
Quantified Bounded Model Checking for
Rectangular Hybrid Automata

Luan Viet Nguyen
University of Texas at Arlington

Djordje Maksimovic
University of Toronto

Taylor T. Johnson
University of Texas at Arlington

Andreas Veneris
University of Toronto

Abstract—Satisfiability Modulo Theories (SMT) solvers have
been successfully applied to solve many problems in formal veri-
fication such as bounded model checking (BMC) for many classes
of systems from integrated circuits to cyber-physical systems
(CPS). Typically, BMC is performed by checking satisfiability
of a possibly long, but quantifier-free formula. However, BMC
problems can naturally be encoded as quantified formulas over
the number of BMC steps. In this approach, we then use decision
procedures supporting quantifiers to check satisfiability of these
quantified formulas. This approach has previously been applied
to perform BMC using a Quantified Boolean Formula (QBF)
encoding for purely discrete systems, and then discharges the
QBF checks using QBF solvers. In this paper, we present a new
quantified encoding of BMC for rectangular hybrid automata
(RHA), which requires using more general logics due to the real
(dense) time and real-valued state variables modeling continuous
states. We have implemented a preliminary experimental proto-
type of the method using the HyST model transformation tool to
generate the quantified BMC (QBMC) queries for the Z3 SMT
solver. We describe experimental results on several timed and
hybrid automata benchmarks, such as the Fischer and Lynch-
Shavit mutual exclusion algorithms. We compare our approach
to quantifier-free BMC approaches, such as those in the dReach
tool that uses the dReal SMT solver, and the HyComp tool built
on top of nuXmv that uses the MathSAT SMT solver. Based on
our promising experimental results, QBMC may in the future be
an effective analysis approach for RHA as further improvements
are made in quantifier handling in SMT solvers such as Z3.

Index Terms—bounded model checking, hybrid automata,
timed automata, satisfiability modulo theories

I. INTRODUCTION

Boolean Satisfiability (SAT) is the canonical NP-complete
problem and is to determine if a given Boolean formula
is satisfiable, i.e., check if there exists an assignment of
values to variables where the formula is true. A Boolean
formula is given in Conjunctive Normal Form (CNF), that
is, a conjunction of clauses, each of which is a disjunction
of literals. Satisfiability modulo theories (SMT) is a gener-
alization of SAT, where literals are interpreted with respect
to a background theory (e.g., linear real arithmetic, nonlinear
integer arithmetic, bit-vectors, etc.).

Recently, SMT-based techniques have been developed to
formally verify hybrid systems [1]–[6]. Typically, these SMT-
based methods are used in bounded model checking (BMC),
which is to check for a transition system A and a specification
P whether I(s0) ∧

∧k−1
i=0 T (si, si+1) ∧ (

∨k
i=0 P (si)) is satis-

fiable. Here, I(s0) encodes an initial set of states over a set
of variables s0, T (si, si+1) represents the transition relation
from iteration i to i+1 over sets of variables si and si+1, and
P (si) encodes the specification at step i.

Hybrid automata are a modeling formalism used to verify
dynamical systems including both continuous states and dy-
namics as well as discrete states and transitions. Examples
of systems naturally modeled by hybrid automata arise in the
interaction of physical plants and software controllers in real-
time systems and cyber-physical systems (CPS). In essence,
hybrid automata augment finite state machines with a set of
real-valued variables that evolve continuously over intervals of
real time. In hybrid automata, a transition relation T = D∪T
encodes both discrete transitions D and continuous trajectories
T over intervals of real-time. Rectangular hybrid automata
(RHA) are a special class of hybrid automata with continuous
dynamics described by rectangular differential inclusions and
where all other quantities (guard conditions, invariants, resets,
etc.) of the automata are linear inequalities over constants [2],
[7]. Sets of states, as well as discrete transitions and continuous
trajectories of RHA, can be symbolically represented by SMT
formulas over real and Boolean variables.

Depending on the underlying logics supported, SMT solvers
may or may not support quantifiers. While quantifiers make
the language more expressive, they increase the complexity
of computations like checking satisfiability and may also
lead to undecidability. Techniques allowing quantifiers, such
as in quantified Boolean formula (QBF) solvers, have been
developed for BMC of purely discrete systems, such as finite
state machines [8], [9]. However, to the best of our knowledge,
there has been no effort to develop quantified BMC (QBMC)
methods for timed or hybrid automata, which we develop in
this paper. Of course, this is partially because the underlying
SMT solver requires support for complex combination theories
and efficient algorithms to check quantified formulas, which
until recently, were either not available or not scalable.

The logic used requires some finite sort for the discrete
states (such as a enumerated type or bitvectors) and reals
for the continuous states and trajectories. In this paper, we
use LRABV (linear real arithmetic with bit-vectors) for en-
coding QBMC for timed automata and RHA, and we note
that general hybrid automata would need NRABV (nonlinear
real arithmetic with bit-vectors) or beyond, such as those
whose solutions involve special (transcendental) functions like
sin, cos, exp, etc. While none of these logics are officially
supported in the SMT-LIB2 standard (nor the 2.5 draft) as of
the time of this writing [10], several solvers do have unofficial
support for this combination theory, such as the latest versions
of Z3, which is the SMT solver used in this paper [11].

