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Abstract— In modern hardware design, substantial manual
effort is required to fix a design when verification discovers a
state unreachable. This paper addresses this growing pain where
given an unreachable target state, a methodology is presented to
return all design locations where a change can be implemented
to make the target state reachable. In contrast to previous state
reachability rectification techniques that use bounded model
checking, our approach addresses the issue using unbounded
model checking. It first enhances the circuit transition relation
by inserting a novel error model construction at each suspect
location. An unbounded model checking algorithm is then applied
to the enhanced transition relation to find which of the suspect
locations can be changed to make the target state reachable.
The use of unbounded model checking allows it to identify the
complete problem solution set. As an added benefit, it also returns
a proof that no further solution(s) exist in the form of an inductive
invariant. Empirical results on industrial designs confirm the
theoretical and practical gains of this approach.

I. INTRODUCTION

In modern hardware design, functional verification has grown
to consume up to 70% of the total design effort [1]. Debugging,
the process of localizing the error, accounts for up to half of the
verification cycle [2]. Many verification and debugging tasks have
a great deal of automation available to mitigate the substantial
engineering effort they require. However, in cases where a state is
erroneously unreachable, comparatively little automation is available
to aid the engineer in correcting the error.

Traditionally, functional verification may reveal errors through such
means as firing assertions, observation signal value mismatches, or
scoreboard discrepancies. In all such cases, an error trace that exposes
the bug is returned. An automated debugging tool [3]–[6] later uses
this error trace to aid the engineer in discovering the root cause of
the error. Conversely, when a state is shown to be unreachable in
violation of the design specification, no error trace is available for
a traditional debugging utility to be applied. Towards that end, the
work in [7] develops a technique to facilitate diagnosis of unreachable
states. This technique, while effective, has some key drawbacks that
represent barriers to a fully automated debug process for this problem.
First, it may only provide a subset of the possible error sources.
Additionally, it requires the engineer to set ad-hoc parameter values
that essentially dictate and limit exploring the complete solution
space. In simple terms, this is a trade off between resolution and
performance where an engineer must apply knowledge of the design
to intelligently choose these parameters. These drawbacks present a
barrier to a fully automated debug process that explores the complete
solution space in an effort to maximally preserve the engineering
effort already invested in the design.

Towards this goal, this paper presents a novel methodology to
debug unreachable states that explores the complete set of the solution
space. Given an unreachable target state, the methodology returns
every location that can be changed to make the target state reachable
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in any number of clock cycles. As an added benefit, upon termination
it returns an inductive invariant that proves no further solution(s)
exist. This is accomplished by formulating the debugging problem
as an unbounded model checking problem, in contrast to traditional
techniques [7] that use bounded model checking (BMC) [8].

In detail, the proposed methodology works as follows. First, the
transition relation of the circuit is enhanced by inserting error-
select registers. Each error-select register is associated with a suspect
location such that if it is active, the suspect location is effectively
disconnected from its fanout and replaced by a free variable. Any
non-active error-select register does not alter the behavior of the
circuit. This construction allows each suspect location to be replaced
with an arbitrary Boolean function by activating the respective error-
select register. In this manner, the target state is reachable under the
enhanced transition relation if and only if there is a suspect location
where a fix can be implemented to make it reachable in the original
circuit (i.e. a solution). In order to find these suspect locations,
property-directed reachability (PDR) [9]–[11] is executed to check the
reachability of the target state under the enhanced transition relation.
When reachable, PDR returns a counter-example in which an error-
select register is active, indicating that the associated suspect location
is a solution. The error-select register is then de-activated and PDR
is executed again. This process is repeated until the target state is
unreachable under the enhanced transition relation. At this point, no
further solutions exist and PDR returns an inductive invariant that
proves this claim.

Experiments on industrial designs confirm the theoretical findings
and the practicality of the approach. The technique is able to find
an average of 2.3x as many solutions as traditional approaches. An
additional performance optimization is presented that provides a 5.1x
speedup compared to the initial approach.

The remainder of this paper is organized as follows. Section II
presents background information regarding unbounded model check-
ing and prior work. Section III defines the problem and presents
an algorithm to diagnose unreachable states. Section IV presents a
methodology to apply model checking incrementally in the algorithm,
potentially improving runtime performance. Section V presents ex-
perimental results. Finally, Section VI concludes the paper.

