
Clustering-based Revision Debug
in Regression Verification

Djordje Maksimovic1, Andreas Veneris1,2, Zissis Poulos1
1Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada

2Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
{djordje, veneris, zpoulos}@eecg.toronto.edu

Abstract—Modern digital systems are growing in size and
complexity, introducing significant organizational and verification
challenges in the design cycle. Verification today takes as much
as 70% of the design time with debugging being responsible for
half of this effort. Automation has mitigated part of the resource-
intensive nature of rectifying erroneous designs. Nevertheless,
most tools target failures in isolation. Since regression verification
can discover myriads of failures in one run, automation is
also required to guide an engineer to rank them and expedite
debugging. To address this growing regression pain, this paper
presents a framework that utilizes traditional machine learning
techniques along with historical data in version control systems
and the results of functional debugging. Its aim is to rank
revisions based on their likelihood of being responsible for a
particular failure. Ranking prioritizes revisions that ought to
be targeted first, and therefore it speeds-up the localization of
the error source. This effectively reduces the number of debug
iterations. Experiments on industrial designs demonstrate a 68%
improvement in the ranking of actual erroneous revisions versus
the ranking obtained through existing industrial methodologies.
This benefit arrives with negligible run-time overhead.

I. INTRODUCTION

Verification has become a major challenge in the industrial design
process, taking as much as 70% of the design cycle [1]. Half of
this time is spent in debugging ensuring that functional errors do
not escape to the chip manufacturing stage where the costs will be
steep and may jeopardize the time-to-market constraints. Despite of
its importance, debugging remains a predominantly manual process.

Verification is performed either on-line or off-line. On-line verifica-
tion is the task where an engineer analyzes the design through model
checking or simulation to discover an error trace(s) that exposes a
particular failure. This is followed by functional fine-grain debug
which aims to localize the source of the failure. Today, on-line
debugging has been automated with tools such as those in [2]. They
use the error trace(s) to locate possible sources in the design Register
Transfer Level (RTL) that are responsible for the failure. Next, these
sources are mapped back to the Hardware Description Language
(HDL) design representation and they are presented to the engineer.

On the other hand, regression (or off-line) verification runs ex-
tensive test suites, usually overnight, to exercise a majority of the
design functionality. When the verification engineer examines the
results of regression the next day, debugging is usually performed in a
coarse-grain manner by parsing simulation logs and error messages.
Candidate errors are discovered and distributed to the appropriate
verification or design engineer for a more detailed fine-grain analysis.
Due to the excessive amount of information that needs to be analyzed
after regression, and because engineers working on the same design
can be geographically and time-zone dispersed, it is not a coincidence
today that industry declares that for every single designer there are
three verification engineers [1]. As such, if course-grain debugging is
not accurate, this may result in significant delays because the wrong
debug case may be passed to the engineer, only for them to examine
it and return it back, thus increasing the number of debug iterations.

To improve regression verification and the subsequent debugging
process, the data returned must be preprocessed in a way that can
provide confidence towards the cause of the error. Towards this

direction, recent work in failure triage [3] has improved the process
by implementing machine learning engines that determine which
engineers are best suited to rectify a failure. Although useful, this
work tries to cluster (i.e., bin) failures according to their impact in
the functionality of the design. In other words, it does not take into
consideration other useful sources of information such as version
control systems. These systems indicate what type of changes were
implemented at the particular stage of the design process after the last
successful verification step. Evidently, if this information is analyzed
accurately, it can provide useful rankings for the candidate source
of error(s) and aid the subsequent debugging process. Although
failure triage shares similar objectives, by definition its nature is
complementary to the work presented here.

This paper introduces a novel approach, which utilizes automated
debug and existing information from version control systems, to rank
design revisions using traditional machine learning techniques. The
ranked revisions aid in determining which error source, originally
identified by a debugger, is the actual error source that is respon-
sible for a particular failure following regression. The prioritized
revision(s), along with the failure(s), are sent to the design engineer(s)
that committed the revision(s) to give them an intuition of what is
causing the failure and when it was introduced. This precise step of
analysis aims to ultimately reduce the number of debug iterations.
The algorithm applies Support Vector Machine classification [4] to
first identify which revisions are bug fixes and which are incremental
improvements. Then, a functional debugging step is performed and
followed by Affinity Propagation [5] clustering to rank potential
error sources. A feature of this clustering algorithm is the ability to
distinguish between failures caused by the same source and failures
originating from different sources. Finally, a weighing scheme is
utilized to identify the revisions which are most likely to be the
source of the observed failure.