Related Work: When defining the semantics of hybrid
automata, first-order or higher logic is typically used and
quantifiers typically show up in several places. Existential
quantifiers over reals are used to specify that some amount
of real time may elapse in a given location of the hybrid au-
tomaton. Universal quantifiers over reals representing real time
are used to construct invariants that are enforced at all times,
while in a given location of the hybrid automaton; otherwise
real time is not allowed to advance, and a discrete transition
must be taken, if any are enabled based on the current state
and guards of the transitions. Alternative approaches to the one
described in this paper have previously been developed, where
the universal quantifiers used to define invariants’ semantics
are explicitly removed from the SMT expressions to create
quantifier-free formulas. This allows the use of existing SMT-
based procedures and avoids quantifier-elimination and other
quantifier-handling procedures [2], [3], [12]. We note that this
approach does not use quantifiers on the number of steps
k ≥ 0 in the BMC computation. which we do in this paper.
Specifically, we suggest that effectively encoding the BMC
problem in a quantified form over the number of steps k may
provide a more scalable approach in the future as quantifier
handling procedures are improved in the underlying solvers.
We accomplish this by extending existing results for BMC of
discrete systems with QBF solvers [9] to timed and hybrid
automata, specifically RHA.

Typical approaches to analyze timed and hybrid automata
use symbolic representations of states such as difference bound
matrices (DBMs) to represent clock regions in Uppaal [13] or
polyhedra in HyTech [14]. Several other formal verification
tools for hybrid automata focus on performing reachability
computations, and overapproximate the set of reachable states
using various data structures to symbolically represent geo-
metric sets of states, such as Taylor models in Flow* [15] and
support functions in SpaceEx [16]. Reachability analysis tools
like Flow* and SpaceEx focus on computing reachable states,
although there is a direct equivalence between time-bounded
reachability computations and BMC.

Several SMT-based approaches can verify properties of
timed and hybrid automata. dReal is an SMT-solver for first-
order logic formulas over the reals, and uses a δ-complete
decision procedure [17]. dReach is a BMC tool that queries
dReal to check satisfiability of SMT formulas encoding the
transitions and trajectories for hybrid automata [4]. HyComp
is a verification tool for networks (parallel compositions) of
hybrid automata with polynomial and other dynamics [6] and
is built on top of nuXmv [18]. For k-induction and IC3,
HyComp may perform unbounded model checking, but in the
BMC mode, it also allows a limit on the number of steps,
and also encodes the semantics of the network of hybrid
automata’s transition relation and trajectories. A very closely
related approach to this paper also encodes BMC problems
for timed automata using quantified formulas, but this quan-
tification is to encode unknown or incomplete components,
and is not a quantification over the BMC length [19]. Passel
is a parameterized verification tool for networks of RHA

that may prove properties regardless of the number N of
automata in the network [2]. Passel implements an extension
to hybrid automata of the invisible invariants approach for pa-
rameterized verification, and consists of an invariant synthesis
procedure [20] that relies on reachability computations [5].
Passel encodes the semantics of networks of hybrid automata
as SMT formulas and checks satisfiability and validity using
the Z3 SMT solver. Additionally, when performing reachabil-
ity computations, Passel makes use of quantifier elimination
procedures over the reals and bit-vectors [5].

Contributions: In this paper, we present a new SMT-
based verification technique that encodes the BMC problem
for RHA in a quantified form, which we call quantified
BMC (QBMC). We take hybrid automata in the SpaceEx
format [16], which are then translated to the QBMC encoding
proposed in this paper using the HyST model transformation
tool [21]. We then perform QBMC by querying the Z3 SMT
solver via its Python API and use its quantifier-handling proce-
dures [11]. We present preliminary experimental results where
the QBMC approach and Z3 perform competitively, when
compared to (a) the dReach tool that performs BMC using an
SMT check by querying the dReal δ-decidable SMT solver [4],
[17], and (b) the HyComp tool built on top of nuXmv that uses
the MathSAT SMT solver [22]. The examples include standard
ones such as Fischer and Lynch-Shavit mutual exclusion, as
well as an illustrative example to describe the encoding. The
main contribution of this paper is the first encoding of BMC as
a quantified problem for RHA. Our results subsume the case
for timed automata, as RHA are more expressive than timed
automata, and we note this is also the first QBMC approach
for timed automata.

II. HYBRID AUTOMATA SYNTAX AND SEMANTICS

A hybrid automaton is essentially a finite state machine
extended with a set of real-valued variables that evolve con-
tinuously over intervals of real-time.

Syntax: The syntactic structure of a hybrid automaton is
formally defined as follows.

Definition 1: A hybrid automaton H is a tuple, H ∆
=

〈Loc, Var , Inv , Flow , Trans , Init〉, with the components as
follows. (a) Loc is a finite set of discrete locations. (b) Var
is a finite set of n continuous, real-valued variables, and
Q ∆

= Loc × Rn is the state-space. (c) Inv is a finite set
of invariants, one for each discrete location, and for each
location ` ∈ Loc, Inv(`) ⊆ Rn. (d) Flow is a finite set
of ordinary differential inclusions, one for each continuous
variable x ∈ Var , and Flow(`, x) ⊆ Rn describes the
continuous dynamics in each location ` ∈ Loc. (e) Trans is
a finite set of transitions between locations. Each transition is
a tuple τ ∆

= 〈`, `′, g, u〉, where ` is a source location and `′

is a target location that may be taken when a guard condition
g is satisfied, and the post-state is updated by an update map
u. (f) Init is an initial condition, which consists of a set of
locations in Loc and a formula over Var , so that Init ⊆ Q.