II. PRELIMINARIES

The following notation is used throughout this paper. Given a
sequential circuit C, S = {s1, ..., s|S|} denotes the set of state
elements (registers) of C. Each assignment t ∈ {0, 1}|S| to the
state elements represents a state of C. The transition relation of C is
denoted T ⊆ {0, 1}|S|×{0, 1}|S|. For a state pair 〈t, t′〉, 〈t, t′〉 ∈ T
if and only if there exists an assignment to the primary input that
causes C to transition from t to t′. The set of initial states of C
is denoted I ⊆ {0, 1}|S|. For a predicate P over the set of state
variables S, any state t ∈ P is referred in this paper as a P -state.

For the purpose of model checking, C can be modeled by a Finite
State Machine (FSM) M = (S, I, T ). A sequence of states t0, ..., tn
is a trace of M if and only if 〈ti, ti+1〉 ∈ T for all 0 ≤ i < n and
t0 ∈ I . A state t is reachable under M if it appears in a trace of M .
It is also i-step reachable if it appears in a trace of i cycles or less.

A. Property-Directed Reachability
The work presented here uses extensively the unbounded model

checking algorithm of Property-Directed Reachability (PDR) [10].



Given an FSM M = (S, I, T ) and a safety property P ⊆ {0, 1}|S|
representing the set of safe states, PDR attempts to prove that P
holds for M . It either returns an inductive invariant proving that
no unsafe states are reachable or a counter-example showing that an
unsafe state is reachable.

To achieve the above, PDR computes a sequence of predicates
over the state elements F = 〈F0, ..., Fk〉. The set of Fi-states over-
approximates the set of states reachable in i or fewer clock cycles
(i.e., the set of i-step reachable states). Each Fi is represented by
a formula in Conjunctive Normal Form (CNF) and each clause in
Fi over-approximates the set of i-step reachable states. As such,
Fi and each of its clauses are referred to as i-step invariants [11].
Additionally, each clause c in every Fi includes every initial state,
i.e., I ⊆ c. In other words, c satisfies initiation.

The algorithm proceeds through a series of iterations k = 1, 2, ...
in which iteration k attempts to find a k-step counter-example. This
process will either result in new clauses being added to some or all
of the formulas for F0, ..., Fk, or in a counter-example being found.
If P indeed holds, the algorithm will eventually reach a point at
iteration k where Fi = Fi−1 for some i ≤ k. At this point, Fi is
an inductive invariant proving the property P holds. The algorithm
returns REACHABLE if an unsafe state is reachable under M and
UNREACHABLE otherwise.

B. Prior Work

Traditional automated debugging tools [3]–[6] require an error
trace for each failure to constrain the problem. But when a state
is unreachable due to some error, no such error trace exists and
existing techniques are no longer applicable. To tackle this problem,
the authors in [7] present an automated diagnosis methodology for
unreachable states that relies on a set of intertwined steps of reachable
state-space approximation and SAT-based debugging.

To operate, that algorithm requires three parameters. The first
parameter is the the target state and the second is the maximum
number of clock cycles K in which to reach this target state. Finally,
it asks for a window size N , which represents the number of clock
cycles that are debugged. Increasing K may find additional solutions
that reach the target state in a greater number of clock cycles, while
increasing N may find a greater portion of the solution set for a
fixed value of K. When the algorithm begins, PDR is executed to
over-approximate the set of (K − N)-step reachable states. Then,
SAT-based debugging is applied to debug a sequence of N state
transitions starting at any state in the approximation and ending at
the target state. When a solution is found, PDR is used to determine
if it is a real solution or a spurious one. Using larger values of N
and K may result in finding larger numbers of solutions, but it may
also increase runtime.

While this approach indeed diagnoses unreachable states, it re-
quires the engineer to intelligently select the parameters in an ad-hoc
manner so as to balance runtime with completeness of the solution.
Essentially, this is a trade off between performance and resolution. As
a result the method does not give the engineer confidence whether
adjusting the values of parameters will provide more solutions or
merely increase the runtime. Evidently, being able to explore the
complete solution space presents more options for the engineer to
correct the design and preserve the engineering effort invested in
it. Ultimately these issues present barriers to a fully automated
process for debugging unreachable states, which is the aim of the
methodology presented in the next section.

