
J Electron Test (2016) 32:125–136
DOI 10.1007/s10836-016-5577-1

Exemplar-based Failure Triage for Regression Design
Debugging

Zissis Poulos1 ·Andreas Veneris1

Received: 30 July 2015 / Accepted: 23 February 2016 / Published online: 19 March 2016
© Springer Science+Business Media New York 2016

Abstract Modern regression verification often exposes
myriads of failures at the pre-silicon stage. Typically, these
failures need to be properly grouped into bins, which then
have to be distributed to engineers for detailed analysis. The
above process is coined as failure triage, and is nowadays
increasing in complexity, as the size of both design logic
and verification environment continues to grow. However,
it remains a predominantly manual process that can pro-
long the debug cycle and jeopardize time-sensitive design
milestones. In this paper, we propose an exemplar-based
data-mining formulation of failure triage that efficiently
automates both failure grouping and bin distribution. The
proposed framework maps failures as data points, applies
an affinity-propagation (AP) clustering algorithm, and oper-
ates in both metric and non-metric spaces, offering com-
plete flexibility and significant user control over the pro-
cess. Experimental results show that the proposed approach
groups related failures together with 87 % accuracy on the
average, and improves bin distribution accuracy by 21 %
over existing methods.

Keywords Failure triage · Design debugging · Regression
verification · Satisfiability · Cluster analysis

Responsible Editor: L. M. Bolzani Poehls

� Zissis Poulos
zpoulos@eecg.toronto.edu

Andreas Veneris
veneris@eecg.toronto.edu

1 Department of Electrical and Computer Engineering,
University of Toronto, 10 King’s College Road, Toronto,
ON M5S 3G4, Canada

1 Introduction

Functional verification poses a major bottleneck in mod-
ern design cycles [4]. It becomes even more complex when
performed in regression mode during early design stages,
where thousands of input vectors are applied to heavily
exercise both standard and corner-case functionality. The
co-existence of potentially multiple design errors at this
stage results in hundreds of error traces being exposed.
Design debugging, which accounts for more than 60 % of
the verification effort [4], is the task that locates design
errors using information provided by these traces. It does
so by using formal tools, which take as input a single error
trace and automatically determine possible error sources
(suspects) in the RTL [3, 7, 13, 14]. These are finally exam-
ined by the engineer to track down the exact error, a process
known as detailed debug [11].

However, this classical debugging approach has two
major drawbacks. First, it targets each failure in isolation.
As a result, different engineers may spend unnecessary
resources performing detailed debug for failures that origi-
nate from the same RTL error. Second, it does not identify
failures that should be high in priority for detailed debug. As
such, it cannot determine the most appropriate engineer to
further analyze each error trace. This uncertainty often cre-
ates confusion, with error traces constantly circulating until
they are placed to the right queue for analysis.

To break this uncertainty there is a need for a preprocess-
ing step that properly categorizes failures and assigns them
to the best-suited engineer(s) for analysis. This preprocess-
ing step is referred to as failure triage, and it consists of two
main tasks. First, failure binning is performed. Its goal is
to determine correlations between the exposed failures and
bin together these failures that are likely to be caused by the
same design error. The second step, failure bin distribution,

126 J Electron Test (2016) 32:125–136

identifies these failures that should be prioritized within
each bin. Next, it assigns each bin to the engineer(s) most
familiar with these high-priority failures.

Traditionally, the above steps are performed manually
in the industry. Typically, engineering teams employ prim-
itive forms of debug, such as simple error (i.e., log) mes-
sages from end-to-end “golden-model” checkers, exception
checkers and various assertions [11]. Often a verification
engineer is dedicated to the task of constantly monitoring
error logs and empirically deciding how to pass failures
to developer teams. In other cases, a script is used to
parse these error logs and allocates failures following a
rule-based strategy. Such ad-hoc manual practices convey
limited information and often fail to identify correlations
between traces.

Following the successful paradigm of data mining algo-
rithms in the verification domain [15], engineers are now
turning their attention to that field as a means to address
the verification pain of failure triage. Along these lines,
recent works have automated failure triage by formulat-
ing it as a clustering problem [9, 10]. To perform failure
binning through clustering, the authors in [9] first map fail-
ures as data points into a metric space (Euclidean), whereas
in [10] failures are implicitly mapped into a non-metric
space. A limitation of these frameworks is that clustering
can only be performed by algorithms that operate exclu-
sively in metric or non-metric spaces, respectively. Most
importantly, though, these formulations focus in failure bin-
ning and do not offer efficient solutions for failure bin
distribution.

To overcome these drawbacks, in this paper, triage is
viewed as an exemplar-based clustering problem. With the
proposed formulation, not only is failure binning automated,
but failure bin distribution is also properly addressed. This
is because exemplar-based clustering not only partitions the
failure set accordingly, but also algorithmically identifies
these failures that are representative of other failures in each
bin. These failures-exemplars are then naturally considered
as ones of high priority for detailed debug. Moreover, the
algorithm that is applied, Affinity Propagation (AP) [5],
operates in both metric and non-metric spaces, and thus
leverages the merits of both representations, unlike prior art.

Experiments on four industrial designs show that the pro-
posed work achieves 87 % average accuracy for failure
binning and improves bin distribution accuracy by 21 %, on
the average, against existing methods.

The remainder of this paper is organized as follows.
Section 2 discusses prior work in failure triage for design
debugging. Section 3 describes the proposed formulation
and presents the exemplar-based clustering process. Finally,
Section 4 discusses experiments and Section 5 concludes the
paper.