For RHA, all the expressions appearing in invariants,
guards, and updates must be boolean combinations of constant

inequalities, and the flows are rectangular differential inclu-
sions (ẋ ∈ [a, b] for a ≤ b) [7]. We use the dot (.) notation
to refer to different components of tuples e.g., H.Inv refers
to the invariants of automaton H and τ.g refers to the guard
of a transition τ . If clear from context, we drop H and τ and
refer to the individual components of the tuple.

Semantics: The semantics of a hybrid automaton H are
defined in terms of executions, which are sequences of states.
A state q of H is a tuple q

∆
= 〈`, v〉, where ` ∈ Loc is a

location, and v ∈ Rn is a valuation of all variables in Var .
Formally, for a set of variables Var , a valuation is a function
mapping each x ∈ Var to a point in its type—here, R. The
state-space Q is the set of all states of H. Updates of states
are described by a transition relation T ⊆ Q × Q. For a
transition 〈q, q′〉 ∈ T where q

∆
= 〈`, v〉 and q′

∆
= 〈`′, v ′〉,

we denote q → q′ ∈ T as the transition between the
current state q and the next state q′. The transition relation
T is partitioned into disjoint sets of discrete transitions and
continuous trajectories that respectively describe the discrete
and continuous behaviors of the automaton. Thus, T ∆

= D∪T ,
where: (a) D ⊆ Q×Q is the set of discrete transitions that
describe instantaneous updates of state, (b) T ⊆ Q × Q is
the set of continuous trajectories that describe updates of state
over real time intervals.

Discrete transitions. A discrete transition q → q′ ∈ D
models an instantaneous update from the current state q to
the next state q′. There is a discrete transition q → q′ ∈ D if
and only if (iff): ∃τ ∈ Trans : q.v |= τ .g∧q′.v ′ |= τ .u, where
τ .g, and τ .u are the guard condition and the update map of
the discrete transition τ , respectively.

Continuous trajectories. A continuous trajectory q → q′ ∈
T models the update of state q to q′ over an interval of real
time. The set-valued function ∆ returns a set of states and is
defined as: ∆(q.`, q.v, x, t) ∈ q.v.x+

∫ t
δ=t0

f (q.`, x)dδ, where
f ∈ Flow is a flow rate. A formula over Var ∪ ˙Var that
describes the evolution of a real variables x ∈ Var over a real
time interval J = [t0, t], and q.v.x is the value of continuous
variable x of the state q at t = t0. Then, there is a trajectory
q → q′ ∈ T iff: ∃tα ∈ R≥0 ∀tβ ∈ R≥0 ∃` ∈ Loc :
tβ ≤ tα ∧ ∆(q.`, q.v,Var , tβ) |= Inv(`) ∧ q′.v ′.Var ∈
∆(q.`, q.v,Var , tα). For each real variable x, q.v .x must
evolve to the valuation q′.v ′.x at precisely time tα and
corresponding to the flow rate of x in location `. Additionally,
all states along the trajectory must satisfy the invariant Inv(`)
i.e., at every point in the interval of real time tβ ≤ tα.

Executions. An execution of H is a sequence π
∆
= q0 →

q1 → q2 → ..., such that: (a) q0 ∈ Init is an initial state,
and (b) either qi → qi+1 ∈ D is a discrete transition or qi →
qi+1 ∈ T is a continuous trajectory for each consecutive pair
of states in the sequence π. A state qk

∆
= 〈`k, vk〉 is reachable

from initial state q0
∆
= 〈`0, v0〉 ∈ Init iff there exists a finite

execution π ∆
= q0 → q1 → ...→ qk.

Safety specifications. In this paper, we develop the QBMC
procedure to check whether safety properties of hybrid au-
tomata are satisfied up-to iteration k. A safety specification

φ is a formula over Loc and Var that describes a set of
states JφK ⊆ Q, where J·K is the set of states satisfying φ. For
an automaton H and a safety specification φ, the automaton
satisfies the specification, denoted H |= φ, iff for every
execution π, for every state q0, q1, . . . , qk in the execution π,
we have π.qk ∈ JφK. If H |= φ for every i ∈ {0, . . . , k},
then the system is safe up-to iteration k. If H |= φ for any
k, then the system is safe. For a safety specification φ, a
counterexample is an execution π where some state q ∈ π
violates φ, i.e., q 6|= φ, or equivalently, q /∈ JφK.

III. QUANTIFIED BMC FOR HYBRID AUTOMATA

Bounded model checking (BMC) has been used widely in
verification and falsification of safety and liveness properties
of various classes of systems, from finite state machines to
hybrid automata. The key idea is to search for a counterex-
ample execution whose length is bounded by a number of
steps k. In other words, BMC will explore all executions
from any initial state of the system Ψ to detect whether there
is a way to reach a bad state that violates a given property
(or to find a loop in the case of liveness). Then this path is
considered as a counterexample to the property that may help
the user to debug the system. For finite state systems, BMC
can be encoded as a propositional formula to be checked as
satisfiable or unsatisfiable using a Boolean SAT solver. For
hybrid automata, BMC can be encoded as a formula over reals
and finite sorts (such as Booleans, bitvectors, or enumerated
types). In this paper, we focus only on hybrid automata with
rectangular differential inclusion dynamics (ẋ ∈ [a, b] for real
constants a ≤ b), and for this class of automata, the formulas
are within linear real arithmetic (LRA). We first illustrate
BMC for hybrid automata using the traditional quantifier-free
encoding, and then describe the quantified BMC (QBMC),
which is the main contribution of this paper.