There are several additional benefits of using this algorithm in
the verification flow. First, if a design previously passed verification
but a new revision broke its functionality, the algorithm will identify
the revision responsible for the failure. Next, as empirical results
demonstrate, the intelligent parsing of the information as proposed
here, triumphs over brute force script-based ranking approaches that
are traditionally used in the industry. Specifically, when the brute
force assigns a rank to the actual erroneous revisions, the ranking
achieved by the algorithm presented here is on average 68% better
than the brute force ranking. This arrives with an average run-time
overhead of merely 4.631 seconds.

The remainder of this paper is outlined as follows. Section II
contains a presentation on related prior art, background material on
functional automated debugging and a description of a brute force
script-based approach which draws comparisons with the algorithm
presented in the paper. Section III presents an illustrative discussion
of the flow and intuition behind the algorithm. Section IV gives a de-
tailed breakdown of the revision debug algorithm. Finally, Section V
presents the experiments and Section VI concludes this work.

II. PRELIMINARIES

A. Prior Art
There has been significant research in software verification that

uses machine learning on version control systems to assist debugging.

The authors of [6] propose an algorithm for predicting future code
changes. Their algorithm analyzes recent revisions and predicts in
which file a code change may occur. In [7], the authors propose an
algorithm that can detect code patterns in version control systems.
This allows them to identify potential bad coding styles. In the work
of [8], the authors use Bayesian Belief Networks to predict how a
code change will propagate to other modules in the software system.
Finally, [9] applies machine learning on version control systems to
prioritize code review. The intuitive observation there is that code
which people have struggled with in the past is more likely to be
bug ridden in the future.

There is much less work in regression debugging for hardware
systems. To the best of our knowledge, the only related work is this
of [3] that implements a clustering-based failure triage engine to bin
the errors after regression and help determine which engineers are
best suited to rectify a failure. The authors introduce a data weighing
scheme for simulation results, combined with modeling failures as
multi-dimensional objects. Failure triage is performed by computing
failure relations as distance metrics.

The above work applies machine learning algorithms to the re-
sults from traditional functional debug for regression verification. In
contrast, in this work the information from version control systems
is utilized to improve the overall process of coarse-grain debugging.
Although our work presents a method to accelerate revision debug,
it does not provide failure binning. As such, the work of [3] is
complementary to the one presented here.

B. Functional Debugging
Consider an erroneous design with multiple faults in the RTL.

When a mismatch in values between a golden specification and the
observed vectors is identified, a failure fi has occurred. Let the set
of multiple failures F = {f1, f2, . . . , f|F |} represent a set of failures
returned by a regression test run, each originating from possibly
different erroneous locations in the RTL.

Recently, SAT-based debugging [2] tools have been developed to
automate the task. These tools receive an error trace that exposes
failure fi and they generate a set of candidate lines, denoted as
Si = {s1i , s2i , . . . , s

|Si|
i }, in the HDL description of the circuit, each

of which can be modified to eliminate the faulty response for the
particular error trace. Set Si is an over-approximation in the sense
that it is guaranteed to contain the actual error location but it may
also contain other locations that cannot be corrected for all input
test vectors. In other words, traditional debugging does not rank the
elements in set Si and therefore, an engineer may spend a substantial
amount of manual labor to identify the actual error location when the
automated debugger returns many potential error sources.

C. Brute Force Approach
The following brute force approach is used to compare metrics of

the algorithm presented later in the paper. This approach can rectify
the problem without using automated debug or machine learning, and
is typical of what is happening today in the industry.

When regression returns a set of failures, the brute force approach
is executed. Each output error trace is compared to an expected
golden trace. For every mismatch, the Breadth First Search algorithm
is applied at the mismatching output signal to identify the fan-in
cone. Each signal in this cone is then matched to their corresponding
definitions in the HDL representation of the design. Finally, each
revision in the version control system is parsed to see if they make
any changes to these definitions and returned to the engineer if so.

Note that the matching HDL definitions will include the actual
error source, as this is an over-approximation. However, it may
include locations which cannot mask or fix the bug. Therefore, a
percentage of the returned revisions may not be related to the failure.

