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Abstract— Formal verification is one of the fastest growing fields in
verification. The Boolean satisfiability-based unbounded model checking
algorithm of IC3 has become widely applied in industry and is frequently
used as a subroutine in other formal verification algorithms, such as FAIR
and IICTL. Any improvement to IC3 can therefore yield substantial
benefits in many areas of formal verification. Towards that end, this
paper introduces the notion of a support graph, which is applied in IC3.
Techniques are presented to compute the support graph by modifying
the satisfiability queries used in IC3 at the cost of a modest increase
in runtime. It is used to increase the re-use of information across
runs of the model checker, thereby improving runtime performance in
incremental model checking. It can also be applied within a single run
of the model checker to avoid unnecessary queries to the satisfiability
solver and accelerate the discovery of a proof. Experiments are presented
on HWMCC’15 circuits demonstrating the benefits of the presented
approaches.

I. INTRODUCTION

Verification is the primary bottleneck in hardware design, consum-
ing an average of 57% of the total project time [1]. Formal verification
is one of the fastest growing segments in the field [1]. Of particular
importance in formal verification is the problem of unbounded model
checking, which asks if particular states are reachable in a circuit.
IC3 [2] (also known as Property-Directed Reachability (PDR) [3]),
has established itself as one of the state-of-the-art model checking
techniques, and is now widely applied in industry [4], [5]. IC3
has been generalized to other domains such as software model
checking [6], [7] and is frequently used as a subroutine in other
algorithms [8], [9]. Any improvements to IC3 can therefore have
wide-reaching impact in many areas of formal verification.

The core functionality of IC3 is as follows. It accepts as input
a formula representing a safety property. A Boolean Satisfiability
(SAT)-based procedure identifies states that can reach a property
violation. Subsequently, the algorithm tries to learn a lemma that
explains why such states are not reachable in a specific number of
clock cycles, called the lemma’s level. The lemmas form a sequence
of over-approximations of the reachable state space at each level. A
procedure of pushing promotes lemmas from one level to the next,
strengthening the approximations. The runtime of these algorithms
is dependent on learning and pushing relevant lemmas. Additionally,
in an incremental setting where the algorithm is called more than
once, re-using lemmas can improve runtime. Learning high quality
lemmas is mostly within the scope of generalization, which has been
studied extensively [8], [10], [11]. Towards the other goals stated,
this paper presents a framework to learn the relationships between
lemmas. It can be used in the incremental setting to increase the re-
use of lemmas from previous runs, and in a non-incremental setting
to identify relevant lemmas earlier and exploit that knowledge.

Our approach works by learning which lemmas are needed to
support other lemmas. In pushing, a lemma at a particular level
can only be promoted to a higher level (i.e., proven to over-
approximate reachable states for a greater number of cycles) when
the approximation at its current level is strong enough. In practice
however, only a small number of specific lemmas are necessary to
support pushing in most cases. Quip and IC3 learn that a lemma can
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be pushed using a single query to a SAT solver. Our approach uses
the results of a similar query to both determine whether or not the
lemma can be pushed and learn which other lemmas were necessary
to support this fact. A variety of approaches are presented that use
either unsatisfiable cores or the solver’s conflict trail to compute the
necessary lemmas. The results are stored in a support graph, in which
each lemma is a vertex and directed edges indicate that the source
of the edge supports its destination.

Two applications of the support graph are considered. The first is
accelerating incremental runs of the model checker. When the model
checker is called multiple times with different properties, almost all
of the internal state can be re-used. However, when the initial state
changes between calls, as is the case in IICTL [8], most of the
lemmas have to be discarded. Using the support graph, it is possible
to identify which bits of the initial state were necessary to support
particular lemmas, and therefore save those that are still accurate
over-approximations. Our experiments demonstrate that in practice,
few of the initial state bits support any lemmas, and therefore most of
them are saved in the incremental setting. The second application is
accelerating the model checker itself in the standard non-incremental
setting. In particular, it is our expectation that the support graph can
be used to develop heuristics that identify high-quality lemmas. Using
the additional capabilities that Quip [12] (a recent extension of IC3
with additional reasoning capabilities) offers over IC3, these lemmas
can be targeted for aggressive pushing. This essentially provides
additional guidance to the algorithm in its search for a proof.