Quantifier-Free BMC for Hybrid Automata: Let P be a
set of given specifications of the hybrid automata, the BMC
problem will determine whether a specification P (qk) ∈ P is
safe after k steps, and it is:

Φ(k)
∆
= I(V0) ∧

k−1∧
i=0

Ti(V, V
′) ∧ (

k∨
i=0

P (Vi)), (1)

where Vi corresponds to the set of variables Var of the
automaton H appropriately renamed. For example, Vi contains
of every variable v ∈ Var syntactically renamed to vi,
etc., and V ′ consists of primed variables, e.g., v′ for each
v ∈ Var . In Equation 1, I(V0) encodes the initial set of
states, Ti(V, V ′) encodes the transition between consecutive
pairs of sets of states, and P (Vi) is a safety specification
at iteration i. We note that the sets of variables Vi for each
iteration i are implicitly existentially quantified and e.g., we
could equivalently prefix ∃V0, V1, . . . , Vk. We drop the sets of
variables for a shorter notation, e.g., Equation 1 is equivalent
to I0 ∧

∧k−1
i=0 Ti ∧ (

∨k
i=0 Pi).

Example 1: Consider the hybrid automaton H shown in Fig-
ure 1. Assume that the automaton starts at location `oc1 , and
the initial value of x is 0. The set of bad states are defined

by: P ∆
=

∨k
i=0 ¬(qi.`i = `oc2 =⇒ x ≥ 2.5). Two

intervals [a1, b1] and [a2, b2] describe the rectangular differ-
ential inclusions for locations `oc1 , and `oc2 , respectively.
This automaton would be a timed automaton if all of the
constants values are equal, i.e., a1 = b1 = a2 = b2. This
automaton would be a multi-rate timed automaton if a1 = b1
and a2 = b2 but possibly a1 6= a2. Otherwise, this automaton
is a rectangular hybrid automaton. Suppose that a1 = 1,
b1 = 2, a2 = 3, and b2 = 4. We introduce k + 1 copies
x0, x1, ..., xk and `0, `1, ..., `k, where the variable xi gives the
value of the variable x, and `i indicates the location at the
state qi, representing the ith step of the BMC computation for
the automaton shown in Figure 1. The BMC computation of
H for each k up to 2 can be encoded as:

• k = 0: I0 := (`0 = `oc1 ∧ x0 = 0);
• k = 1 (D0): (`0 = `oc1 ∧ `1 = `oc2 ∧ x0 ≤ 5 ∧ x0 ≥

2.5 ∧ x1 = x0),
• k = 1 (T0): (`0 = `oc1 =⇒ (`1 = `0 ∧ x0 + a1δ ≤
x1 ∧ x1 ≤ x0 + b1δ ∧ x1 ≤ 5)),

• k = 2 (D1): (`1 = `oc1 ∧ `2 = `oc2 ∧ x1 ≤ 5 ∧ x1 ≥
2.5 ∧ x2 = x1),

• k = 2 (T1): (`1 = `oc1 =⇒ (`2 = `1 ∧ x1 + a1δ ≤
x2 ∧ x2 ≤ x1 + b1δ ∧ x2 ≤ 5)),

where δ is a fresh, real constant.1 We split the discrete
transitions and trajectories for clarity, but the entire formula to
be checked for iteration k = 1 would just be the disjunction
of these conjuncted with the formula representing k = 0 and
the bad set of states, i.e., I0 ∧ (D0 ∨ T0)∧ P . For k = 2, this
full formula would be I0 ∧ (D0 ∨ T0) ∧ (D1 ∨ T1) ∧ P .

For k = 1, we dropped the obviously infeasible transition
from `oc2 to `oc1 from D0, which would be found as being
unsatisfiable since `0 6= `oc2 . However, the transition from
`oc1 to `oc2 also cannot occur since x0 = 0, but x0 6≥ 2.5,
so that part is unsatisfiable and no discrete transitions may
be taken from the set of initial states. We also dropped the
continuous dynamics for `oc2 from T0 since this would also
be infeasible since `0 6= `oc2 . However, real time may elapse,
and as encoded, would correspond to any choice of time δ such
that x1 ∈ [a1δ, b1δ] and x1 ≤ 5. Since a1 = 1 and b1 = 2,
at most between 2.5 and 5 seconds of real time could elapse,
and either case would yield x1 ∈ [0, 5].

For k = 2, we also dropped the infeasible transition and
trajectory for clarity. In this case, the transition from `oc1
to `oc2 is enabled since x1 ∈ [0, 5], so the update to `oc2
may occur. However, now the continuous trajectory would
be infeasible since x1 could already be 5 and the invariant
requires x2 ≤ 5, so no real-time δ > 0 may elapse, as
otherwise x1+a1δ > 5 is unsatisfiable for x1 = 5. So, the only
state update would be to `oc2 owing to the discrete transition.

1In general, a universally quantified assertion that the invariant is satisfied
for every real time along the trajectory from time t0 to time t0 + δ, although
this is unnecessary for rectangular differential inclusions with linear guards
and invariants for convexity reasons [2], [6], which makes this assertion fall
into the combination theory of linear real arithmetic with bitvectors (or some
finite sort to encode the locations).

`oc1
x ≤ 5

ẋ ∈ [a1, b1]
start

`oc2
x ≤ 10

ẋ ∈ [a2, b2]

x ≥ 2.5

x ≥ 10
x := 0

Fig. 1. The hybrid automaton H for Example 1.