III. DIAGNOSING UNREACHABLE STATES

Given an erroneous circuit C, a set of suspect locations denoted
as L = {l1, ..., l|L|}, and an unreachable target state condition S the
proposed methodology aids the engineer in finding suspect locations
where a fix can be implemented to make at least one of the states of S
(i.e., an S-state) reachable. The set of suspect locations L is provided
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Fig. 1. Error select register and multiplexer at suspect location li

by the user and in the worst case it can include every location in
the circuit. Of course, the larger the suspect set L is the more time
the algorithm is expected to take. In practice, this is a favorable
characteristic for the proposed algorithm because the engineer may
apply knowledge regarding the source of the error to reduce the size
of L to e.g., all locations within a block that is suspected to be the
error source. The target state condition S is a predicate representing
the set of target states. This is also a parameter provided by the user.
All target states are unreachable in C.

A solution is defined as a location in the circuit that can be replaced
by some Boolean function to make any target state(s) reachable. The
function may be arbitrarily complex and may require the addition
of new state elements, but does not require modifying any other
locations in the circuit. The purpose of the proposed methodology
is to determine which of the suspect locations are indeed solutions
to the problem. It returns Lsol ⊆ L which is the subset of locations
in L that are solutions. The approach finds every solution in the set
L and is complete by nature. As an additional feature, it terminates
with a proof demonstrating that no further solution(s) exist in L. Note
that the methodology is intended only to indicate locations where a
functional change makes the target state reachable. The engineer is
responsible for deciding how to implement the actual fix.

A. Methodology
The proposed methodology involves solving a series of unbounded

model checking problem instances by generating an enhanced FSM
model of the circuit. For simplicity of our presentation, this section
treats the model checker as a “black box.”

The enhanced FSM model behaves like the original circuit with
certain suspect locations replaced by arbitrary Boolean functions.
Which suspect locations are replaced depends on value assignments
to error-select registers, which are new circuitry added to the original
FSM and depicted in Figure 1. Their exact rationale and functionality
is described later in this section. Each model checking problem is
crafted so that the result either indicates a solution li ∈ L or proves
that no location in L\Lsol is a solution, at which point the algorithm
terminates.

Towards this end, the algorithm constructs an enhanced FSM M =
(S∪E, Ien, Ten), by adding new hardware in the form of error-select
registers E = {e1, ..., e|L|} and constructing an enhanced initial state
condition Ien as well as transition relation Ten. A trace of the circuit
tC,0, ..., tC,n is equivalent to a trace of the model tM,0, ..., tM,n if
and only if the original registers in the set S have the same value
assignment in states tM,i and tC,i for all 0 ≤ i ≤ n.

The enhanced transition relation is constructed from that of the
original circuit by adding hardware to facilitate diagnosis. For each
suspect location li, an associated free variable wi and error-select
register ei are added. The error-select register is made immutable
(i.e., its value can never change during the operation of the circuit)
by feeding its output back to its input. As explained later, this is
necessary to associate the reachability of particular states under M
with a suspect location being a solution. Subsequently, new hardware
is added such that li is effectively replaced by an arbitrary Boolean
function when ei = 1. Error-select registers assigned to 0 have no
effect on the behavior of the circuit. A multiplexer where the 0-
input is li, the 1-input is the free variable wi, and the select line
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Fig. 2. (a) Original circuit (b) Circuit of Ten (error-select registers omitted)

is ei implements this functionality. The output of the multiplexer is
denoted zi and connected to the original fanout of li. This multiplexer
construction is depicted in Figure 1 while the equation below shows
its CNF representation:

mux = (ei ∨ l̄i ∨ zi)(ei ∨ li ∨ z̄i)(ēi ∨ w̄i ∨ zi)(ēi ∨wi ∨ z̄i) (1)

The enhanced transition relation is then constructed from the circuit
with the added hardware. As the error multiplexer can be represented
by four clauses, the CNF encoding of Ten has O(|L|) more clauses
than that of the original transition relation of C.