2 Preliminaries and Prior Art

2.1 Failure Binning

Consider an erroneous design with a single or multiple
errors in the RTL that undergoes regression testing. We say
that a failure occurs, when a mismatch between the expected
“golden” value(s) (0,1 or X for unknown) and the observed
one(s) is identified at some observation point (primary out-
put, probed internal signal or the output of an assertion).
Suppose that at the end of regression testing, N design fail-
ures are exposed, denoted F = {F1, F2, . . . , FN }. In this
work we target scenarios where verification is done via logic
simulation and potentially returns error traces, where each
error trace is a sequence of stimuli exposing a failure. Thus,
it is hereby assumed that for each failure its corresponding
error trace is also given. This paper does not address debug-
ging instances where no error trace is available, such as the
debugging of unreachable states [1].

The goal of failure binning is to produce a complete par-
tition of the failure set F into K disjoint clusters. Ideally,
failures that are caused by the same RTL error are placed
into the same cluster, and into distinct clusters otherwise.
These clusters (or groups) of failures are then assigned to
engineers. They, in turn, target each group for root-cause
analysis and eventually perform a fix that can potentially
remove all failures belonging to the same cluster. A high-
level view of the process and the scope of each stage are
illustrated in Fig. 1.

For the process to be accurate, two key points have to be
properly addressed. First, pairwise failure similarity needs
to be quantified based on the above desired relationship,
and second, a “good” number of clusters, K , needs to be
selected.

The quality of the required metrics above heavily relies
on the availability and type of data that a triage tool collects

Fig. 1 A modern design debugging flow

J Electron Test (2016) 32:125–136 127

from regression runs. Especially concerning failure similar-
ities, recent work in [10] and in [9] has shown that data
collected from SAT-based debuggers and logic simulators
can generate proper failure similarities.

Precisely, in [9, 10] a baseline SAT-based debugging pass
is first executed, and, for each failure Fi , the automated
debugger outputs a set of design components (RTL blocks
or modules), denoted as Si = {s1, s2, . . . , s|Si |}. Compo-
nents s1, s2, . . . , s|Si | are referred to as suspects, and include
all possible design components that can be responsible for
the observed failure. Although automated debuggers gener-
ally can perform the task at the gate-level (high resolution
debugging), in this work we focus on RTL-level debugging,
which is where state-of-the-art debuggers operate. As such,
a suspect can be an always block, an if statement, a module
definition or instantiation etc.. Due to its exhaustive nature,
SAT-based debugging guarantees that the design location
responsible for some failure Fi will be included in suspect
set Si . In this context, suspect set Si can be viewed as a
“signature” that characterizes failure Fi .

Example 1 To demonstrate the above concepts consider an
error trace, as depicted in Fig. 2. In that figure we show
the sequential behavior of the circuit for that trace using
its Iterative Logic Array (ILA) representation [14]. In more
detail, an error at component s2 is excited in cycle m−2 and
propagates to cause a failure (F1) at an observation point
in cycle m. The generated error trace of length m is then
passed to an automated debugger. The result is a suspect set
S1 = {s1, s2, s3} of design components that can explain the
wrong output. Suspects s1, s2 and s3, excited in cycles k,
m − 2 and m − 1 respectively, along with their propagation
paths are illustrated in Fig. 2. Note that the erroneous com-
ponent is included in the set S1 as suspect s2. For illustration
purposes, suspects that correspond to the responsible design
error are shown by a solid circle (suspect s2 in this case),
whereas suspects that can explain the failure but are not
actual erroneous components are shown by dotted circles
(suspects s1 and s3 in this example).

As previously discussed, each suspect component pro-
vides some guidance to the general error location related to
each failure. However, some of the suspect locations (i.e.

reset signals, primary inputs, dangling logic, bit-flips etc.)
can explain the failure but may be irrelevant to the erroneous
module or signal responsible for it. Thus, all collected
suspect components need to be appropriately weighted to
quantify the likelihood of being an actual design error.

Ideally, we need to identify and promote suspects that
exhibit behavior similar to that of typical design errors.
Recent work has experimentally shown that there are two
properties often observed in such suspect components. The
first is temporal proximity to the observed failure [12]. That
is, typical design errors are expected to be excited only a
few cycles before the failure is observed, since they can
quickly propagate to observation points in most cases. Sec-
ond, these locations are expected to exhibit low toggling
frequency measured between consecutive excitation cycles
[9]. The argument behind the latter is that typical RTL errors
are relatively “easy” to excite in the majority of cases.

Once all suspects are collected, these two criteria are used
to assign various levels of significance to each suspect com-
ponent with respect to the failure it may be responsible for.
The work in [10] does so via a suspect ranking scheme,
while the work in [9] adopts a data weighting scheme.

In [10], pairwise similarity between failures Fi and Fj ,
denoted s(i, j), is computed as a weighted version of the
Jaccard Index [2]. Particularly, s(i, j), is given as:

s(i, j) = −
(
1 − |Si ∩ Sj |

|Si ∪ Sj |
)

× πij (1)

In Eq. 1, the factor
(
1 − |Si∩Sj |

|Si∪Sj |
)
quantifies mutuality

between the suspect sets of Fi and Fj , while πij is a mea-
sure of discrepancy between the ranks of mutual suspects in
these sets [10]. The product is negated to abide to similarity
semantics. As it becomes apparent, the similarities gener-
ated by Eq. 1 do not respect the triangle inequality, and thus
this method operates in a non-metric space.