Quantified BMC (QBMC) for Hybrid Automata: Next, we
construct a quantified formula Ω(k) for BMC of H of length
k. We introduce a vector t =

〈
t1, t2, ..., tdlog2 ke

〉
to index each

iteration of the BMC of H. The current state q and next state
q′ under the transition relation T (V, V ′) are connected to the
current state and the next state for each particular iteration ti,
for i ∈ [1, dlog2 ke]. The quantified BMC formula is:

Ω(k)
∆
= ∃V0, V1, ..., Vk, δ∀t∃V, V ′ | I(V0) ∧ T (V, V ′) ∧

k−1∧
i=0

ti+1 → [(V = Vi) ∧ (V ′ = Vi+1)] ∧ (

k∨
i=0

P (Vi)),

where we note that the existential δ encodes the real time
elapse and would appear in the trajectories T of the disjunct
T = D ∨ T .

For k = 3, the QBMC of the automaton of Example 1 is:
Ω(3) = ∃V0, V1, V2, V3, δ∀t1, t2∃V, V ′ | I(V0) ∧ T (V, V ′)

∧ {t̄1 → [(V = V0) ∧ (V ′ = V1)]}
∧ {t1 ∧ t̄2 → [(V = V1) ∧ (V ′ = V2)]}
∧ {t1 ∧ t2 → [(V = V2) ∧ (V ′ = V3)]}
∧ (P (V0) ∨ P (V1) ∨ P (V2) ∨ P (V3)), (2)

where V = V ′ is a shorthand indicating every variable v ∈ V
equals its corresponding counterpart v′ ∈ V . In Equation 2,
if the value of t1 is 0, then there is a continuous trajectory
that evolves from the initial state q0, where q0.`0 = `oc1
and x0 = 0, to the next state q1, where q1.`1 = `oc1 and
x1 ≤ 5. When t1 = 1 and t2 = 0, the system takes the
discrete transition from the current state q1 to the next state
q2, where q2.`2 = `oc2 and the value of x3 is not higher than
10. At k = 3, both t1, and t2 are true, then q2 becomes the
current state, and q3 is the next state, where q3.`3 = `oc1 ,
and x3 ≤ 5. The discrete transition taken from q2 to q3 when
x ≥ 10 will reset the value of x to 0.

If it terminates, an SMT solver supporting the combined
theory of bitvectors and reals with quantifiers will return SAT
for the QBMC formula iff there exists an execution from an
initial state to a bad state, i.e., if a bad state is reachable.
Otherwise, if it terminates, it will return UNSAT if a bad state
is not reachable in k steps. We note that the combination theory
of linear real arithmetic with bitvectors is decidable, and Z3
is in essence a decision procedure for this theory.

IV. EXPERIMENTAL RESULTS

We implement the method described in this paper as a
module within HyST [21]. HyST takes as input a hybrid
automaton model in an extended form of the SpaceEx XML
format [16] (supporting e.g., nonlinear functions instead of
only affine ones), and creates the transition relation as SMT

TABLE I
EXAMPLE 1 PERFORMANCE COMPARISON.

Tools L
k ≤ 32 k ≤ 64 k ≤ 128

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

QBMC 2 1.11 27.2 3.68 39.4 19.9 91.2

dReach 2 86.7 102.4 1176.4 284.7 20034 829.2

HyComp 2 0.4 97.3 0.6 101.8 1.44 109.3

formulas using the Z3 Python API. We evaluate the QBMC
method described in this paper on several examples.2 We
compare the results from the QBMC method of this paper
with that of dReach, which is a state-of-the-art BMC tool for
nonlinear hybrid automata [23], and with that of HyComp
that uses the MathSAT SMT solver [6]. All of the models
for dReach and HyComp are also generated using HyST. The
experiments are performed on Intel I5 2.4GHz processor with
3GB RAM, executing the method described in this paper and
dReach in a VirtualBox virtual machine running Ubuntu 64-
bit. Z3 version 4.3.2 was used in the evaluation. We collect the
running times (Time) in seconds and the peak memory usages
(Mem) in megabytes for different examples.

We first evaluate our QBMC encoding on the illustrative
hybrid automata presented in Example 1, and compare the
results to those of dReach and HyComp. The performances
of those three different methods are shown in Table I, where
QBMC denotes the QBMC presented in this paper, k is a
number of steps in the BMC computation, and L is the number
of discrete locations. The constants values are given as: a1 =
0, b1 = 1, a2 = 0, and b2 = 2. The results shown in Table I
preliminarily indicate that our QBMC approach is capable of
solving BMC significant faster than dReach, but slower than
HyComp. However, our approach requires less memory usage
compared to dReach and HyComp.

Next, we evaluate QBMC with several scenarios using
the Fischer mutual exclusion protocol [2]. Fischer mutual
exclusion is a timed distributed algorithm that ensures a mutual
exclusion safety property, namely that at most one process
in a network of N processes may enter a critical section
simultaneously. The set of bad states is defined by:
φ

∆
= ¬∀i, j ∈ {1, . . . , N} | (i 6= j ∧ qi = cs) → qj 6= cs,

where qi and qj are variables modeling the discrete location
of the automata, cs is the critical section location, and → is
logical implication. We compare the performance of QBMC
in solving the BMC of Fischer protocol with HyComp and
dReach. Figures 2 and 3 show, respectively, the runtime
and memory usage comparison among HyComp, dReach and
QBMC for different numbers of processes of Fischer protocol;
where QBMC-safe, QBMC-unsafe, HyComp-safe, HyComp-
unsafe, dReach-safe, and dReach-unsafe denote the BMC
of the safe and unsafe version of Fischer protocol using
QBMC, HyComp, and dReach, respectively. Overall, HyComp
is generally faster than QBMC. However, it requires a higher
memory consumption than QBMC. For instance, with k ≤ 16,

2The preliminary implementation described in this paper, along with all the
examples, is available online at: http://www.verivital.com/hyst/cfv2015.zip.