Experiments on HWMCC’15 circuits demonstrate the potential of
this approach. We find that vertices in the support graph have an
average in-degree of roughly 12. However, most lemmas have a much
lower in-degree, with a mode of 2. Additionally, we modified an
implementation of IICTL to leverage the incrementality application
mentioned above. It is found that over 60% of lemmas can be saved
using this method, though it is highly dependent on the particular
problem. Heuristics based on the support graph are also developed
and examined experimentally. Re-using lemmas and using simple
heuristics is found to speed up model checking somewhat. Computing
the support graph introduces an average slowdown of 22% that is
partially mitigated by the improvements noted above.

The rest of this paper is organized as follows. Section II presents
background information on IC3 and Quip. Section III presents the
techniques used to compute support graphs. Section IV presents the
applications of the support graph. Section V presents experimental
results and section VI concludes the paper.

II. PRELIMINARIES

A. Notation
The following notation and terminology is used throughout this

paper. For a sequential circuit C, let S = {s1, ..., s|S|} denote the set
of state elements (registers) of C, and let S′ = {s′|s ∈ S} denote the
set of next-state elements (inputs to registers) of C. For a formula P
over the state elements S, the primed formula P ′ represents the same
formula over the next-state elements (i.e., with each si ∈ S replaced
by s′i). A state is an assignment to all of the state elements, and can
be represented by a cube over S. For instance, if S = {s1, s2, s3},
the state in which s1 = 1, s2 = 1, and s3 = 0 is represented by the
cube (s1 ∧ s2 ∧ ¬s3). Applying the same priming notation above to
a state t, the primed version t′ represents the same cube over S′.



The transition relation of C is T (S, S′) and is assumed to be
represented in conjunctive normal form (CNF). Given a pair of states
(t0, t1), the formula t0 ∧ T ∧ t′1 is satisfiable (SAT) if and only if
there exists an assignment to the primary input of C that causes a
state transition from t0 to t1. If the formula is SAT, then there is
an assignment to the primary input such that t0 is assigned to the
state elements and t1 to the next-state elements, because t1 is primed
in the formula. The set of initial states of C is also represented in
CNF as I(S) where a state t is an initial state if and only if t∧ I is
satisfiable. Any predicate P (S) can similarly be represented in CNF,
where t ∈ P if and only if t∧P is satisfiable. For such a predicate,
any state t ∈ P is referred to in this paper as a P -state.

States are called i-step reachable if they can be reached in i or
fewer steps from an initial state. Initial states are zero-step reachable.
States that are i-step reachable for some value of i are reachable.

B. Problem Definition

An unbounded model checking problem is a tuple (S, I, T, P )
where S is the set of state elements, I(S) is a predicate representing
the set of initial states, T (S, S′) represents a transition relation, and
P (S) is a predicate representing the set of safe states. This is similar
to the definition used in [12]. The goal is to prove that P is invariant,
which requires all reachable states are P -states (i.e., safe states), or
to find a counter-example trace showing that a ¬P -state (i.e., an
unsafe state) is reachable. A proof takes the form of a safe inductive
invariant V (S), which is a formula satisfying the following three
properties.

I(S) =⇒ V (S) (1)
V (S) ∧ T (S, S′) =⇒ V (S′) (2)

V (S) =⇒ P (S) (3)

A formula satisfying Eq. 1 is said to satisfy initiation, meaning that
when interpreted as a predicate, it contains all initial states. A formula
satisfying Eq. 2 is inductive. An inductive formula represents a set of
states where no V -state can reach a ¬V -state. In other words, once
the circuit is in a V -state, it will never transition to a state that is not a
V -state. Note that the combination of initiation and induction implies
that V over-approximates all reachable states. A formula satisfying
both Eq. 1 and Eq. 2 is called an inductive invariant. Finally, a formula
satisfying Eq. 3 is safe. A safe formula represents a subset of the safe
states. It can be seen that a safe inductive invariant is both a superset
of all reachable states and a subset of all safe states. Such a formula is
a proof that the safety property P holds. Note that each of the above
properties can be verified using a single query to a SAT solver.