On the other hand, the authors in [9] use a feature-
based representation for verification failures. Specifically,
if s1, s2, . . . , sM are all the distinct suspect components in⋃N

i=1 Si , then failure Fi is represented by a real-valued fea-
ture vector �Fi = [xi

1, x
i
2, . . . , x

i
M], where each feature xi

j

obtains the weight (significance) of suspect sj with respect
to failure Fi , if it appears in Si , or takes the value 0

Fig. 2 Error trace and suspect
components

128 J Electron Test (2016) 32:125–136

Fig. 3 Suspect set overlap

otherwise. Specifically, a feature is a scalar quantifying
some attribute of a suspect component, such as its temporal
proximity to the failing observation point and the toggle rate
of its input signals [9]. Failures are then mapped into a met-
ric space, where similarity s(i, j) is defined as the negated
Euclidean distance between Fi and Fj:

s(i, j) = −||Fi − Fj|| (2)

Figure 3 illustrates a hypothetical example of three fail-
ures F1, F2, F3. Suppose that the corresponding suspect sets
S1, S2 and S3 overlap as shown in Fig. 3. Failures, such as
F1 and F2, that have suspect sets with proportionally large
overlap are expected to be strongly related and vice versa.
Of course, in [10] suspect ranks adjust the contribution of
this overlap accordingly, based on Eq. 1. In [9] the contri-
bution of the overlap and the suspect weights is implicitly
represented into a metric space, as shown in Fig. 4. Note
that pairwise similarities s(i, j) are non-positive real values.
In both cases, the larger s(i, j) is, the stronger the relation
between Fi and Fj is considered to be.

Fig. 4 Failures mapped into a metric space

Once failure similarity is determined, failure binning is
performed through clustering algorithms. However, depend-
ing on whether similarities are metric or non-metric only
specific classes of algorithms can be applied. The frame-
work in [10] is limited to connectivity-based greedy hierar-
chical clustering, while in [9] hierarchical clustering is com-
bined with k-means to produce refined failure partitions. In
both cases, the number of clusters, K , is “guessed” empir-
ically. In [10] it is based on expected cluster size/density,
while in [9] the authors use a threshold applied on the clus-
tering merge cost. These estimates experimentally appear to
be the bottleneck in failure binning accuracy for both of the
methodologies.

2.2 Failure Bin Distribution

Suppose that failure binning generates K failure clusters,
C1, C2, . . . , CK . The goal of failure bin distribution is to
allocate each of the K clusters to engineers that are most
familiar with failures within that cluster. In past work this
allocation is done as follows. For each cluster Ci , suspects
across failures in Ci that have a high average rank (or aver-
age weight) are identified. Then, cluster Ci is passed to the
engineer(s) that are best-suited to analyze these important
suspect locations in the design. These suspects essentially
correspond to a data point that is close to the centroid (mean)
of cluster Ci . However, it is not necessary that a failure in
cluster Ci always matches with the cluster mean. In fact,
this event is quite rare. Along these lines, it is naturally more
suitable to allocate the cluster based on a data point associ-
ated with a failure that appears in Ci , rather than a fictional
data point close to the cluster mean.

3 Exemplar-based Failure Triage

To overcome the problem of heuristically selecting the num-
ber of clusters and to distribute failure bins based on failures
that belong to the partitioned set, we formulate triage as
an exemplar-based clustering problem. In what follows, we
provide the details of our methodology.

3.1 Data Preparation

Before triage commences, it is necessary to collect all the
relevant information for each failure generated by regres-
sion. To this end, we follow the standard approach of
performing SAT-based debugging, and for each failure Fi

we generate a suspect set Si .
If N is the the number of observed failures, then

| ⋃N
i=1 Si | = M gives the number of distinct suspects across

all failures F1, F2, . . . , FN . Recall that in a feature-based
representation, M corresponds to the number of dimensions

J Electron Test (2016) 32:125–136 129

of the metric space where failures are mapped. In previous
work, feature-based representation has been shown to out-
perform other existing methods, but it does not perform well
when M >> N [9]. This is due to the “curse of dimension-
ality” when the number of dimensions is much larger than
the size of the data set. As such, to determine whether to
use a metric space mapping we first compute the ratio N/M

and check if N/M > γ , where γ ≤ 0.2. If N/M > γ , then
similarities s(i, j) are computed based on Eq. 2 in a metric
space. Otherwise, similarities are non-metric and are com-
puted based on Eq. 1. However, in both cases, if Si ∩Sj = ∅,
then s(i, j) is set to −∞, since disjoint suspect sets indicate
that failures should have minimum similarity and never be
placed into the same cluster. Note that the range of poten-
tial values for threshold γ is determined empirically with a
bias towards smaller values to avoid using metric mappings
for high-dimensions. However, the actual value that we use
in our framework is the result of a training process as it will
be discussed in Section 4. In both cases, pairwise failure
similarities are given in the form of a N × N similarity
matrix S.

3.2 Problem Formulation

Once similarity matrix S is computed, failure binning takes
place. However, unlike prior work, in our methodology we
do not treat failure binning separately from bin distribution.
Rather, we provide solutions to both problems simultane-
ously, in a unified sense, by formulating the whole process
as exemplar-based clustering.

Exemplar-based clustering not only partitions the data,
but also identifies for each cluster its most representative
member, also called exemplar. A cluster exemplar is the
member of the cluster that exhibits maximum overall sim-
ilarity to other members in the cluster. In the context of
failure triage a cluster exemplar can be viewed as a failure
that is representative of the erroneous behaviour associated
with all other failures that belong to the cluster. Intuitively,
this failure-exemplar along with its suspect locations can
efficiently determine how to distribute the failure bin.