TABLE II
LYNCH-SHAVIT MUTUAL EXCLUSION PROTOCOL PERFORMANCE.

Tools L
k ≤ 4 k ≤ 8 k ≤ 16

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

QBMC

92 3.7 52.2 5.1 52.3 25.9 52.7

93 15.5 65.6 31.3 87.5 1091.5 144.5

94 256.1 702.8 1062.1 708.9 43578 1196.2

HyComp

92 0.8 121.9 1.33 132.8 9.5 170.5

93 2.7 307.9 12.81 380.8 192.8 771.4

94 63.9 2655.4 N/A M/O N/A M/O

the BMC of the unsafe version of Fischer protocol with 5
processes cannot terminate in HyComp due to out of memory
(requiring more than 3GB). However, QBMC can solve it
using less than 500 MB. Thus, we can point out that QBMC
is superior than HyComp with respect to the memory usage.
Moreover, Figures 2 and 3 also indicate that QBMC is able to
solve BMC of hybrid automata faster and uses less memory
than dReach. Due to state-space (and formula) explosion,
the reduction of memory consumption is one of the major
challenges to address. Since QBMC requires a smaller amount
of memory usage than other quantifier-free BMC approaches,
it may be effective in solving BMC of large scale problems.

We also evaluate QBMC with the Lynch-Shavit mutual
exclusion protocol. The Lynch-Shavit protocol is a modi-
fied version of Fischer protocol where the mutual exclu-
sion property is time-independent. Each process of Lynch-
Shavit protocol has 9 states (locations), then the Lynch-Shavit
protocol with 4 processes includes 6561 discrete locations.
The performance analyzing the Lynch-Shavit protocol using
QBMC and Hycomp are shown in Table II, respectively. M/O
presents that the peak memory usage is higher than 3GB,
and N/A denotes that the information of running times is
not detected due to M/O. The set of bad states of Lynch-
Shavit protocol is defined similar to that of Fischer, where
two processes may be in the critical section. Again, we can
see the trade off between using QBMC or using HyComp.
HyComp is faster than QBMC, but requires a higher memory
usage. Therefore, the BMC of Lynch-Shavit protocol with 4
processes can be solved by QBMC up to k = 16, but cannot
be solved in HyComp up to k = 8 due to M/O.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a new SMT-based technique
that encodes, in a quantified form, the BMC problem for
rectangular hybrid automata (RHA), which also subsumes this
encoding for timed automata. The preliminary results for the
Fischer mutual exclusion protocol and Lynch-Shavit protocol
indicate the capability of our method to solve the BMC
problem for hybrid systems including more than a thousand
locations. We compare these experimental results to those of
quantifier-free BMC approaches, such as in the dReach tool
that uses the dReal SMT solver, and the HyComp tool built
on top of nuXmv that uses the MathSAT SMT solver. As
solvers for fragments of many-sorted first-order logic such as
LRA, NRA, etc. continue to improve, QBMC encodings such

http://www.verivital.com/hyst/cfv2015.zip

0 20 40
0

20

40

60

80

100

120

140
N = 2

0 20 40
0

100

200

300

400

500

600

700

800
N = 3

0 20 40
0

200

400

600

800

1000

1200
N = 4

0 10 20
0

500

1000

1500
N = 5

k

R
un

tim
e

(s
)

QBMC-safe QBMC-unsafe HyComp-safe HyComp-unsafe dReach-safe dReach-unsafe

2 3 4 5
0

10

20

30

40

50

60

70

80

Number of Processes

R
un

tim
e

(s
)

k ≤ 4

2 3 4 5
0

10

20

30

40

50

60

70

80

Number of Processes

R
un

tim
e

(s
)

k ≤ 8

2 3 4 5
0

0.5

1

1.5

2

2.5
x 104

Number of Processes

R
un

tim
e

(s
)

k ≤ 16

2 3 4
0

0.5

1

1.5

2
x 104

Number of Processes

R
un

tim
e

(s
)

k ≤ 32

Fig. 2. Runtime comparison of HyComp, dReach and QBMC in solving the BMC of Fischer protocol.

2 3 4 5
0

200

400

600

800

1000

1200

Number of Processes

M
em

or
y

U
sa

ge
 (

M
B

)

k ≤ 4

2 3 4 5
0

200

400

600

800

1000

1200

Number of Processes

M
em

or
y

U
sa

ge
 (

M
B

)

k ≤ 8

2 3 4 5
0

200

400

600

800

1000

1200

Number of Processes

M
em

or
y

U
sa

ge
 (

M
B

)

k ≤ 16

2 3 4
0

200

400

600

800

1000

Number of Processes

M
em

or
y

U
sa

ge
 (

M
B

)

k ≤ 32

Fig. 3. Memory usage comparison of HyComp, dReach and QBMC in solving the BMC of Fischer protocol.

as the one described in this paper will become more effective,
similar to how QBMC for discrete systems has been shown
to be effective with QBF encodings [9]. In future work, we
will conduct additional experiments and compare the results
to other tools and techniques, such as UPPAAL, and also
investigate more general classes of hybrid automata, such as
those with linear or polynomial differential equations.