Example 1: To illustrate the behavior of Ten, consider the circuit
of Figure 2(a). It has a single state element s1, two primary inputs
x1 and x2 and the two suspect locations are l1 and l2. Assume that
the initial state is s1 = 0 (i.e., I = (s̄1)). It is easily verified that
it is impossible for the circuit to reach a state where s1 = 1. This
unreachability can be diagnosed using the target state condition S =
(s1). In doing so, the enhanced transition relation is constructed from
the circuit shown in Figure 2(b). When e1 = e2 = 0, this circuit
behaves the same as the original circuit. When e1 = 1, l1 is set to
the free variable w1, allowing it to assume any value during model
checking. Similar behavior applies to e2 and l2. It can be seen that
when any ei = 1, this circuit behaves like the original circuit with
li replaced by some unknown Boolean function.

To diagnose unreachable states, it is necessary to associate the
reachability of particular states with a specific location being a solu-
tion. Consider a trace of the enhanced model. All states in the trace
have the same active error-select registers, as they are immutable.
Assume e1, ..., en are active. The enhanced model therefore behaves
like the original circuit with locations l1, ..., ln replaced by arbitrary
Boolean functions. It can be concluded that the original circuit has an
equivalent trace if l1, ..., ln are simultaneously replaced by unknown
functions. If this trace contains a target state, then simultaneously
replacing l1, ..., ln makes the target state reachable.

For the trace to indicate a solution it must satisfy additional
properties. Specifically, it must start from an initial state, end on
a target state, and have exactly one active-error select register ej .
Using the argument in the previous paragraph, replacing lj with an
unknown function makes an equivalent trace exist for the original
circuit. Since the trace starts from initial state and ends at target
state, replacing lj makes a target state reachable. This implies lj is
a solution. It is therefore possible to find solutions by finding traces
with these three properties.

This motivates the construction of an enhanced set of initial states
denoted as Ien. The original registers of the circuit are constrained
using I , ensuring the initial states of the enhanced model correspond
to initial states of the circuit. Since exactly one error-select register
must be active, a cardinality constraint [3] is applied to the error-
select registers. The cardinality constraint φ enforces that exactly
one error-select register is assigned to 1, and is defined as follows:

φ = (e1 ∨ ... ∨ e|L|) ·
∧

1≤i<|L|
i≤j≤|L|

(ēi ∨ ēj) (2)

In Eq. 2, the first clause ensures that at least one error-select register
is assigned to 1. The remaining clauses ensure that no two error-select
registers are simultaneously 1. The enhanced initial state condition is
Ien = I ∧ φ. This completes the construction of the enhanced FSM
M = (S ∪ E, Ien, Ten).

Example 2: Consider again the example from Figure 2. The
enhanced initial state condition Ien is the conjunction of I = (s̄1) and
the cardinality constraint φ. Therefore, Ien = (s̄1)∧(e1∨e2)∧(ē1∨
ē2). The set of states in Ien is {(s̄1∧e1∧ ē2), (s̄1∧ ē1∧e2)}. Notice
that these are all states in which s1 = 0, which is the initial state
condition. Additionally, every state of Ien has one active error-select
register, matching the requirements for traces that indicate solutions.

It has been established that certain traces of the enhanced model
indicate that specific locations are solutions. PDR is used to find
traces that meet these requirements. The enhanced initial state con-
dition ensures that the traces PDR finds begin on an initial state with
exactly one active error-select register, as required. The enhanced
transition relation ensures that the same single error-select register
is active in every state of the trace. All that remains is to force the
trace to end on a target state. To do so, PDR is executed with S
as its unsafe state set. If any target state is reachable, it will return
REACHABLE and a counter-example trace that meets the requirements
previously described. As such, if ej is the active error-select line in
the counter-example then lj is a solution.

Example 3: Continuing the illustration of the methodology from
Example 2, recall that the target state condition is S = (s1) and
the initial state condition is I = (s̄1). The enhanced model has the
following counter-example trace: 〈t0, t1〉 = 〈(s̄1 ∧ ē1 ∧ e2), (s1 ∧
ē1∧e2)〉. Notice that t0 corresponds to an initial state of the original
circuit, t1 is a target state, and e2 is the active error-select register. In
states t0 and t1 the model behaves identically to the original circuit
with l2 replaced by an unknown function. Since t0 is an initial state
and t1 is a target state, replacing l2 with a different function makes
a target state reachable in the original circuit. This indicates that
location l2 is a solution. Indeed, the reader can confirm that replacing
the AND-gate that drives l2 with an OR-gate makes the target state
reachable. Other corrections to the problem are also possible.