C. Overview of IC3

This section presents a simplified explanation of IC3 [2], [3]. Given
an unbounded model checking problem, IC3 works by maintaining
a sequence of formulas F0, F1, ..., Fk over S called the inductive
trace. Each Fi is a CNF formula called a frame. A frame Fi over-
approximates the set of i-step reachable states and satisfies initiation.
The frame F0 is identical to I . Each clause of Fi is called a lemma.
The set of Fi-states is a subset of the set of Fi+1-states, and the
lemmas in Fi+1 are all present in Fi.

The algorithm proceeds through a series of iterations 0, 1, ..., k
in which iteration i seeks to prove that no unsafe state is i-step
reachable. Iterations 0 and 1 are special cases, each consisting of a
single SAT query to detect zero-step and one-step counter-examples,
respectively. In iterations 2 and later, the algorithm uses a priority
queue of proof obligations. A proof obligation is a pair (t, i), where
t is a cube over S and i is a natural number referred to as the level
of the obligation. Obligation (t, i) indicates a requirement to prove
that no t-state is i-step reachable.

Algorithm 1 IC3(S, I, T, P )
1: F0 = I
2: if SAT(F0 ∧¬P ) or SAT(F0 ∧ T ∧¬P ′) then return UNSAFE
3: k = 2
4: loop
5: Enqueue(Q, (¬P, k))
6: while !Empty(Q) do
7: (t, i) = Dequeue(Q)
8: if SAT(Fi−1 ∧ T ∧ t′) then
9: u = predecessor of t

10: if i = 1 then return UNSAFE
11: Enqueue(Q, (LIFT(u), i− 1))
12: Enqueue(Q, (t, i))
13: else
14: (c, g) = GENERALIZE(t, i)
15: ADDLEMMA(c, g)
16: if g < k − 1 then Enqueue(Q, (t, g + 1))
17: if PUSHCLAUSES() = PROOF then return SAFE
18: k = k + 1

An iteration k begins by enqueuing a proof obligation for (¬P, k)
and ends when the queue is empty. At each step, the algorithm takes
the obligation (t, i) with the smallest level from the queue. This will
have one of three possible effects: finding a counter-example, adding
a new obligation at level i − 1, or learning a lemma to block all
t-states from Fi.

A SAT query for Fi−1 ∧ T ∧ t′ determines which of those
possibilities occurs. If the formula is satisfiable, then the satisfying
assignment contains an Fi−1-state u that is a predecessor of a t-
state. If i = 1, then u is an initial state, meaning t is reachable and a
counter-example has been found. Otherwise, meeting the obligation
requires the removal of u from Fi−1. A new obligation (u, i − 1)
is enqueued and (t, i) is returned to the queue, as t may have
other predecessors in Fi−1. Alternatively, the formula is unsatisfiable,
which implies that no t-states are i-step reachable. To record this fact,
a new lemma is derived from t by applying a generalization procedure
on the clause ¬t. An explanation of generalization is beyond the
scope of this work. It returns a lemma that contains a subset of the
literals from ¬t and over-approximates the set of i-step reachable
states. The generalized lemma is conjoined to Fi.

When the queue is empty Fk−1 contains no predecessors of unsafe
states, implying that no k-step counter-examples exist. A pushing step
is executed next, which strengthens the inductive trace and attempts
to find a proof. For each value of i from 1 to k−1, the algorithm tries
to push every lemma c in Fi to Fi+1. This is done using a SAT query
for Fi ∧ T ∧ ¬c′. If the formula is satisfiable then c is not pushed.
If it is unsatisfiable, then no ¬c-state is (i+1)-step reachable and c
is added to Fi+1. If every clause is pushed from some Fi to Fi+1,
then Fi+1 = Fi. This implies that Fi is a safe inductive invariant
proving the property.