REFERENCES

[1] A. Eggers, M. Fränzle, and C. Herde, “SAT modulo ODE: A direct SAT
approach to hybrid systems,” in Automated Technology for Verification
and Analysis, ser. Lecture Notes in Computer Science, S. Cha, J.-Y.
Choi, M. Kim, I. Lee, and M. Viswanathan, Eds. Springer Berlin /
Heidelberg, 2008, vol. 5311, pp. 171–185.

[2] T. T. Johnson and S. Mitra, “A small model theorem for rectangular
hybrid automata networks,” in Proceedings of the IFIP International
Conference on Formal Techniques for Distributed Systems, Joint 14th
Formal Methods for Open Object-Based Distributed Systems and 32nd
Formal Techniques for Networked and Distributed Systems (FMOODS-
FORTE), ser. LNCS. Springer, June 2012, vol. 7273.

[3] A. Cimatti, S. Mover, and S. Tonetta, “A quantifier-free smt encoding
of non-linear hybrid automata,” in Formal Methods in Computer-Aided
Design (FMCAD), 2012, 2012, pp. 187–195.

[4] S. Gao, S. Kong, and E. Clarke, “Satisfiability modulo ODEs,” in
International Conference on Formal Methods in Computer-Aided Design
(FMCAD), Oct. 2013.

[5] T. T. Johnson and S. Mitra, “Anonymized reachability of rectangular
hybrid automata networks,” in Formal Modeling and Analysis of Timed
Systems (FORMATS), 2014.

[6] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “HyComp: An SMT-
based model checker for hybrid systems,” in Tools and Algorithms
for the Construction and Analysis of Systems, ser. Lecture Notes in
Computer Science, C. Baier and C. Tinelli, Eds. Springer Berlin
Heidelberg, 2015, vol. 9035, pp. 52–67.

[7] T. A. Henzinger, “The theory of hybrid automata,” in IEEE Symposium
on Logic in Computer Science (LICS). Washington, DC, USA: IEEE
Computer Society, 1996, p. 278.

[8] T. Jussila and A. Biere, “Compressing bmc encodings with qbf,”
Electronic Notes in Theoretical Computer Science, vol. 174, no. 3, pp.
45–56, 2007.

[9] H. Mangassarian, A. Veneris, and M. Benedetti, “Robust QBF encodings
for sequential circuits with applications to verification, debug, and test,”
Computers, IEEE Transactions on, vol. 59, no. 7, pp. 981–994, Jul.
2010.

[10] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB standard: Version
2.0,” 2010. [Online]. Available: http://smt-lib.org/

[11] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc.
of 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, ser. TACAS ’08/ETAPS ’08.
Springer-Verlag, 2008, pp. 337–340.

[12] A. Cimatti, S. Mover, and S. Tonetta, “Smt-based scenario verification
for hybrid systems,” Formal Methods in System Design, vol. 42, no. 1,
pp. 46–66, 2013.

[13] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL:
A tool suite for automatic verification of real-time systems,” in Hybrid
Systems III, ser. LNCS, R. Alur, T. Henzinger, and E. Sontag, Eds.
Springer, 1996, vol. 1066, pp. 232–243.

[14] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model checker
for hybrid systems,” Journal on Software Tools for Technology Transfer,
vol. 1, pp. 110–122, 1997.

[15] X. Chen, E. Abraham, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, N. Sharygina and H. Veith, Eds.
Springer Berlin Heidelberg, 2013, vol. 8044, pp. 258–263.

[16] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Computer Aided Verification (CAV),
ser. LNCS. Springer, 2011.

[17] S. Gao, J. Avigad, and E. Clarke, “Delta-decidability over the reals,” in
Logic in Computer Science (LICS), 2012 27th Annual IEEE Symposium
on, 2012, pp. 305–314.

[18] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuxmv symbolic model
checker,” in Computer Aided Verification, ser. Lecture Notes in Com-
puter Science, A. Biere and R. Bloem, Eds. Springer International
Publishing, 2014, vol. 8559, pp. 334–342.

[19] C. Miller, K. Gitina, and B. Becker, “Bounded model checking of
incomplete real-time systems using quantified smt formulas,” in Mi-
croprocessor Test and Verification (MTV), 2011 12th International
Workshop on, Dec. 2011, pp. 22–27.

[20] T. T. Johnson and S. Mitra, “Invariant synthesis for verification of
parameterized cyber-physical systems with applications to aerospace
systems,” in Proceedings of the AIAA Infotech at Aerospace Conference
(AIAA Infotech 2013), Boston, MA, Aug. 2013.

[21] S. Bak, S. Bogomolov, and T. T. Johnson, “HyST: A source transforma-
tion and translation tool for hybrid automaton models,” in Proc. of the
18th Intl. Conf. on Hybrid Systems: Computation and Control (HSCC).
ACM, 2015.

[22] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Hycomp: An smt-
based model checker for hybrid systems,” in Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2015, pp. 52–67.

[23] S. Gao, S. Kong, and E. M. Clarke, “dreal: An smt solver for nonlinear
theories over the reals,” in Automated Deduction–CADE-24. Springer,
2013, pp. 208–214.

http://smt-lib.org/

APPENDIX

A. Appendix: Additional Experimental Results

In this appendix, we describe additional experimental results
of the BMC of the Fischer mutual exclusion protocol using
QBMC, HyComp and dReach. Figures 4 and 5 show, re-
spectively, the runtime and memory usage comparison among
HyComp, dReach and QBMC for BMC of Fischer protocol.
Vertical axises are runtime in seconds and memory usage in
megabytes, respectively, and horizontal axises are number of
steps, k. The details of running times and memory usages of
BMC for the Fischer protocol using these tools are also shown
in Table III, where FS, FU denote the safe and unsafe versions
of Fischer protocol, respectively, and the number following the
hyphen (-) describes a number of processes for each version.
In FS, a state where the set of bad states φ is satisfied is not

reachable, while in FU, a state where φ is satisfied is reachable.
For instance, FS-2, FU-2 are the safe and unsafe versions of
the Fischer protocol with 2 processes, respectively.

