0 45 1040 10 0 45 1040 10 0 45 1040 10 0

vga 2 101 1033 28 195 514 1063 46 5 580 1053 46 5 657 1060 46 0

show the run-time, peak memory, number of verified and un-

verified solutions (i.e., sols and skips from Algorithm 3), and

number of analyzed cycles.

When comparing the number of cycles analyzed, PATHDE-

BUG and FLEXPATHDEBUG are able to analyze 35.5% and

64.6% more cycles on average than WINDOWEXPANSION.

This shows one of the main benefits of the proposed tech-

nique: the ability to analyze debugging instances that were

previously too large to analyze. Moreover, the increased trace

length analyzed for PATHDEBUG and FLEXPATHDEBUG is

achieved with significantly less memory. This can be seen

by WINDOWEXPANSION experiments causing 12 memory-out

conditions compared to 2 for the path-based algorithms.

Figure 6 shows the cycles analyzed for several different

instances. In most cases, such as fdct_1 and comm_1,

the FLEXPATHDEBUG is able to analyze many more cycles

compared to WINDOWEXPANSION. In contrast, in a few

cases such as mips_sys_1, WINDOWEXPANSION is able to

analyze more cycles. This is due to the computation required

by the VERIFY procedure, where the SAT instances created

are more difficult to solve. However, the FLEXPATHDEBUG

algorithm can be used with a different value of skip limit

parameter to overcome some of these hard-to-solve cases.

For the FLEXPATHDEBUG algorithm, the absolute number

of un-verified solutions is relatively small allowing for a

good trade-off between performance and quality of results.

Moreover, the additional cycles analyzed allowed FLEX-

PATHDEBUG to find on average 11.6% more solutions (both

verified and un-verified) compared to WINDOWEXPANSION.

This shows that the additional cycles analyzed do indeed

contain some additional solutions, which could potentially be

needed to find the underlying bug, a desirable side-effect for

the proposed methodology.

VII. CONCLUSION

Debugging has become a significant bottleneck in the VLSI

design flow due to its resource intensive nature. The problem

is further exacerbated by the ever growing size of modern

designs and their error traces. This work introduces a novel

path directed abstraction and refinement framework that aims

to manage excessive error trace lengths. It uses a time-

windowing framework to iteratively analyze a sliding window

of the error trace. Non-modeled portions of the trace are
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approximated using a novel path directed abstraction that

conceptually represents structural circuit paths. This represen-

tation provides a means for analyzing a sliding window of the

error trace, as well providing a basis for efficient refinement.

The result is an algorithm that can significantly reduce the

memory requirements of debugging industrial instances, while

mitigating the incomplete results of past techniques. Experi-

mental results on industrial designs demonstrate that 64.6%
longer error traces can be analyzed with the proposed approach

while significantly reducing the memory usage.
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