Pseudocode for the procedure is shown in Algorithm 1. In the
description, the procedure ADDLEMMA(c, g) adds the lemma c to all
of the formulas Fi for i ≤ g. A few points that were not mentioned
above are noted here. On line 11, a procedure LIFT is called on
u. Lifting converts u from a single state to a cube representing
a set of states, all of which can reach a t-state in one step. On
line 14, generalization occurs. It returns a lemma c and a level g ≥ i,
and c is added at level g. An important optimization in IC3 allows
generalization to push lemmas forward, so the generalized lemma
may be added at a higher level than that of the proof obligation.
Another optimization is on line 16. When a proof obligation is met
and a lemma is added at level g, the obligation can be re-enqueued at



Algorithm 2 PUSHCLAUSES()
1: for i = 1 to k − 1 do
2: for all clauses c in Fi do
3: if !SAT(F∞ ∧ T ∧ ¬c′) then
4: ADDLEMMA(c,∞)
5: else if !SAT(Fi ∧ T ∧ ¬c′) then
6: ADDLEMMA(c, i+ 1)
7: if Fi = Fi+1 then return PROOF
8: return NO PROOF

level g+1. This is because a proof obligation represents a state that
can reach a property violation. Therefore, it eventually needs to be
removed from every Fi, even if it may not lead to a k-step counter-
example. This can potentially increase the chances of finding a proof
or counter-example more quickly.

Pseudocode for PUSHCLAUSES is shown in Algorithm 2. An
important aspect that was not noted above is on line 3. A special
frame F∞ contains lemmas that are absolute invariants, i.e., they
over-approximate the set of all reachable states. Intuitively, F∞
behaves like any other frame in the inductive trace. In particular,
all lemmas in F∞ are present in all frames. It is also possible for
GENERALIZE to return (c,∞), meaning that the generalized lemma
c is an absolute invariant and can be added to F∞.

D. Quip

Quip [12] extends IC3 with additional reasoning capabilities and
performance enhancements. A key difference is that Quip has a
more flexible form of proof obligation, where obligations are triples
(t, i,m), and m ∈ {may,must} is the type of obligation. A must-
proof obligation is similar to a proof obligation in IC3. A may-proof
obligation is handled the same way as a must-proof obligation, but
its failure does not imply the existence of a counter-example. This
provides a means to aggressively push forward particular lemmas if
desired. The algorithm can enqueue the negation of a lemma as a
may-proof obligation, forcing it to try to push the lemma forward
even if that requires learning new lemmas.

Given a may-proof obligation (t, i,may), Quip may fail to meet
such an obligation without finding a counter-example. The algorithm
can therefore dynamically discover traces containing reachable states.
Quip stores the states and uses them in various performance optimiza-
tions. In particular, when pushing clauses forward, if any lemma is
found to exclude a known reachable state, it is marked as bad and no
further attempts are made to push it forward. This is because such
a lemma can never appear in an inductive invariant, and therefore
little is gained by pushing it forward. Other differences are present
in Quip, but they are not important to this work.

III. SUPPORT GRAPHS

This section defines the support graph, which is informally de-
scribed as a directed graph that indicates which supporting lemmas
are needed to push each lemma. Techniques to compute support
graphs are also introduced in this section. The tradeoffs between the
techniques are examined experimentally in section V.

A. Support Sets and Support Graphs

The support graph is a directed graph in which vertices correspond
to lemmas. The presence of a directed edge (c1, c) indicates that
lemma c1 is in the current support set of lemma c, denoted Su(c).
A support set for lemma c is a set of lemmas Su(c) such that the
following formula: ( ∧

ci∈Su(c)

ci
)
∧ T ∧ ¬c′ (4)

c1

c2

c3

c4

c5

c6

Fig. 1. Example support graph

is unsatisfiable. The conjunction of all lemmas in Su(c) is sufficient
to support pushing lemma c. In other words, if every lemma from
Su(c) is present in Fi then c can be added to Fi+1.

The support set of a lemma is not unique. For instance, any superset
of a support set is also a support set. For the purposes of this paper,
the support graph only contains a single support set of each lemma. It
is possible to extend it to allow multiple support sets for each lemma,
as discussed in section III-C. Figure 1 depicts an example support
graph where Su(c5) = {c1, c2, c3} and Su(c6) = {c3, c4, c5}.

B. Computing Support Sets

This subsection discusses how to integrate support set computation
into Quip and IC3, towards the goal of learning a support graph.
Three techniques are presented, and the tradeoffs between them are
examined experimentally in section V. The techniques may vary in
terms of the runtime expense they incur and the usefulness of the
support graph they compute. In each of the presented approaches, a
support set is computed as a result of an unsatisfiable consecution
query of the form used in PUSHCLAUSES and shown below in Eq. 5.