After finding a solution, it is blocked so the algorithm finds the
remaining solutions if any. For a solution lj , this is accomplished by
conjoining the unit literal clause ¬ej to Ien, so that PDR will not
return any additional counter-examples in which ej is active.

Example 4: For the circuit of Figure 2, after finding the solution
l2, the enhanced initial state condition becomes Ien = (s̄1) ∧ (e1 ∨
e2) ∧ (ē1 ∨ ē2) ∧ (ē2), leaving (s̄1 ∧ e1 ∧ ē2) as the only remaining
initial state. It is easily verified that this state cannot reach any target
states, implying that l1 is not a solution. This is indeed the case. To
reach a state where s1 = 1 the output of the AND-gate must be 1. In
the initial state s1 = 0, so regardless of the value at l1 the AND-gate
will never output 1. Therefore, there is no way to modify the circuit
at l1 to rectify the unreachability of the target state.

The steps of the methodology are shown in Algorithm 1. In that
description, algorithm CONSTRUCTMODEL receives input L and C
and returns the enhanced transition relation and error-select register
set. Lines 3 to 5 construct the enhanced FSM model that is used by
PDR. Lines 6 to 11 contain the main loop in which solutions are
found. If a solution exists, it is extracted (line 7) and added to Lsol

(line 8). Line 9 constructs a new model M ′ in which solution lj
is blocked. The distinction between M and M ′ in the algorithm is
included to simplify the discussion in Section IV. As the number
of suspect locations is finite, the loop will eventually terminate.
At this point, PDR indicates S is unreachable and an inductive
invariant is extracted (line 12). Finally, Lsol and the proof of solution
completeness are returned in line 13.

In the following subsection, the soundness and completeness of
this algorithm are discussed.



Algorithm 1 UNREACHABILITY(C,S, L)
1: Lsol = ∅
2: S = state element set of C
3: Ten, E = CONSTRUCTMODEL(L,C)
4: Ien = I ∧ φ
5: M = (S ∪ E, Ien, Ten)
6: while PDR(M,S) == REACHABLE do
7: ej = active error-select register in counter-example
8: Lsol = Lsol ∪ {lj}
9: M ′ = (S ∪ E, Ien ∧ (¬ej), Ten)

10: M = M ′

11: end while
12: invariant = inductive invariant extracted from PDR
13: return (Lsol, invariant)

B. Soundness and Completeness

Two theorems are presented to demonstrate that Algorithm 1 is
both sound and complete w.r.t. its input set. In the context of this
paper, soundness implies that every location returned is a solution to
the problem. Completeness implies that every solution from the set
L is indeed found. Theorem 1 below uses the nature of traces of M
to show that the approach is sound.

Theorem 1 Every location in Lsol is a solution.

Proof: Line 6 finds a counter-example trace t0, ..., tn of M . As
it is a counter-example trace, it starts at an initial state and ends at
a target state, implying t0 ∈ Ien and tn ∈ S. As Ien = I ∧ φ, the
cardinality constraint φ ensures that exactly one error-select register
(ej) is assigned to 1 in state t0. Additionally, t0 ∈ I .

Since the error-select registers are immutable, each state in the
trace also has ej active and all other error-select registers inactive.
Further, the fact that t0 ∈ I ensures that t0 corresponds to an initial
state of C. Therefore, an equivalent trace also exists for C if lj is
replaced by an unknown Boolean function. As tn is a target state,
S can be made reachable in C by replacing lj , indicating that lj is
a solution. All locations in Lsol are found in this manner, implying
that every location in Lsol is a solution.

Because Lsol is the solution set of Algorithm 1, Theorem 1 proves
that the algorithm is sound. Further, Theorem 2 below shows that the
methodology is also complete, that is, it returns all solutions from
the input set of suspect locations L.

Theorem 2 Upon termination Lsol contains every solution from L

Proof: Lines 6 to 11 are executed to find solutions until all target
states are unreachable. First, consider the case when Lsol = L at the
termination of Algorithm 1. Clearly, this includes every solution in
L, and the theorem holds in this case.