To find solutions under this formulation we apply an
algorithm known as Affinity Propagation (AP) [5], which
is derived as an instance of max-product loopy belief prop-
agation [2]. The AP algorithm avoids an explicit search
for exactly K clusters and allows for a trade-off between
the number of clusters and the within-cluster similarity that
is obtained. As such, our technique does not require the
number of clusters to be specified or “guessed” a priori.
However, the algorithm allows the engineer to specify fail-
ures that are believed to be of high importance. To this
end, a quantity called preference, denoted pi , is associ-
ated with each failure Fi and quantifies our expectation
that some failures are more suitable to be exemplars than

others. The higher the preference pi , the more likely fail-
ure Fi is to be an exemplar, and vice versa. Preferences
are provided as an input to the algorithm in the form
of a N-dimensional vector p = [p1, p2, . . . , pN]. They
correspond to values assigned to the s(i, i) similarities (self-
similarities) in the diagonal of the similarity matrix, such
that [s(1, 1), s(2, 2), . . . , s(N, N)] = p.

The objective function of exemplar-based clustering, and
thus of the AP algorithm, is to maximize the sum of all sim-
ilarities between data points in the cluster to their exemplar,
while also maximizing the total preferences. Suppose the
algorithm takes S and p as input. Then, a set of N2 binary
random variables hij ∈ {0, 1} is defined, such that hij = 1
if and only if failure Fi has chosen Fj as its exemplar. Note
that hjj = 1 indicates that Fj is, in fact, an exemplar.
Finally, recall that s(j, j) = pj , ∀j ∈ {1 . . . N}. The objec-
tive function is formulated as a constrained optimization
problem, as follows:

max{hij }
i=N∑
i=1

j=N∑
j=1

s(i, j)hij (3a)

subject to∑
j

hij = 1 ∀i (3b)

hjj = max
i

hij ∀j (3c)

Equation 3b ensures that each point chooses exactly one
other point as its exemplar. Equation 3c guarantees that an
exemplar is never assigned to another exemplar. The goal of
the AP algorithm is to find settings of {hij } that maximize
the quantity in Eq. 3a. The algorithm finds solutions based
on an iterative message-passing procedure [5] and, upon
convergence, it outputs a set of exemplar failures denoted
as Fex :

Fex = {Fj ∈ F : hjj = 1} (4)

Each exemplar defines exactly one cluster of failures,
and is itself a member of the cluster. Thus, the number of
clusters, K , is equal to the number of exemplars in Fex :

K = |Fex | (5)

On the other hand, for each non-exemplar failure Fi there
exists an exemplar failure Fj which is the most similar to Fi

across all other exemplars in Fex . The set of non-exemplars
that are most similar to exemplar Fj , denoted F j

nex is:

F j
nex = {Fi ∈ F : i = arg max

Fj ∈Fex

s(i, j)} (6)

Each non-exemplar failure is then assigned to the same
cluster Ck as its most similar exemplar failure Fj . If exem-
plar Fj ∈ Ck , then:

Ck = {Fj } ∪ F j
nex (7)

130 J Electron Test (2016) 32:125–136

Finally, for the bin distribution step, cluster Ck is
assigned to the engineer that is responsible for the suspect
locations of failure Fj , where Fj is the exemplar for cluster
Ck . This set of design locations is given as:

{si : si ∈ Sj ∧ Fj ∈ Ck ∧ Fj ∈ Fex} (8)

Based on the above, the benefits of this formulation
are several. First, the process does not make any assump-
tions about similarities, apart from the fact that they are
non-positive real values. They can be either metric or non-
metric with no consequences to the formulation. Therefore
the process can seamlessly replace existing binning algo-
rithms irrespective of how similarities are generated, and
it can leverage the merits of both representations. Fur-
ther, the number of clusters, K , rises algorithmically from
the message-passing procedure, and does not need to be
“guessed” beforehand. Finally, as illustrated in Fig. 5, bin
distribution is now guided by suspects that correspond to
failures-exemplars included in the data set (Fig. 5b), rather
than by suspects that correspond to a data point at the cluster
mean (Fig. 5a). This allows engineers to analyze each exem-
plar failure (error trace) and its corresponding suspect set as

(a)

(b)
Fig. 5 Failure cluster formation in traditional vs. proposed triage

a whole, instead of examining suspect locations in isolation,
even if these locations are significant for a particular cluster.

3.3 Triage with Prior Belief

Another important benefit of the proposed methodology is
that it offers significant flexibility to the engineer consider-
ing various triage scenarios. In the majority of cases, before
triage commences it is rather difficult to have an estimate on
the number of design errors (number of clusters) responsible
for failure set F. However, there are cases where engineers
based on their intuition can target specific failures around
which they wish F to be partitioned. That is, failures that
are believed should serve as exemplars of erroneous behav-
ior. Along these lines, the proposed method allows triage
to be executed with prior belief, both in a uniform and
non-uniform setting, as discussed below.