Table III shows that the BMC of Fischer protocol with 64
discrete locations can be checked completely up to k = 32.
Note that T/O means the computation time out (≥ 24 hours),
M/O presents that the peak memory usage is higher than 3GB,
and N/A denotes that the information of times or memory
usages are not detected due to M/O or T/O, respectively. The
results of the BMC for unsafe versions of Fischer protocol
indicate that QBMC is effective for bug detection. However,
as k increases, the higher running time and the greater memory
usage are required for the quantified encoding of BMC due
to the increasing number of all possible paths from an initial
state in the set of initial states to a bad state that does not
satisfy the set of safety specifications.

0 20 40
0

20

40

60

80

100

120

140
N = 2

0 20 40
0

100

200

300

400

500

600

700

800
N = 3

0 20 40
0

200

400

600

800

1000

1200
N = 4

0 10 20
0

500

1000

1500
N = 5

k

R
un

tim
e

(s
)

QBMC-safe QBMC-unsafe HyComp-safe HyComp-unsafe dReach-safe dReach-unsafe

4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

70

k

R
un

tim
e

(s
)

N = 2

4 8 12 16 20 24 28 32
0

200

400

600

800

1000

k
R

un
tim

e
(s

)

N = 3

4 8 12 16 20 24 28 32
0

1000

2000

3000

4000

5000

k

R
un

tim
e

(s
)

N = 4

4 8 12 16
0

0.5

1

1.5

2

2.5
x 104

k

R
un

tim
e

(s
)

N = 5

Fig. 4. Runtime comparison of HyComp, dReach and QBMC in solving the BMC of Fischer protocol.

4 8 12 16 20 24 28 32
0

20

40

60

80

100

120

140

k

M
em

or
y

U
sa

ge
 (

M
B

)

N = 2

4 8 12 16 20 24 28 32
0

100

200

300

400

500

600

700

800

k

M
em

or
y

U
sa

ge
 (

M
B

)

N = 3

4 8 12 16 20 24 28 32
0

200

400

600

800

1000

1200

k

M
em

or
y

U
sa

ge
 (

M
B

)

N = 4

4 8 12 16
0

500

1000

1500

k

M
em

or
y

U
sa

ge
 (

M
B

)

N = 5

Fig. 5. Memory usage comparison of HyComp, dReach and QBMC in solving the BMC of Fischer protocol.

TABLE III
THE PERFORMANCE OF THE BMC OF FISCHER MUTUAL EXCLUSION PROTOCOL USING QBMC, HYCOMP, AND DREACH.

Tools Example L
k ≤ 4 k ≤ 8 k ≤ 16 k ≤ 32

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

Time
(sec)

Mem
(MB)

QBMC

FS-2 42 1.11 22.3 1.6 25.2 6.4 30 60 45.2

FU-2 42 0.7 21.73 1.1 24.7 1.52 28.2 6.1 40.2

FS-3 43 4.02 48.7 8.3 48.7 117.8 52.4 19452 115.6

FU-3 43 3.97 48.7 6.9 48.7 22.7 49.7 94.3 74.6

FS-4 44 9.97 56.9 76.1 74.1 T/O N/A T/O N/A

FU-4 44 8.44 57 40.1 73.2 119.1 156.2 4197.1 254.1

FS-5 45 77.51 254.3 344.4 254.4 T/O N/A T/O N/A

FU-5 45 63.93 249.9 288.8 249.9 21456 473.8 T/O N/A

HyComp

FS-2 42 0.2 22.3 0.5 101.4 2.8 107.3 14.1 123.4

FU-2 42 0.2 21.7 0.4 100.9 0.5 101.4 0.53 101.5

FS-3 43 0.51 120.2 2.2 131.8 55.8 214.4 539.7 713.4

FU-3 43 0.51 121.5 2.1 131.8 6.7 149.6 6.5 167.1

FS-4 44 2.78 255 9.9 319.1 788 1010.4 T/O M/O

FU-4 44 2.53 255.2 13.3 318.2 569.4 895.4 568.4 897.1

FS-5 45 17.13 1067 172.4 1405.9 N/A M/O N/A M/O

FU-5 45 16.6 1066.7 109.1 1345.4 N/A M/O N/A M/O

dReach

FS-2 42 1.2 2.5 64.1 120.8 T/O M/O T/O M/O

FU-2 42 1.2 2.5 48.4 28.9 50.3 30.7 55.8 31.4

FS-3 43 1.4 2.5 2.7 26.4 T/O M/O T/O M/O

FU-3 43 1.3 2.5 2.7 26.8 959.3 235.3 966.8 241.2

FS-4 44 2.1 9.8 4.63 96.7 T/O M/O T/O M/O

FU-4 44 1.6 2.5 4.93 119.8 T/O M/O T/O M/O

FS-5 45 7.7 167.2 16.69 469.6 T/O M/O T/O M/O

FU-5 45 7.7 153.9 17 506.5 T/O M/O T/O M/O

	I Introduction
	II Hybrid Automata Syntax and Semantics
	III Quantified BMC for Hybrid Automata
	IV Experimental Results
	V Conclusion and Future Work
	References
	Appendix
	A Appendix: Additional Experimental Results