Assume the opposite case, Algorithm 1 terminates when all target
states are unreachable and Lsol ⊂ L. It suffices to show that the
unreachability of all target states implies that no solutions are left.
Consider the final call to PDR that returns UNREACHABLE. Denote
the remaining suspect locations at this point as Lrem = L \ Lsol.

Assume all target states are unreachable. This implies that there
are no traces of M that end in a target state. Consider a fixed valid
initial state IC of C. There are |Lrem| corresponding initial states of
M , each with a different active error-select register. Since all target
states are unreachable, none of these states can reach a target state
under M . This implies that for every suspect location in l ∈ Lrem,
it is impossible to replace l with a different Boolean function such
that S is reachable from IC in C. Since IC is an arbitrary initial
state of C, this holds for every initial state of C.
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Fig. 3. State space representation of (a) M and (b) M ′

Therefore, none of the suspect locations in Lrem are solutions
which implies that when Algorithm 1 terminates Lsol contains every
solution from L.

As the algorithm examines solutions strictly from the suspect set
L, it obviously cannot find solutions that are not in that set. If every
solution in the circuit is needed, the user may choose L to include
every circuit location. As a larger input set may increase runtime,
the algorithm offers a favorable trade off where one can limit the
initial suspect set L to locations that are considered to be likely
error sources. For instance, an engineer may introduce a bug when
modifying a specific module. It may be desirable in this case to
restrict the suspect set to said module and treat the rest of the design
as correct. In this manner, one remains confident that the results
returned by the algorithm will indeed include the actual error source.

IV. PERFORMANCE OPTIMIZATION

In the methodology of the previous section, each solution results in
an additional call to PDR. In the worst case, this will require a total of
|L| calls. We note that the only difference between consecutive PDR
calls is that a single error-select register is set to 0. For such a small
change in the model, many of the invariants may remain valid [11].
In fact, as shown later in this section, all of the invariants generated
by PDR remain valid in the problem of interest. This allows each call
to PDR to reuse the entire sequence of formulas F = 〈F0, ..., Fk〉
which can potentially result in substantial runtime savings.

As explained in Section II-A, PDR computes a sequence of
predicates F = 〈F0, ..., Fk〉 represented by CNF formulas, where
each Fi and each clause of Fi are i-step invariants. Each clause c
additionally has the property of initiation, i.e., Ien ⊆ c. In order
to reuse clauses and formulas after changing the model, they must
remain i-step invariant and satisfy initiation with respect to the new
model. The work of [11] presents an invariant finder, which extracts
the portion of the invariants computed for one model that remain
valid in another. This provides a means for the reuse of clauses after
changing the model in the general case. However, it is possible to
exploit the structure of the model updates in Algorithm 1 to reuse
every clause without verifying i-step invariance or initiation.

To further elaborate this point, consider the state of Algorithm 1
immediately after executing line 9. At this point, M is the FSM model
used to find solution lj and M ′ is the FSM model after blocking
solution lj . It is immediately obvious that I ′en ⊆ Ien. For any clause
c, if Ien ⊆ c, it is trivially true that I ′en ⊆ c. Therefore, all clauses
that satisfy initiation under M satisfy initiation under M ′.

This leaves only to show that all i-step invariant formulas and
clauses of M are i-step invariant for M ′. If every clause in Fi is
i-step invariant then Fi itself is also i-step invariant [9]. Therefore,
it is sufficient to show that the i-step invariant clauses of M are
i-step invariant for M ′. This ultimately arises from the fact that
the reachable state set of M ′ is a subset of that of M . Any over-
approximation of the set of states reachable under M will also over-
approximate the reachable states of M ′. An i-step invariant is simply
an over-approximation of the set of i-reachable states, so intuitively,
the i-step invariant clauses of M are also i-step invariant clauses of
M ′. Lemma 1 provides a first step towards proving this claim, by
showing that conjoining the clause ¬ej to Ien does not make any
previously-unreachable ¬ej-states reachable.