3.3.1 Uniform Setting

In the uniform setting no assumptions are made regarding
to what extent a failure should serve as an exemplar. This
translates into a triage scenario where even intuitive knowl-
edge around the importance of each failure is missing. In
the proposed formulation, this is encoded by simply setting
all preferences pi ∈ p into some constant non-positive real
number. In practice, the AP algorithm performs as expected
and quickly achieves convergence when preferences are
fixed to the mean of all similarities:

pk = 1

N2

i=N∑
i=1

j=N∑
j=1

s(i, j), k ∈ {1 . . . N} (9)

3.3.2 Non-uniform Setting

In the non-uniform setting the engineer selects specific
failures to promote as exemplars a priori. If failure Fk is tar-
geted then pk is set to 0. Otherwise preference pk is set to
the median of similarities as in Eq. 9. Promoting specific
failures as exemplars by setting higher preferences affects
the number of clusters to be formed, but this number also
emerges from the message-passing process. Therefore, it
is not necessary that the number of clusters formed at the
end will match then number of promoted failures, if this
number does not reflect a reasonable partition based on
the constrained optimization problem that is solved. Still,
if the “guess” is close to reality then the AP algorithm can
be effectively guided. Finally, note that this feature is not
offered by any of the existing methodologies. These meth-
ods do allow a selection for K before the process begins, but
that does not imply that F is eventually partitioned around
the targeted failures.

J Electron Test (2016) 32:125–136 131

3.4 Overall Flow

A flow diagram of failure triage, as it is formulated in
this work, is illustrated in Fig. 6. It should be emphasized
that the SAT-based debugging step that provides the “signa-
ture” suspect sets is performed in the flow whether failure
triage takes place or not. Triage begins immediately after
this step and preprocesses the data before detailed debug
commences, where these suspect sets need to be further
examined. As such, this debug step is not added by our
methodology but is an inherent part of the overall debug
flow in regression mode.

4 Experimental Results

This Section presents experimental results for the proposed
triage framework. All experiments are conducted on a sin-
gle core of an Intel Core i5 3.1 GHz workstation with 8GB
of RAM. Four OpenCores [8] designs are used for the eval-
uation (vga, fpu, spi and mem ctrl). The SAT-based

Fig. 6 Proposed triage flow

debugger used to extract suspect locations is implemented
based on [14]. A platform coded in Python is developed to
parse debugging and simulation data, calculate the appro-
priate failure similarities and cluster the failure set through
the AP algorithm. For each design, a set of different errors
is injected each time by modifying the RTL description. The
types of the injected RTL errors resemble typical human-
introduced errors (missing pipeline stages, incorrect read
pointers, bad stimulus etc.) that lead to non-trivial triage sce-
narios. In total, twenty regression tests are run, generating
various numbers of failures each time, caused by a different
set of errors.

For each design, a pre-generated set of test sequences
is used that is stored in vector files. Each regression run
involves hundreds to thousands of input vectors. For the
purpose of capturing failures we use end-to-end “golden
model” checkers that compare the expected value for var-
ious operations, exception checkers and various assertions
throughout the designs.

Table 1 summarizes benchmark information and statis-
tics per regression run. From left to right, columns show
the circuit name and number of gates, an enumeration for
regression runs, the number of input vectors, the number
of simultaneous RTL errors, the number of observed fail-
ures (N), the number of distinct suspect components (M)
generated by SAT-based debugging, and finally the size of
the similarity matrix per regression run. SAT-based debug-
ging is performed at the RTL-level and not at the gate-level.
This is to avoid large numbers of suspects that would cause
the number of dimensions to increase dramatically. Another
reason that we maintain this lower debugging resolution
is because gate-level suspects offer less insight for coarse-
grain debugging and are usually targeted during detailed
debugging at later stages [11]. Finally, for evaluation pur-
poses triage is run under the uniform setting described in
Section 3.3.1. That is, we assume that there are no targeted
failures. This allows us to conduct a fair comparison against
existing methods.

To evaluate failure binning accuracy, we use the Rand
Index (R.I.) measure [2]. This metric compares the esti-
mated clustering against a reference failure binning, with
the latter corresponding to an ideal partition where all fail-
ures are grouped with 100 % accuracy. The metric ranges
from 0 to 1 and represents the fraction of correct clustering
decisions. Accuracy is hence measured as 100 × R.I. %.
This fraction is given as R.I. = T P+T N

T P+T N+FP+FN
, where

T P (true positives) corresponds to the number of failure
pairs that are caused by the same error and are placed in
the same cluster in the binning step, T N (true negatives)
is the number of failure pairs that are caused by different
errors and are placed in different clusters, FP (false posi-
tives) indicates the number of failure pairs that are caused
by different errors, but are erroneously placed in the same

132 J Electron Test (2016) 32:125–136

Table 1 Benchmarks and regression statistics

Ckt. Test # # |F| |⋃N
i=1 Si | # Matrix entries

(# gates) No. vectors errors (N) (M) (N × M)

1 25206 4 45 36 1620

2 25206 7 62 40 2480

vga 3 25206 8 97 61 5917

(72292) 4 31870 10 106 129 13674

5 31870 13 121 155 18755

6 17365 3 19 28 532

7 17365 7 30 152 4560

fpu 8 20094 7 55 74 4070

(83303) 9 41759 9 83 60 4980

10 41759 11 125 111 13875

11 4573 3 13 38 494

12 4573 5 28 46 1288

spi 13 4573 6 51 82 4182

(1724) 14 5019 8 39 196 7644

15 5019 9 72 113 8136

16 10834 3 17 24 408

17 10834 5 32 45 1440

mem ctrl 18 10834 7 31 29 899

(46767) 19 13370 8 66 94 6204

20 13370 11 95 137 13015

cluster, and finally FN (false negatives) corresponds to the
number of failure pairs that are caused by the same error,
but are erroneously placed in different clusters.