III. REVISION DEBUG FLOW

This section contains an overview of our methodology and it is
meant to give an intuitive understanding of the reasoning behind the
algorithm presented in detail in the next section.

To improve coarse grain debugging, revisions are ranked based
on their likelihood of causing a failure that was identified through

F = {f1, ..., f|F|}

Debugging

s1
1
, ..., s1

|S
1
|

sn
1
, ..., sn

|S
n
|

Compute source

similarities

Affinity

Propagation

Cluster

1

Cluster

K

Get Euclidean

distances

Prioritized

erroneous lines

Ranking

Ranked

revision list

Parse commit

logs

SVM

Classification

Bug fix

probabilities
Revisions

a)

c)

b)

Dim.

Reduction

Fig. 1. Flow graph of the proposed revision debug methodology

y

x

B

A

C

B
A

A A

B

A

7525

75

0

S5

S4

S2S1

175125

50

S3

Fig. 2. Clustering to prioritize error sources

regression. Revisions are added to a list in which high ranking
revisions appear earlier in the list and low ranking revisions appear
near the end of the list. This list, along with the failure(s), is presented
to a verification engineer who must distribute the revision(s) and the
failure(s) to the design engineers that created them for manual in-
spection. The design engineer uses the revision(s) to identify whether,
when, and why they caused the failure(s). If the modifications applied
by the revisions are determined to generate erroneous behavior, then
they are corrected. The overall ranking algorithm consists of three
distinct phases.

In the first phase, presented in Fig. 1(a), the algorithm applies
automated debugging [2] to find the potential error sources (i.e., lines
of code in a RTL file) of the failures exposed during regression.
Following this, the likelihood of each error source being an actual
error is determined. For illustrative purposes, Fig. 2 explains this
method using potential error source sets S1 . . . S5 for five failures
f1 . . . f5 across two RTL code files. In this figure, each axis represents
a RTL code file and the metric on each axis are line numbers in

b) clusterclustera)

Fig. 3. a) K-Means using a cluster center b) Affinity Propagation clustering

the file, i.e., coordinate (1,1) is the first line in each file and the
coordinates extend past the end of the files.

For each failure, the set of error sources which can correct the
failure are mapped onto the graph, as seen in Fig. 2, as solid boxes to
represent locations for possible correction. For example, assume that
S1 in Fig. 2 has two potential error sources in two files (represented
by the x and y axis). One error spans lines 25-75 of the file along
x and the other spans lines 50-75 of the file along y. Hence, the
area that represents S1 in the graph would span coordinates from
(25,50) to (75,75).

Intuitively, when two or more areas overlap, it indicates that the
failures may be the result of the same error source because debugging
is indicating similar RTL code for correction. In Fig. 2 there are
three different types of areas, which are denoted as A, B and C.
Area A has no overlap, B is an overlap between two regions and
C is an overlap between three. Area C represents RTL code that
can be corrected to fix failures f1, f2 and f3, while f4 and f5 can
be corrected by modifying the right-most area B. For the sake of
simplicity, if an engineer were to correct the failures, they would
target RTL code which when corrected eliminates the most failures.
Therefore, code which overlaps has higher priority for correction.
In the figure, priority is given to code in overlap C, followed by B
and then by A. In essence, the purpose of clustering is to identify the
regions that have the greatest overlap. In the figure, the dashed circles
represent a cluster and the number of clusters indicate the minimum
number of actual errors in the design. Revisions that make changes
to code in the overlap are given a higher ranking.

The second phase of the algorithm, illustrated in Fig. 1(b), utilizes
commit logs from version control systems to classify revisions as
either bug fixes or not. One usually determines whether a revision is
a bug fix by interpreting keywords from the commit log such as “fix.”
Thus, a classifier can classify revisions by utilizing unique words
from commit logs as attributes for determining the classification. The
intuition here is that a bug fix revision has a lower chance of being
buggy when compared to revisions that make other changes. Thus,
if a revision is a bug fix it would receive a lower ranking.

In the final phase, demonstrated by Fig. 1(c), revisions are ranked
according to their likelihood of causing the observed failures using
data gathered from the previous phases. Revisions that are not related
to the failures are not included in the list. The following section
presents the details of each process in Fig. 1, respectively.