Fk ∧ T ∧ ¬c′ (5)

When the formula in Eq. 5 is unsatisfiable, it means that a
subset of the clauses of Fk form a support set for c. Indeed, this
query effectively asks the question “is Fk a support set of c?”
As demonstrated in section V, in practice only a small number of
lemmas from Fk are needed in the support set. The rest of this
subsection presents various approaches to find smaller support sets
using certificates of unsatisfiability for Eq. 5. They differ in the kind
of certificate they use and how they integrate into Quip and IC3. The
first type of certificate used is defined below.

Unsatisfiable core: A subset of the clauses in a SAT problem that
are not mutually satisfiable.

The first approach uses an unsatisfiable core of Eq. 5. Unsatisfiable
cores can be computed using well-known techniques [13], [14], and in
practice are expected to be much smaller than the original problem.
Every time the query is executed, a core is computed and clauses
from Fk that are in the core are added to Su(c). In practice, this
tends to yield a much smaller support set, but can add significant
runtime expense.

The next approach uses a different kind of certificate provided
by an incremental SAT solver. Modern SAT solvers provide an
incremental interface that supports solving with a set of assumptions
in the form of unit literal clauses (i.e., clauses with one literal). The
next type of certificate comes from an incremental SAT solver and
is defined below.

Critical assumptions: A subset of the assumptions in a SAT
problem that are not mutually satisfiable, derived from the solver’s
conflict trail [15].

The approach uses the critical assumptions from a modified version
of Eq. 5 to compute smaller support sets. Each lemma ci is granted
a unique activation literal li, which is disjoined to ci. As such, the
lemma ci is transformed to ci ∨ li. When performing a consecution
query of the form Fi ∧ T ∧ ¬c′, an assumption ¬li is added for
each activation literal li. The resulting formula simplifies to that of



Eq. 5, but the critical assumptions indicate a support set. For each
assumption ¬li in the critical assumptions, the corresponding clause
ci is part of the support set. This approach is similar to a strategy
used in practical IC3 implementations to answer consecution queries
from different levels incrementally by having one activation literal per
level [3]. In practice the extra assumptions may introduce slowdowns
in the SAT solver, so using this approach on every consecution query
may be computationally expensive.

The third approach avoids slowing down every consecution query.
Numerous queries may occur in which the lemma c does not end up
in the inductive trace and the added runtime to find a support set is
wasted. To combat this, a dedicated query is used to compute the
support set of a lemma immediately upon learning it, which occurs
on line 15 of Algorithm 1. In addition, the consecution queries in
Algorithm 2 are used to compute support sets as in the first two
approaches. This avoids slowing down every consecution query, but
adds extra queries. Effectively, it computes support sets on an as-
needed basis: when a lemma is learned or when it is promoted to a
higher level.

C. Multiple Support Sets
Over time, multiple support sets can be learned for a lemma. Since

the support graph only holds one for each lemma, a mechanism to
replace existing support sets may be needed. In our implementation,
a support set is replaced by a newly-learned support set if and only
if the size of the new set is less than or equal to that of the old one.
This favors smaller support sets, as it is expected that they are more
useful. When both sets are the same size, the newer support set is
chosen. This is because new lemmas are learned over time, so an
older support set may have lemmas that are no longer relevant.

One can imagine more advanced techniques that consider e.g.,
the number of literals in the supporting lemmas or some heuristic
measure of their value. Alternatively, the support graph could be
modified to record all known support sets of each lemma. A topic of
future work is to examine different replacement criteria and support
graphs containing multiple support sets for each lemma.

IV. APPLICATIONS

This section presents two applications of the support graph. The
first uses the support graph in incremental model checking to re-
use parts of the inductive trace across calls to IC3 or Quip. This is
applied in the context of IICTL [8]. It would also be applicable to
other algorithms that use IC3 as a subroutine, or in a direct application
of IC3 to solving multiple problem instances. The second application
is within IC3 and Quip itself. The support graph is used to determine
when lemmas can be pushed without a SAT query. Additionally,
we propose using the support graph to develop heuristics to target
important lemmas for aggressive pushing with may-proof obligations.