Further, for all regression runs we fix threshold γ to
0.2. The above value is selected across a range of values in
[0.1, 1.0] by conducting 2-fold cross-validation on a train-
ing dataset (15 regression runs) for the same circuits using
the same regression suites. Table 2 offers some statistics for
the training set. From left to right, columns contain the cir-
cuit name, the number of RTL errors injected, the number
of failures and distinct suspects. These numbers are given
as a range (min - max). RTL errors for the training set
were injected randomly in the Verilog source. This type of
training allows us to maintain large training and test sets,
while using each regression run both for training and vali-
dation purposes. The resulting selection (γ = 0.2) offers a
stable behavior in the triage flow; we generally desire met-
ric representations and only disallow them in corner-cases

when high-dimensionality becomes an impediment in per-
formance. We report that the highest binning accuracy for
the validation set is 91 % and is achieved with γ = 0.2
and γ = 0.3. The lowest one observed is 79 % when γ =
1.0, which corresponds to an extensive use of non-metric
representations.

Figure 7 shows a comparison between the proposed
engine and the methods described in [10] (non-metric)
and [9] (metric), in terms of failure binning accuracy.
The proposed triage engine outperforms the framework
in [10] in 14/20 regression runs, while it achieves bet-
ter accuracy in 7/20 cases compared to the engine in [9].
Precisely, across all regression runs, the proposed engine
achieves 87 % clustering accuracy on average, compared
to 77 % and 88 % accuracy of the non-metric and met-
ric methods, respectively. Note that for corner-cases where
N/M < γ , particularly for test-cases 7 and 14, the pro-
posed method generates non-metric similarities. This has a

Table 2 Training set statistics

Ckt. # err. (N) (M)

vga 3 – 6 23 – 71 16 – 98

fpu 4 – 5 13 – 52 37 – 114

spi 3 – 5 9 – 50 29 – 76

mem ctrl 3 – 7 10 – 42 21 – 123

J Electron Test (2016) 32:125–136 133

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

testcase #

R
an

d
In

de
x

(%
)

proposed non−metric metric

Fig. 7 Engine accuracy vs. existing methods

positive impact on accuracy by avoiding effects of high-
dimensionality. The metric approach in these cases exhibits
lower accuracy as it also shown by Fig. 7. Finally, it is
worth mentioning that under the non-uniform setting the
proposed method can achieve up to 96 % average accu-
racy when targeted failures are carefully chosen. What such
high accuracy implies is that the presence of an experienced
verification engineer with the insight to select proper pref-
erences (as presented in Section 3.3.2) can lead to very low
misclassification rates. Moreover, even when a small num-
ber of failures are misplaced and discovered during detailed
debugging, the verification engineer has enough context to
make a new decision. This is because misplaced failures
that have gone through the triage process are not returned
as abstract objects. They are instead returned as context-rich
entities that include all possible suspect locations in order of
significance. In a similar way that such structures can guide
detailed debugging they can also guide decisions to rectify
any failure misplacement, effectively reducing the manual
effort required.

To illustrate how accurate the number of generated clus-
ters, K , is in our framework, Fig. 8 shows how far this
prediction is from the number of design errors responsi-
ble for the observed failures. We refer to the latter as “true
clusters”. The prediction error is then given as (K − #
true clusters) for all test-cases. In ideal cases, K is equal to

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−3

−2

−1

0

1

2

3

testcase #

K
 −

 #
 tr

ue
 c

lu
st

er
s

Fig. 8 Cluster prediction error

0 50 200 350 650
0

5

10

15

20

25

30

positives

fa
ls

e
po

si
tiv

e
ra

te
 (

%
)

proposed

non−metric

metric

Fig. 9 False positive rates

the number of design errors and the prediction error is 0.
Figure 8 shows that in 12/20 regression runs the AP algo-
rithm achieves a perfect prediction, which greatly boosts
binning accuracy. Interestingly, in the rest of cases, the num-
ber of formed clusters is usually smaller (by 1 to 3 clusters).
Only in test-cases 9 and 19 the number of clusters is larger
than necessary.

Finally, Figs. 9 and 10 illustrate a comparison between
the proposed engine and the methods in [9, 10] in terms
of the false positive and false negative rates that are pro-
duced as the complexity of binning increases (expressed as
the number of positive failure pairs). In the context of failure
triage, both false positives and false negatives can pro-
long time-to-debug. False positives will often be identified
when subsequent regression runs expose failures belong-
ing to some failure bin that has been previously marked
as fixed. However, they can affect binning quality and bin

0 50 200 350 650
0

5

10

15

20

25

30

positives

fa
ls

e
ne

ga
tiv

e
ra

te
 (

%
)

proposed
non−metric
metric

Fig. 10 False negative rates

134 J Electron Test (2016) 32:125–136

distribution as they introduce noise in each failure bin. False
negatives, on the other hand, can lead to more complex sce-
narios. A large false negative rate indicates that multiple
failures are erroneously allocated across various bins. This
can introduce confusion between engineering teams, and it
also deteriorates bin quality by producing bins with sparse
(missing) information.