IV. GENERATING THE RANKED REVISION LIST

A. Error Source Clustering
When regression is executed, each test exercises a portion of

the design functionality. Failures may appear different because they
can be detected through multiple mechanisms, such as assertions
or a mismatch, as identified by a checker, between the observed
and expected values. Despite this, they may have originated from
the same source. The debugging results (potential error sources) for
failures originating from the same error source will be similar. This
is in contrast to failures originating from different sources which will
have less comparable debugging results. The concept addressed here
locates the similarities between failures so they can be used to aid in
distinguishing between an actual error source and false positives.

Clusters represent the perceived number of actual errors in the
design. Since the number of real errors is not known, an algorithm is

25 75

50

75

x

y y

x

~
sji

Si

Fig. 4. Converting an area graph to a point graph

needed which does not require the number of clusters K to be known
a priori. Affinity Propagation (AP) [5] is a clustering algorithm which
can perform this task in the metric space. In traditional algorithms
such as K-means, as demonstrated in Fig. 3(a), a priori knowledge
of the number of clusters K is needed because the objective is to
minimize the distance between members and the K cluster centers
(denoted by X in the figure). In AP, clusters are created by maximizing
the similarities between points and selecting an exemplar, a point
which most closely represents the cluster. This is seen in Fig. 3(b)
where members point towards the exemplar.

As discussed before, the potential error sources for each failure
span an area in a space where dimensions are lines of an RTL
file. However, the AP algorithm works with points in a space,
therefore the data is preprocessed as illustrated by Fig. 4. In this
figure, the solid boxes denote the area covered by all the sources
for a particular failure combined (Si) and dashed boxes indicate a
subset of this area. The dashed arrows demonstrate how a single
source sji is converted to a point in space. The source is a tuple
(startLineji , endLine

j
i , file

j
i), where startLineji (endLineji) de-

notes the start (end) line of the possibly erroneous code in the file
fileji . For each sji a vector ~sji is created by assigning the axis
spanned by sji to (startLineji + endLineji)/2. Every other axis
(where axisName is the name of the file along that axis) is assigned
as follows:

average

(
startLinej

′

i′ + endLinej
′

i′

2

)
,

∀ i′, j′ | axisName ∈ sj
′

i′ ∧ sj
′

i′ ∈ Si

(1)

i.e., the average of each sj
′

i′ in Si spanning the other axes. In essence,
this ensures that vectors will be located around regions with overlap,
with exemplars being those vectors located within the overlap.
Example: Suppose sji spans lines 25-75 on the x axis and two other
sources span lines 50-65 and 60-75 on the y axis. To convert the
area of sji to a point, the co-ordinate is given as ((75+25)/2,

((65+50)/2 + (60+75)/2)/2), i.e., ~sji is (50, 62.5).
The AP algorithm determines clusters by maximizing the similar-

ities between points in the cluster. The negative squared Euclidean
distance similarity metric is applied, which allows the creation of
clusters from those vectors that are in proximity to each other. As-
suming T is the total number of error sources returned by debugging,
the similarity sm(x1, x2) between two points is computed as follows:

sm(x1, x2) = −||x1 − x2||2 (2)

where x1 and x2 are function parameters. This function is used to
create a T×T similarity matrix which calculates the negative squared
Euclidean distance between ~sji and every other point. Each vector has
a preference associated with it that determines the probability of it
being an exemplar. The preference for a vector is defined as the
median of the similarities between that point and every other point.

Following the AP algorithm execution, the Euclidean distance
between the cluster exemplar and the source is computed as follows:

D(i, j) = ||exmp(label(~sji))−
~sji || (3)

0%

50%

25%

75%

100%

3 4

4

3

2

1

0 1 2
F

e
a
tu

re
 2

Feature 1

Fig. 5. Illustration of Support Vector Machine classification

0 1000 2000 3000 4000

0

500

1000

Feature Number

N
u
m

b
e
r

o
f
O

c
c
u
rr

e
n
c
e
s

Fig. 6. Word occurrences in a feature list from eleven OpenCores designs

where exmp(x) is a function that takes a cluster label and returns the
exemplar, and label(x) is a function that takes a vector and returns
the associated cluster label determined by AP.

From the way the vector graph is constructed, the exemplar will
be in an area with overlap. Since those areas closely represent the
code which can be used to fix multiple failures in the cluster. Then,
the closer another point is to the exemplar, the more likely it is to
correct multiple failures. As such, the smaller D(i, j) is the more it
influences a revision to receive a higher ranking.