A. Incremental Model Checking
Unbounded model checking can be used in an incremental context.

The model checker is called multiple times to prove different proper-
ties, possibly with different initial states. Results from earlier runs are
re-used where possible to speed up later runs. However, without any
further assumptions, it is not possible to re-use the inductive trace.
This section presents a technique to increase re-use of the inductive
trace in a commonly-used incremental model checking context.

Similar approaches exist, but they require additional processing
or assumptions. The work of [16] presents an algorithm to find what
portions of an inductive invariant hold after a change to the transition
relation and the initial states. This can require several queries to a SAT
solver. In the context of debugging, the work of [17] uses incremental
model checking extensively while re-using the entire inductive trace.
However, it assumes the initial states change in a specific way that
is only applicable to the particular debugging problem it addresses.

c3

c5 c7

c2

c1

c4 c6

(a)

c3

c5 c7

c2

c1

c4 c6

(b)

Fig. 2. (a) Original support graph (b) Labeled support graph

We propose using the support graph to speed up incremental model
checking in the context of IICTL [8]. IICTL is an algorithm to check
properties specified in computation tree logic (CTL). Other CTL-
checking algorithms exist [18], but our technique is only applicable
to IC3-based approaches. A full description of IICTL is beyond the
scope of this paper. It accepts as input a tuple (S, I, T, Pctl) where
S, I , and T are similar to the corresponding inputs to IC3. The CTL
property Pctl is a property specified in CTL. It may make calls to
IC3 of the form IC3(S, Ii, T, Pi) where Ii is a reachable state and
Pi is a predicate specified in CNF. Lemmas are only promoted to
F∞ if they satisfy initiation with respect to the true initial states. In
this mode of execution, lemmas in F∞ can be saved across different
runs of IC3 but the rest of the inductive trace must be discarded.

The support graph can be applied in this context to re-use other
parts of the inductive trace. Between calls to the model checker,
the support graph is saved. In a subsequent run, any lemmas in the
support graph that have in-degree 0 and are not part of the given initial
states are labeled as unsupported. These lemmas represent those that
were part of I in a previous run of the model checker but are not in
this run. Subsequently, any lemma with an unsupported lemma in its
support set is also marked unsupported. This continues until the set
of unsupported lemmas converges.

A new inductive trace is built from the lemmas that were not la-
beled as unsupported. An example is shown in Fig. 2. Fig. 2(a) shows
the support graph constructed during a run where I = c1 ∧ c2 ∧ c3.
In Fig. 2(b), the algorithm is executed again with I = c1 ∧ c2. The
lemmas that were supported by c3 (with dotted outlines in the figure)
are marked as unsupported. The lemmas c5 and c7 are placed in the
inductive trace at their previous levels, but c4 and c6 are not. As
demonstrated experimentally in section V, in practice this tends to
save a large proportion of the lemmas.

B. Lemma Pushing

This subsection presents applications of the support graph to un-
bounded model checking in a non-incremental setting. Two changes
to PUSHCLAUSES are proposed. Though Quip uses a slightly dif-
ferent pushing algorithm, for simplicity we present the changes as a
modification to Algorithm 2. Similar changes apply in Quip. The first
change uses the support graph to avoid calling the SAT solver. The
second identifies lemmas to push using may-proofs. Both changes
can be applied in Quip, but IC3 can only use the former.

The proposed changes to PUSHCLAUSES are shown in Algo-
rithm 3. On line 3, the support graph is used to push the lemma. This
avoids a SAT query if the support graph indicates that the lemma is
supported. Note that if the support graph indicates that c is supported,
the checks on lines 5 or 7 would also indicate that fact. Using the
support graph is simply an optimization to avoid using the SAT solver.
This can be implemented in both Quip and IC3.