TABLE I
EXPERIMENTAL RESULTS

Benchmark Traditional [7] Initial Optimized
benchmark #gates #registers |L| #solutions time (s) #solutions time (s) #solutions time (s) speedup

mrisc core 8165 1328 1000 10 15.9 10 430 10 111 3.9x
design1 1070 147 314 4 16.0 14 128 14 21.7 5.9x
divider 3555 360 57 1 1.5 53 2.2 53 1.2 1.8x
spi 1009 132 544 40 19.0 40 598 40 76.6 7.8x
wb 390 61 346 247 38.7 261 9983 261 211 47.3x
usb core 4856 534 1000 4 17.5 4 1065 4 492 2.2x
ac97 ctrl 12607 2325 126 10 1.4 18 44.8 18 16.8 2.7x
rsdecoder 4856 534 1000 40 371 - - 40 951 -
GEOMEAN 5.1x

Lemma 1 All ¬ej-states that are not i-step reachable under M are
not i-step reachable under M ′ for all i ≥ 0.

Proof: Consider a ¬ej-state t that is not i-step reachable under
M . Assume towards a contradiction that it is i-step reachable under
M ′. M ′ must have at least one trace t0, ..., tn where t0 ∈ I ′en and
tn = t. As error-select registers are immutable and t is a ¬ej-state,
t0 is also a ¬ej-state.

As M and M ′ have the same transition relation, each state transi-
tion in the trace is valid under M . Therefore, t is only unreachable
under M if t0 6∈ Ien. This is a contradiction as t0 ∈ I ′en and it has
already been shown that I ′en ⊆ Ien. Therefore, all ¬ej-states that are
not i-step reachable under M are not i-step reachable under M ′.

As shown, the model updates in Algorithm 1 do not make any
unreachable ¬ej-states reachable. Further, they clearly make all ej-
states unreachable. These two facts together imply that no states
unreachable under M ′ are reachable under M . Letting R (R′) denote
the set of states reachable under M (M ′), we have R ⊆ R′. It only
remains to show that this implies all i-step invariants of M are i-step
invariant for M ′.

To visualize this fact, assume c is an invariant clause under M . As
an invariant clause of M , it must over-approximate R. This is shown
in Figure 3(a), where the set of c-states contains R. As R′ is a subset
of R, Figure 3(b) shows that the set of c-states also over-approximates
R′. Clause c therefore remains invariant for M ′.

The above discussion focuses on invariant clauses, but it is simi-
larly valid for i-step invariant clauses. The following theorem proves
this claim.

Theorem 3 All clauses that are i-step invariant under M are i-step
invariant under M ′.

Proof: Let c be a clause that is i-step invariant under M .
Assume towards a contradiction that c is not i-step invariant under
M ′. This implies that there is a state t 6∈ c that is i-step reachable
under M ′. Additionally, t is not i-step reachable under M , as c is
i-step invariant under M and t 6∈ c.

Since t is i-step reachable under M ′ and not M , by Lemma 1, it
is an ej-state. No ej states are reachable under M ′, contradicting the
assumption that c is not i-step invariant under M ′.

It has already been shown that all clauses satisfying initiation
for M do so as well for M ′, so Theorem 3 implies that it is
possible to reuse F = 〈F0, ..., Fk〉. That is, the execution of PDR
on line 6 of Algorithm 1 can start with F already initialized to
the sequence previously computed. This can potentially result in
substantial performance optimization to the execution of Algorithm 1.

V. EXPERIMENTAL RESULTS

All results presented in this section are run on a single core of an
i5-3570K 3.4 GHz workstation with 16GB of RAM. The proposed
algorithm is developed on top of the PDR implementation of ABC
release 1.01 [12]. For comparison the approach of [7] is implemented
using a state-of-the art SAT-based debugger [3] and the same PDR
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implementation. Experiments are timed out after 14400 seconds (4
hours). Seven designs from OpenCores [13] and one commercial
design from an industrial partner are utilized as benchmarks. Each
problem instance is created by injecting a design error to make at least
one state erroneously unreachable. This is accomplished by changing
operators in expressions, complementing conditions in if-statements,
introducing incorrect state transitions, etc. These are typical design
errors observed in industry.

Suspect locations for the set L are chosen algorithmically as
follows. The fanin of all registers that appear in the target state
predicate is traversed breadth-first and each location visited is made
a suspect. This process continues until all locations in the cone of
influence of the relevant registers are added or an upper limit of 1000
suspects is reached. All suspects chosen by this algorithm are in the
cone-of-influence of a relevant register, and therefore may be able
to rectify the error. Further, locations with greater spatial locality to
the problem are visited first. This ensures that the suspects are those
most likely to be relevant to the problem.