B. Revision Classification
To promote organization, engineers frequently employ version

control systems that manage changes (i.e., revisions) to documents,
computer programs and other pertinent information. Each revision
usually targets information for a specific task. For example, a revision
can be classified as adding functionality, modifying functionality,
removing functionality, bug fixing, etc. Since commit logs describe
what changes an engineer has made in that revision, then it can be
classified by applying its commit log to a machine learning classifier.

Revisions are classified through the use of Support Vector Ma-
chines [10] (SVM). An SVM is an algorithm which predicts a
classification of an object based on certain properties (features). For
the methodology in this paper, features are unique words in a commit
log and revisions are classified as either a bug fix or not. Fig. 5
shows an SVM classification with two features. The dashed line is
the classification boundary, indicating that Feature 2 is a word
related to bug fixing (such as “bug”) and Feature 1 is a word
unrelated to bug fixing (such as “implemented”). Each axis indicates
the amount of occurrences of each feature within a commit log. Dots
represent a classification of a revision with probabilities ranging from
100% bug fix to 0% bug fix (i.e., not likely bug fixes).

SVMs are chosen for two major reasons. First, SVMs can represent
non-linear classifications through the use of kernel functions [4] by
mapping data into high dimensional feature spaces. Second, SVMs
are capable of representing predicted classifications as probabilities.
This aids in achieving a uniform ranking in cases where a revision
includes both bug fixes and incremental upgrades.

The classifier is taught to classify revisions through examples of
revisions that are bug fixes and ones that are not. Once trained, it
develops a prediction model that it uses to predict future classifica-
tions. For a set of N commit logs, each is manually labeled as either
bug fix or not, to construct a training label set L = {l1, . . . , lN}.
Following this, the number of M unique words in the N commit
logs are used to construct a data matrix Cn,m for 1 ≤ n ≤ N and
1 ≤ m ≤M , where each element is an integer counting the amount

of times word j appears in commit log i. In this sense the labels and
data matrix indicate examples of revision classifications. Once initial
training has completed, any subsequent classifications only require
the prediction model and the features of a revision commit log.

A critical inefficiency of SVMs is that they provide poor clas-
sification accuracy if M >> N [4]. This is widely known as the
“Curse of Dimensionality” where the number of dimensions exceed
the number of samples. In the data matrix, it is undoubtedly true that
M >> N , because commit logs can be of substantial variable length
and word variety. Therefore, dimensionality reduction is applied to
reduce the amount of unique words trained on, by removing words
that appear too commonly or too infrequently in the commit logs.

Fig. 6 shows the number of occurrences of 4096 words in 2124
commit logs from eleven OpenCores [11] designs. From this graph it
can be seen that many words are used infrequently (such as specific
email addresses) and only a hand-full that are common (such as
“a,” “the,” “to,” etc.). Between the two dashed lines are the features
that are retained for classification, while others are removed from
consideration. This was determined by positioning each line such
that the difference between occurrences of adjacent words within the
lines is minimized, while maximizing the median occurrence. The
final quantity of features respects the following constraint:

M ≤ N

2
(4)

as this ratio gives reasonable prediction results [10].
Once the SVM learns a prediction model, the classification of

subsequent revisions can be determined probabilistically. Their fea-
tures are identified from the commit log and passed, along with the
prediction model, to the SVM, which returns the prediction bugF ixi,
a real-valued probability number between zero and one.

Revisions which are bug fixes are expected to have a high
probability, while those that are not, have low probability. Revisions
which mix bug fixes and other activities are expected to fall in-
between. It is anticipated that bug fixes do not introduce additional
errors when compared to significant code changes. As such, a higher
bug fix probability influences the revision to receive a lower ranking.

C. Weighted Revision Ranking
In the final phase, the data gathered from previous steps is applied

to rank the revisions and associate each revision with a particular
failure. The changes to RTL code made by a revision, denoted by Rl

for 1 ≤ l ≤ N where N is the number of revisions, are gathered.
Changes made by the revision are matched with the sources of error
determined by debugging. If a match is found, then the revision
is considered for ranking. The weight wl of a revision is used to
determine the ranking of each revision. It is calculated as follows:

wl = mini,j

(
1

2

(
D(i, j)

maxi,j(D(i, j))
+ bugF ixl

))
,

∀ i, j | sji ∈ Rl

(5)

This equation states that the lowest weight is given to a revision
which is not a bug fix and matches a ~sji closest to the exemplar in
the cluster. Thus, the lower the weight of a revision, the higher the
rank it receives.