The second change is on line 9. Given a heuristic function h(c)
which returns a Boolean, a may-proof obligation is enqueued for the
lemma if h(c) is true. Intuitively, h(c) should indicate whether or
not the lemma is valuable. In the next iteration, the algorithm will
try to push the valuable lemmas forward. One can imagine various



TABLE I
COMPARISON OF SUPPORT GRAPH COMPUTING TECHNIQUES

Quip Activation Literals UNSAT Core Hybrid
benchmark time time average median time average median time average median

pdtvisbakery2 118 - - - 3.0x 8 8 1.1x 8 8
bjrb07amba5 95.4 2.9x 19 12 1.4x 22 13 1.0x 17 9
bob3 69.7 5.7x 17 10 3.7x 17 8 0.6x 23 5
6s164 62.8 - - - 3.2x 21 12 2.4x 17 8
pdtpmscoherence 44.9 8.9x 136 57 5.4x 80 39 1.9x 63 21
mentorbm1p05 32.6 3.4x 2 2 1.1x 1 1 0.6x 2 2
6s306rb03 19.7 2.5x 1 2 1.0x 1 1 1.2x 1 2
pdtpmsam2901 8.86 1.1x 6 3 1.5x 6 2 2.0x 12 3
eijkbs4863 5.78 2.5x 7 3 1.9x 8 3 1.6x 31 2
pj2003 4.76 1.4x 1 1 1.1x 1 1 0.9x 1 1
MEAN 2.34x 14 1.54x 11.7 1.22x 11.8

Algorithm 3 SGPUSHCLAUSES()
1: for i = 1 to k − 1 do
2: for all clauses c in Fi do
3: if c is supported at a level j > i then
4: ADDLEMMA(c, j)
5: else if !SAT(F∞ ∧ T ∧ ¬c′) then
6: ADDLEMMA(c,∞)
7: else if !SAT(Fi ∧ T ∧ ¬c′) then
8: ADDLEMMA(c, i+ 1)
9: else if h(c) then

10: Enqueue(Q, (¬c, i+ 1,may))
11: if Fi = Fi+1 then return PROOF
12: return NO PROOF

heuristic criteria. The next section presents experiments considering
two different heuristics. The first heuristic function returns true when
the out-degree is greater than some constant threshold. This represents
an attempt to prioritize lemmas that support many other lemmas.
The second h(c) returns true if and only if the out-degree of c is at
least double its in-degree. The rationale behind this heuristic is that
a lemma with low in-degree will be easier to push forward.

V. EXPERIMENTAL RESULTS

All results presented in this section are run on a single core of an
i5-3570K 3.4 GHz workstation with 16GB of RAM. The proposed
enhancements are added in our own implementation of Quip, which is
built on IImc [19]. The Quip solver is also able to handle reachability
queries in IICTL, which is included in IImc. Experiments are timed
out after ten minutes. Results are presented for HWMCC’15 circuits.

A. Computing Support Graphs

This section presents results for the computation of support graphs.
Table I shows a comparison of the presented techniques for a selection
of HWMCC’15 circuits. The first column shows the name of the
circuit. The second shows the runtime of Quip without support
graphs. The next three columns show the runtime, average number
of lemmas in the support set of each lemma, and the median number
for the activation literal method. The next six columns show similar
data for the UNSAT core method and the hybrid method. The bottom
row shows the mean across a larger set of 25 HWMCC’15 circuits
that is used throughout this section.

Fig. 3 presents histograms of the support set size for all lemmas for
bjrb07amba5 for each methodology. Fig. 3(a) shows the UNSAT
core method, Fig. 3(b) shows the activation literal method, and
Fig. 3(c) shows the hybrid method. The results are representative
of the entire set. The mode of 2 observed in the histogram is typical,
and in fact is the mode across the entire set of circuits. One can
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Fig. 4. Instances solved using each method

conclude that most lemmas have very small support sets, but a few
outliers exist with very large support sets.

Overall, the UNSAT core method seems to offer better runtime
performance than the activation literal method but produces larger
support sets. The hybrid approach, which uses specialized queries
to compute support sets in addition to the consecution queries in
PUSHCLAUSES can use UNSAT cores or activation literals internally.
The implementation presented here uses the activation literal method
as it appears to find smaller support sets. The hybrid methodology
appears to offer the best runtime performance, with comparable
performance in terms of support set size. Across all circuits, the
hybrid methodology induces a 22% slowdown. All experiments
presented later in this section are based on the hybrid methodology.