As one can observe in Fig. 9, the proposed methodology
produces false positives rates similar to those in previous
work. This rate does not seem to be clearly affected by
the problem complexity. Particularly, the proposed method
generates failure binnings with a 6.55 % false positive rate
(FPR) on the average, as opposed to 8.85 % average FPR
and 6.5 % average FPR produced by the non-metric and
metric methods, respectively. Furthermore, in Fig. 10 we
observe that the proposed triage engine clearly outperforms
the non-metric method in terms of false negative rate (FNR),
and is on par with the metric method. Specifically, the aver-
age FNR in our method is 7.70 %, whereas the one in [10] is
11.55 % and the one in [9] is 5.75 %. Interestingly, both the
proposed method and the metric approach produce smaller
FNR as the complexity of the problem increases. This is
indicative that a feature-based representation for failures is
more effective when failure clusters are dense, leading to
even more robust and accurate failure binning steps. Never-
theless, the relatively low FNR of our method indicates that
engineers will be receiving failure bins that mainly contain
failures with the same root-cause. Identifying those failures
that are misplaced can be achieved by means of re-running
tests when a fix is performed to see which failures persist,
or by means of suspect intersection as a filtering process to
identify such failures before a fix is performed [14]. In any
scenario, engineers have available ordered suspect sets to
guide their decision, reducing manual effort and uncertainty.

As results indicate, the failure binning step in the pro-
posed triage flow demonstrates high accuracy, comparable
to the currently most efficient method in [9]. However,
the major strength of the proposed flow is its effective
exemplar-based bin distribution step. Since bin distribu-
tion in this work is performed via exemplar failures, while
existing techniques use high-weight suspect locations to
guide the process, we need to use a common reference for
comparison purposes. To this end, we identify whether the
design error responsible for failures in a particular cluster
is included in the suspect set of the exemplar failure. If the
design error location is indeed in the suspect list, we obtain
its rank or weight (significance), which is already com-
puted to generate similarities in the binning step. Finally,
we determine if the error location has a high rank or weight
compared to other suspect locations for the same exemplar
failure. We do this by sorting suspects in order of decreas-
ing weight. Ideally, the error location resides among the top
10-20 % of suspect locations in the ordered list. In that case

the exemplar failure and its suspect locations are effectively
prioritized.

Table 3 summarizes experimental results regarding the
bin distribution step. Column 1 indicates the regression run
number. Columns 2 to 4 show what position the responsi-
ble design error takes in the sorted list of suspects that is
returned to the engineer by bin distribution in [9, 10], and
the proposed flow, respectively. The positions are normal-
ized over the size of the suspect list each time. Thus, when
the position is low, then the suspect component that includes
the design error appears in the first positions of the list, and
vice versa. Each row in the table provides the average design
error position per regression run. The fifth column shows
the improvement that is achieved by the proposed method
compared to the bin distribution approach in [9]. Finally,
the last three columns give the mean and standard deviation
of cluster sizes per regression run.

One observation from Table 3 is that, on average, the
proposed bin distribution approach pushes the responsible
design error higher in the list compared to existing methods
in 12/20 regression scenarios. In total, the average improve-
ment that is achieved compared to the best of the two
existing methods (metric) is approximately 21 % across all
regression runs. The last three columns of Table 3 reveal
another significant finding. In general, it is expected that
errors will be responsible for a varying number of failures,
far from uniformly distributed and ideally exposing clus-
ters with significantly different sizes. As shown in Table 3,
the metric approach in [9] and our methodology capture the
above expectation better than the non-metric approach in
[10], since they output clusters of smaller size (mean of 8.41
and 7.76) and with greater variance (average σ of 3.08 and
3.12). The non-metric approach tends to form bigger clus-
ters with similar sizes (mean size 9.4 and average σ 2.54),
an observation that can explain its inferior accuracy.

As far as time consumption is concerned, it is vastly dom-
inated by the SAT-based debugging step which is performed
whether triage takes place or not. This step consumes from
approximately 400 to 7000 seconds per regression test-case.
The added overhead due to failure binning and bin distri-
bution is negligible and is in the range of 15 to 50 seconds
approximately per regression run.

It becomes clear that the scalability of the proposed
framework and its applicability for industrial verification
settings greatly depends on the size of the design under test
and the number of failures exposed. Efficiency with respect
to design complexity is affected by the capacity of SAT-
based debugging and its limitations regarding state-space
explosion. By utilizing state-of-the art formal debugging
tools that leverage abstraction and refinement and trace
compaction techniques [6, 12], the proposed triage engine
can potentially handle larger designs. Any advances in this
class of tools can have an immediate positive effect on the

J Electron Test (2016) 32:125–136 135

Table 3 Bin distribution performance

Test avg. normalized error position Improvement Cluster size (mean / σ)