Following this, K-lists of ranked revisions are created, one for
each cluster. Each list contains revisions that match the RTL code
within the respective cluster. In this sense, each list contains the
revisions that when modified can correct the failures in each cluster.
The ordering of the lists is determined by sorting each revision by
ascending weight.

Finally, the lists are merged together to create a unified list, a
process illustrated by the following example. Suppose two lists A
and B are generated, which are ranked revisions for two separate
clusters. Another list C is the unified list created from A and B.
Also suppose each list is populated as follows:

A =

 R1

R2

R4

. . .

 , B =

 R1

R3

R4

. . .

 , C =

 R1

R2, R3

R4

. . .

 (6)

TABLE I
BENCHMARK STATISTICS

Design Test Logic Num. Num. |F |∑
i=1

|Si|
Num.

Num. Elem. Err. Fail. Rev.

Ethernet 1 76408 6 10 589 332
2 76408 1 4 880 332

HA1588 3 9152 4 6 129 70
4 9152 3 6 69 70
5 9152 7 12 198 70

I2C Core 6 3640 3 4 367 70
7 3640 3 12 178 70

Tate Pairing 8 106786 4 4 159 33
9 106786 5 37 81 33

SD Card 10 38211 1 20 241 127
11 38211 4 36 179 127

SDR CTRL 12 18374 2 5 1726 72
13 18374 8 10 1201 72

6507 CPU 14 9416 2 3 144 259
15 9416 2 3 75 259

VGA 16 109797 3 5 173 59
In-house 17 40197 2 16 42 177
Packet Fwd. 18 40197 4 23 51 177

Observing list C, it can be seen that R1 has the highest ranking
and makes changes to code in both clusters i.e., it appears that it
is responsible for all the errors. If an engineer determines that it
is not the cause of the failures, then both R2 and R3 are equally
considered. This happens because neither revision can be modified
independently to correct all the failures. Thus, the ranking indicates
that both revisions are likely erroneous and must be corrected.

The final unified list is presented to the verification engineer, who
must manually inspect the revisions. It should be observed that due
to the inclusion of all existing revisions and the completeness of
automated debugging, at least one of the revisions in the unified list
will be the cause of the failure(s).

V. EXPERIMENTAL RESULTS

This section presents experimental results for the proposed revision
debug framework. Experiments are conducted on a core i5-3570K
workbench clocked at 3.40 GHz with 8 GB of RAM. Eight designs
from OpenCores [11] and one in-house real-life industrial design
are used to evaluate the methodology. Revision changes and commit
logs are gathered from the OpenCores Subversion repositories, and
are readily available with the design files. A total of eighteen tests
are performed. The SAT-based automated debugger used to generate
potential error sources for failures is implemented based on [2].
A platform is coded in Python that is used to parse debugging
results and generate clusters with the AP algorithm. Classification
predictions, for the experimental revisions, are performed without a
priori knowledge of whether the revision is a bug fix or not. This
is done by training a SVM prediction model prior to conducting the
experiments. Finally, the revisions are ranked for each test.

Errors are injected into the design by reading the commit log
of the design and identifying actual bugs that the designer had to
correct. A portion of these bugs are reintroduced into the design to test
the methodology. For each regression run, a preexisting simulation
test-bench is used to evaluate the functionality. Each regression run
involves hundreds of input vectors. Erroneous responses are detected
by comparing observed results to expected results from a “golden”
model checker. A separate script is coded to train the SVM and
generate a prediction model. This is achieved by parsing revision
commit logs and performing dimensionality reduction to overcome
the “Curse of Dimensionality.” The features that are utilized for
prediction model training are also used during the classification of
experimental revisions.

Table I summarizes design information and statistics for each
experimental run. Columns of this table show the design used for
testing, an enumeration of the test runs, the number of logic elements
in the design, the number of errors injected in the benchmark,
the number of failures observed, the total number of error sources
generated by automated debugging and the number of revisions stored

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
−5

−3

−1

1

3

5

7

9

11

13

15

Test Number

K
 −

 #
 A

c
tu

a
l
E

rr
o
rs

Fig. 7. Cluster prediction error

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

50

100

150

200

250

Cluster Number
N

u
m

b
e
r

o
f
C

lu
s
te

r
M

e
m

b
e
rs

Fig. 8. Number of members in each cluster for SDR CTRL (test 12)

by the version control system. The effectiveness of the methodology
is evaluated by comparing the ranking results of the methodology
with the ranking obtained from the brute force approach described
in Section II-C. The comparison is performed by determining which
approach gives a higher ranking to the revision(s) that are responsible
for the actual errors in the designs.