B. Quip Runtime

This subsection presents results for a modified implementation of
Quip that uses the support graph as described in section IV-B. Quip
is modified to use Algorithm 3 in place of PUSHCLAUSES. Two
versions are implemented, one using the constant threshold heuristic
and one using the ratio heuristic. Figure 4 shows the number of
problem instances solved over time by each method versus time
across 25 HWMCC’15 circuits.



TABLE II
RUNTIME COMPARISON OF PUSHCLAUSES HEURISTICS

Quip Quip+SG Quip+SG+Ratio Quip+SG+Const
1.0x 1.22x 1.14x 1.20x

It can be seen that all of the approaches have fairly similar runtime
performance. Overall, the expense of computing the support graph is
greater than the gains that are achieved with these simple heuristics.
Table II summarizes the results over the 25 circuits. The four columns
show the geometric mean runtime relative to Quip for Quip alone,
Quip with support graph computation alone, Quip using the ratio
heuristics, and Quip using the constant threshold heuristic. It can be
seen that the ratio heuristic offers better performance than the constant
threshold. Additionally, neither heuristic gives enough benefit to
outweigh the cost of computing the support graph. However, the
results motivate future research into better heuristics and into targeted
support graph computation. The expense of computing the support
graph can be reduced by computing it only for certain lemmas. For
instance, it may be worthwhile to target the property lemma and
its support set instead of every lemma. Additionally, by identifying
better heuristics it may be possible to realize substantial speedups.
Even with these simple heuristics, it would be possible to achieve
speedups if the support graph could be computed with less runtime
overhead.

C. Incremental Quip

This subsection presents results regarding the technique proposed
in section IV-A applied in IICTL. HWMCC’15 designs are simple
safety checking problems, and therefore do not have CTL properties
suitable for IICTL. To obtain the benchmarks, a resetability property
of the form AG EF I is generated for each circuit. This property
requires that every reachable state can reach an initial state. The
experiment is intended to demonstrate that lemmas can be re-used in
an incremental setting. These properties are suitable as they involve
reachability queries. The heuristics in PUSHCLAUSES are not used
so as to isolate the effects of saving lemmas.

Results are presented for IICTL, IICTL with support graph com-
putation, and IICTL with support graph computation and lemma re-
use. Table III shows results for a selection of circuits. The selected
circuits are those where IICTL generated multiple queries to Quip that
resulted in learning 50 or more lemmas. The first column shows the
name of the benchmark. The second shows the runtime of IICTL in
seconds, while the third shows the time taken for normal IICTL with
support graph computation. The next four show the speedup, sum of
lemmas saved, sum of lemmas known, and percentage saved using
the support graph. It can be seen that many lemmas are saved, often
97% or more. The results demonstrate the potential of the approach
and motivate further research. In particular, saving lemmas seems to
improve runtime, as doing so costs a 1.14x slowdown versus 1.18x
for computing the support graph alone.

VI. CONCLUSION AND FUTURE WORK

This paper introduces the notion of a support graph in the model
checking algorithms of IC3 and Quip. It presents techniques to
compute and use support graphs. Two applications are considered.
The first is to speed up model checking by using the support graph
to avoid satisfiability queries and to identify important lemmas.
The simple heuristics presented are effective at identifying valuable
lemmas, as they are able to partially mitigate the runtime overhead
of computing a support graph. The second application is to increase
the re-use of lemmas in incremental model checking. Topics of future
work include developing better heuristics, considering support graphs

TABLE III
LEMMAS SAVED IN IICTL

No-SG SG SG + Save Lemmas
benchmark time time time sv/tot %

shift1add256 135 1.01x 0.92x 890/1755 51%
eijks208o 0.86 1.34x 1.47x 677/680 99%
ndista128 1.18 1.02x 1.34x 442/457 97%
eijkbs4863 0.61 0.98x 1.02x 0/236 0%
nusmvsyncarb10 0.6 1.67x 1.00x 154/158 97%
pdtpmscoherence 2.14 1.42x 1.42x 0/54 0%
eijks820 0.05 1.00x 1.00x 0/52 0%
TOTAL 2163/3392 64%
MEAN 1.18x 1.14x

that identify multiple support sets of each lemma, and identifying
means of targeting lemmas for support graph computation.
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