Table I shows comprehensive results. The first four columns show
the name of the problem instance, the number of gates in the design,
the number of registers in the design, and the size of the suspect set,
respectively. The next two columns show the number of solutions
found and runtime when using the the approach of [7] with window
size N = 1 and cycle limit K = 50. The next two columns show
the runtime and number of solutions found using the unoptimized
approach in which clauses are not reused. The final three columns
show the runtime, number of solutions found, and speedup relative
to the initial approach for the optimized approach.

The optimized and unoptimized approaches always find the same
solutions. Over the entire set of experiments the optimized approach
achieves a 5.1x geometric mean speedup relative to the unoptimized
approach. Notice that the speedup is 47x for the circuit wb. This
happens because of the large number of solutions. To demonstrate this
effect, Figure 4 shows the number of solutions found versus runtime
for the optimized and unoptimized approaches for mrisc_core. It
can be seen that both approaches take roughly the same amount of
time to find one solution. After finding the first solution, the optimized
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approach is evidently able to find subsequent solutions more quickly.
The unoptimized approach appears to take roughly the same amount
of time to find each solution. Problems with large numbers of
solutions are therefore expected to exhibit a larger speedup from
this optimization. As can be seen, our approach requires somewhat
more runtime than the traditional approach. This is expected yet
it represents a worthwhile tradeoff, as its completeness offers the
engineer greater insight for the root cause of the problem and
flexibility for its rectification.

Figure 5 plots the number of solutions found by the approach
presented in this work and the traditional approach of [7]. Across all
experiments, the traditional approach is able to find only of 43.3% of
the complete solution set. It can be seen that the design divider in
particular has a large number of solutions not found by the traditional
approach. Since the experiments use a window size of one, only one
state transition is debugged. Any solutions found therefore have to
be in the combinational fanin cone of a register that appears in the
target state predicate, as the results of modifications at other locations
would not propagate to the relevant registers in one clock cycle. The
divider benchmark is a pipelined divider circuit and the target state
is specified as a condition on registers in the final pipeline stage.
The traditional approach can only find solutions in the combinational
fanin cones of these registers, most of which is in the final pipeline
stage. Since the problem can be corrected in other stages, it is evident
that it finds only a restricted portion of the complete solution set.

Table II illustrates the effect of the suspect set L on the runtime
of the algorithm for usb_core and mrisc_core. The first two
columns show the benchmark and size of the suspect set. The next
two columns show the number of SAT calls made by PDR and the
overall runtime. It can be seen that larger suspect sets result in more
SAT calls and longer runtime. Introducing more suspects increases
the size and complexity of the enhanced transition relation, naturally
making the SAT instances more expensive to solve. Each suspect
location can also make additional states reachable. This can make
approximating the state space more difficult, naturally increasing the
number of times PDR must call the SAT solver.

TABLE II
EFFECT OF |L| ON RUNTIME

benchmark |L| #SAT SAT run- total run-
calls time (s) time (s)

mrisc core 100 326 0.01 0.11
mrisc core 250 1344 0.21 1.33
mrisc core 500 2029 1.31 13.62
mrisc core 1000 4029 13.3 111.1
usb core 100 3371 0.30 0.65
usb core 250 4438 1.59 4.24
usb core 500 10818 33.2 65.9
usb core 1000 22074 156.4 491.5

Figure 6 plots the total runtime and average runtime per SAT
call for usb_core. It can be seen that increasing the size of the
suspect set increases the total runtime and the average runtime of each
SAT instance, as expected. Evidently, adding more suspect locations
increases the number and complexity of the SAT instances solved. It
seems as though the increase in runtime is not linear in the increase
in |L|. Increasing |L| makes the problem more complex in multiple
dimensions, as PDR must consider more states, the SAT instances it
must solve become more complex, and the number of calls to PDR
increases. The total runtime of the algorithm therefore appears to be
heavily-dependent on the suspect set it is given.

VI. CONCLUSION

This work presents an algorithm to diagnose design errors that
result in unreachable states that returns the complete solution set of
the problem. This is done by constructing an enhanced FSM model
of the circuit and solving unbounded model checking problems on
the enhanced FSM model. An optimization is presented to improve
the performance. Experimental results confirm the practicality and
effectiveness of the presented approach.
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