When debugging returns a set of potential error sources, these
sources are clustered. Fig. 7 shows the prediction accuracy of the
AP clustering algorithm. The number of actual errors in the test
are compared with the number of clusters. The prediction error is
given as K - # actual errors for each test case. Ideally, the
number of clusters will equal the number of actual errors and the
prediction error will be 0. It can be seen that 9/18 tests have perfect
cluster prediction, with an average of 4 cluster difference between
the remaining tests. Observing test 12, it can be seen that 15 more
clusters are created than needed. This is due to locating 1726 potential
error sources across 9 different files, indicating that the two actual
errors in this design were difficult to locate. Despite of this error, the
exemplars for each cluster provided adequate information as a 2/12
ranking was achieved for the revisions responsible for the errors. The
reason for this is illustrated in Fig. 8, which shows the number of
members in each of the 17 clusters of test 12. From this figure, it
can be observed that clusters 8,10,11, and 15 are the primary
influences for the ranking and may contain the actual errors in the
design. The remaining clusters contain outliers with little overlap (i.e.,
false positives).

When training a prediction model, 2124 commit logs from eleven
OpenCores design repositories, disjoint from the set used for ex-
periments, are utilized as examples for classification training. From
these logs, 4096 unique words are identified. After dimensionality
reduction, this set is reduced to 449 words that are used as features
for classification. The 2124 commit logs are split into two sets,
training and testing, where training receives 70% of the logs and
testing receives 30%. The training set is used to create the prediction
model, and the testing set is utilized to test the effectiveness of that
model. The entire training operation is a one-time process that takes
11.97 seconds, in which dimensionality reduction takes 7.81 seconds
and prediction model training takes 4.16 seconds.

Training Testing Training Testing
0

25

50

75

100

 Not Bug Fix Bug Fix

A
c
c
u
ra

c
y
 (

%
)

Cost 25 Cost 75 Cost 125

Fig. 9. The classification accuracy for each class with varying cost metrics

Fig. 9 shows the classification accuracy for training and testing
revisions. The accuracy metric is computed as the percentage of the
number of correct predictions in a class vs. the amount of samples
in that class. Combined accuracy (i.e., number of correct predictions
with classes combined vs. total amount of samples) was not taken
due to the bias towards revisions not being bug fixes. Three different
evaluations are performed for three cost settings, where the cost
determines the prediction accuracy. A high cost will provide good
training accuracy, but poor testing accuracy due to over-fitting, while
a small cost will provide poor accuracy. From this figure, it can
be seen that a cost of 75 is adequate as the testing accuracy is
maximized for this value. There is a prediction accuracy mismatch
between classes, due to bug fixes being characterized by a smaller
word variety, when compared to other classifications that can be
described with a much broader word variety.

Table II shows the results of revision ranking and presents a
comparison of the ranking achieved by the proposed methodology vs.
the industrial standard (brute force). From left to right, the columns
of this table describe the test number, the rank and the time achieved
by the brute force method, and the rank and time achieved by the pro-
posed methodology. In the final column, the improvement percentage
is given, which indicates how much higher the ranking of the pro-
posed methodology is when compared to the brute force method. This
is calculated as (1−(Proposed Rank/Brute Rank))∗100%. From
this table it can be seen that on average the proposed methodology
achieves a 68.0% higher ranking than the brute force method. This
arrives with a total amount of revisions that an engineer may need to
look at that is 34.0% of the total amount returned by the brute force
method. This particular inefficiency of the brute force method is due
to including revisions which are not related to the actual errors.

In Table II, tests 14-16 give poor ranking results due to a
combination of two factors. First, the erroneous revision contains
bug fixes as well as an incremental upgrade and second, the upgrade
itself introduces new errors. Since the erroneous revision made
changes that could have been split up into separate clusters. Then,
this results in a classification inaccuracy, which gives the revision a
75% bug fix probability that negatively affects the ranking. Despite
of these setbacks, the ranking can be improved by only taking
into consideration the results of automated debugging as clustering
accuracy is not affected. In some tests, such as test 5, extra
rankings are given because multiple revisions are erroneous. They
make changes to code in similar locations, which means that their
error sources appear in the same cluster. This results in each revision
receiving a separate ranking.