No Non-metric Metric Proposed (%) Non-metric Metric Proposed

1 0.22 0.13 0.10 23 15 / 4.4 11.2 / 7.3 11.2 / 7.3

2 0.26 0.27 0.16 41 10.3 / 1.3 10.3 / 2.9 10.3 / 3.3

3 0.19 0.18 0.20 −11 12.1 / 9.3 12.1 / 9.3 12.1 / 9.2

4 0.31 0.34 0.27 20 15.3 / 5.5 13.3 / 8.6 13.3 / 8.0

5 0.40 0.18 0.20 −11 17.3 / 2.3 12.1 / 5.0 12.1 / 4.9

6 0.34 0.35 0.16 54 6.3 / 4.0 6.3 / 1.2 6.3 / 1.2

7 0.24 0.17 0.10 41 6.0 / 3.9 4.3 / 2.6 4.3 / 4.1

8 0.18 0.12 0.19 −58 9.2 / 1.0 7.9 / 2.8 7.9 / 1.4

9 0.27 0.26 0.23 12 9.2 / 4.0 8.3 / 4.7 8.3 / 4.4

10 0.51 0.48 0.32 33 12.5 / 9.9 13.9 / 13.2 12.5 / 13.1

11 0.30 0.27 0.29 −7 4.3 / 3.5 4.3 / 2.1 4.3 / 1.2

12 0.18 0.23 0.08 65 7.0 / 2.9 7.0 / 5.5 5.6 / 5.5

13 0.17 0.15 0.15 0 10.2 / 7.0 8.5 / 7.5 8.5 / 7.5

14 0.33 0.24 0.16 33 5.6 / 1.1 4.9 / 1.6 5.6 / 2.0

15 0.21 0.19 0.26 63 12.0 / 2.2 10.3 / 4.7 10.3 / 2.8

16 0.46 0.32 0.33 −3 8.5 / 2.1 5.7 / 4.0 5.7 / 4.5

17 0.10 0.09 0.09 0 6.4 / 5.4 6.4 / 5.7 6.4 / 5.7

18 0.26 0.14 0.11 21 4.4 / 1.7 5.2 / 2.1 4.4 / 2.5

19 0.56 0.41 0.19 54 6.8 / 2.7 6.8 / 2.8 6.8 / 2.7

20 0.51 0.46 0.33 28 9.7 / 6.6 9.7 / 7.5 8.8 / 7.4

AVG 0.300 0.249 0.196 21 9.40 / 2.54 8.41 / 3.08 7.76 / 3.12

proposed engine. When it comes to regression scenarios
that involve thousands of exposed failures, such as micro-
processor testing, the AP algorithm can be efficiently used
due to its proven applicability for clustering applications
that involve tens of thousands of data points [5].

5 Conclusion

To summarize, this work introduces a novel exemplar-based
clustering formulation for the growing problem of failure
triage in regression design debugging flows. It proposes
the use of Affinity Propagation to simultaneously provide
solutions to failure binning and bin distribution as a uni-
fied constrained optimization problem. Experimental results
demonstrate the applicability and efficiency of the pro-
posed triage engine, and indicate that it outperforms existing
methods for the important step of bin distribution.

References

1. Berryhill R, Veneris A (2015) Automated rectification method-
ologies to functional state-space unreachability. In: Proc. Design,
automation and test in Europe, pp 1401–1406

2. Bishop CM (2007) Pattern recognition and machine learning
(Information Science and Statistics). Springer

3. Chang KH, Wagner I, Bertacco V, Markov IL (2007) Automatic
error diagnosis and correction for rtl designs. In: Proceedings
International High Level Design Validation and Test Workshop
(HLDVT), pp 65–72

4. Foster H (2011) Fromvolume to velocity: the transforming landscape
in function verification. In: Proc. Design and Verification Conf

5. Frey BJ, Dueck D (2007) Clustering by passing messages between
data points. Science 315:972–976

6. Keng B, Veneris A (2012) Path directed abstraction and refine-
ment in sat-based design debugging. In: Proc. Design Automation
Conf

7. Mirzaeian S, Zheng F, Cheng K (2008) Rtl error diagnosis using
a word-level sat-solver. In: Proceedings of IEEE international test
conference, pp 1–8

8. OpenCores (2007). http://www.opencores.org
9. Poulos Z, Veneris A (2014) Clustering-based failure triage for

rtl regression debugging. In: Proceedings IEEE international test
conference, pp 1–10

10. Poulos Z, Yang Y, Veneris A (2014) Simulation and satisifiability
guided counter-example triage for rtl design debugging. In: Pro-
ceedings of IEEE international symposium on quality electronic
design, pp 394–399

11. Safarpour S, Keng B, Yang YS, Qin E (2012) Failure triage: the
neglected debugging problem. In: Proc. Design and verification
conference

12. Safarpour S, Veneris A, Najm F (2010) Managing verification
error traces with bounded model debugging. In: Proc. ASP design
automation conference, pp 601–606

136 J Electron Test (2016) 32:125–136

13. Sarbishei O, Tabandeh M, Alizadeh B, Fujita M (2009) A for-
mal approach for debugging arithmetic circuits. IEEE Trans
CAD 28:742–754

14. Smith A, Veneris A, Ali MF, Viglas A (2005) Fault diagnosis and
logic debugging using Boolean satisfiability. IEEE Trans CAD
24(10):1606–1621

15. Vasudevan S, Sheridan D, Patel S, Tcheng D, Tuohy B, Johnson D
(2010) Goldmine: automatic assertion generation using data min-
ing and static analysis. In: Proc. Design, automation and test in
Europe, pp 626–629

Zissis Poulos received the B.E. degree in Electrical and Computer
Engineering from the National Technical University of Athens in
2011, and the M.A.Sc degree in Electrical and Computer Engineering
from the University of Toronto in 2014. He is currently a Ph.D. can-
didate at the University of Toronto in the Department of Electrical and
Computer Engineering. His research is on formal verification and auto-
mated design debugging of digital systems, and extends to applications
of data-mining for statistical design debugging.

Andreas Veneris received a Diploma in Computer Engineering and
Informatics from the University of Patras in 1991, an M.S. degree in
Computer Science from the University of Southern California, Los
Angeles in 1992 and a Ph.D. degree in Computer Science from the
University of Illinois at Urbana Champaign in 1998. In 1998 he was
a visiting faculty at the University of Illinois until 1999 when he
joined the Department of Electrical and Computer Engineering and
the Depart- ment of Computer Science at the University of Toronto
where today he is a Professor. His research interests include CAD for
debugging, verification, synthesis and test of digital circuits/systems,
and combinatorics. He has received several teaching awards and a best
paper award. He is the author of one book and he holds several patents.
He is a member of IEEE, ACM, AMC, AAAS, Technical Cham-
ber of Greece, Professionals Engineers of Ontario and The Planetary
Society.