Regarding run-time concerns, a majority of the time spent is in
automated debugging, which takes between 400 to 3600 seconds.
This process must always be performed during regression verification,
regardless of whether it is manual or automated. In the case of manual
debugging, the run-time is exceedingly longer than that of automated
debugging. The overhead for performing clustering and ranking is
between 0.6 to 30 seconds.

An interesting observation made is that the size of the revision
does not dictate whether the revision is more likely to be buggy,
or more likely to be an upgrade. In general, including this metric
when determining whether a revision is a source of an error does not

TABLE II
REVISION RANKING PERFORMANCE

Test Brute Force Proposed improv.
Num. Rank Time Rank Time (%)

(rank/total) (s) (rank/total) (s)
1 58/129 0.235 6/27 4.335 90
2 84/129 0.244 5/10 6.389 94
3 11/12 0.231 1/5 0.878 91
4 11/26 0.447 1/7 3.322 91
5 15/32 & 22/32 0.24 1/7 & 2/7 3.432 92
6 23/23 0.783 1/13 2.147 96
7 15/23 & 23/23 0.768 1/14 & 3/14 1.931 90
8 16/19 0.087 4/6 0.71 75
9 13/19 & 16/19 0.095 1/3 & 2/3 0.611 90
10 19/32 1.482 4/9 3.213 79
11 19/32 1.445 4/10 3.022 79
12 19/26 1.484 2/12 27.328 89
13 19/26 1.381 2/13 17.976 89
14 6/64 0.183 35/49 2.339 -483
15 27/64 0.173 41/48 2.486 -52
16 3/18 0.305 11/15 1.126 -266
17 17/83 0.166 2/15 0.905 88
18 17/83 & 15/83 0.366 4/16 & 8/16 1.207 62
AVG. 22/47 0.562 7/16 4.63 68

influence the ranking in any way. Intuitively, this can be explained
because some designers debug their code extensively before commit-
ting, while others may not.

VI. CONCLUSION

Regression verification remains to be a predominantly manual
process. To ease verification, this paper introduces a novel clustering-
based revision debug framework. The methodology clusters auto-
mated debugging results and utilizes version control system data
to rank revisions based on their likelihood of being responsible
for the failures. Extensive experiments confirm the attractiveness
of the approach as they demonstrate improved ranking capability,
with negligible run-time overhead, when contrasted to the industrial
standard. In the future, we plan to analyze statistical simulation
metrics, such as the temporal distance between an error source and
the failure observation point, as they may be applicable towards an
improved ranking scheme.

REFERENCES

[1] H. Foster, “Assertion-based verification: Industry myths to realities
(invited tutorial),” in Computer Aided Verification, 2008, pp. 5–10.

[2] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606–1621, 2005.

[3] Z. Poulos and A. Veneris, “Clustering-based failure triage for rtl regres-
sion debugging,” in IEEE Int’l Test Conference, 2014.

[4] C. M. Bishop, Pattern Recognition and Machine Learning. Springer
Science, 2009.

[5] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, pp. 972–976, 2007.

[6] R. N. A. Ying, G. Murphy and M. Chu-Carroll, “Predicting source
code changes by mining change history,” IEEE Trans. on Software
Engineering, vol. 30, no. 9, pp. 574–586, 2004.

[7] B. Livshits and T. Zimmermann, “Dynamine: finding common error
patterns by mining software revision histories,” in European software
engineering conference and ACM SIGSOFT international symposium
on Foundations of software engineering, 2005, pp. 296–305.

[8] A. H. S. Mirarab and L. Tahvildari, “Using bayesian belief networks to
predict change propagation in software systems,” in IEEE International
Conference on Program Comprehension, 2007, pp. 177–188.

[9] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu, “Bugcache
for inspections : Hit or miss?” in ACM SIGSOFT symposium and the
European conference on Foundations of software engineering, 2011, pp.
322–331.

[10] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, available: http://www.csie.ntu.edu.tw/
∼cjlin/libsvm.

[11] OpenCores.org, “http://www.opencores.org,” 2015.

