
Ann Math Artif Intell
https://doi.org/10.1007/s10472-018-9578-x

Efficient suspect selection in unreachable state diagnosis

Ryan Berryhill1 ·Andreas Veneris1

© Springer International Publishing AG, part of Springer Nature 2018

Abstract In the modern hardware design cycle, correcting the design when verification
reveals a state to be erroneously unreachable can be a time-consuming manual process.
Recently-developed algorithms aid the engineer in finding the root cause of the failure in
these cases. However, they exhaustively examine every design location to determine a set
of possible root causes, potentially requiring substantial runtime. This work develops a
novel approach that is applicable to practical diagnosis problems. In contrast to previous
approaches, it considers only a portion of the design locations but still finds the complete
solution set to the problem. The presented approach proceeds through a series of itera-
tions, each considering a strategically-chosen subset of the design locations (a suspect set)
to determine if they are root causes. The results of each iteration inform the choice of sus-
pect set for the next iteration. By choosing the first iteration’s suspect set appropriately,
the algorithm is able to find the complete solution set to the problem. Empirical results on
industrial designs and standard benchmark designs demonstrate a 15x speedup compared to
the previous approach, while considering only 18.7% of the design locations as suspects.

Keywords Diagnosis · Debug · Verification · Model checking

Mathematics Subject Classification (2010) 94C12 · 68W35

� Ryan Berryhill
ryan@eecg.toronto.edu

Andreas Veneris
veneris@eecg.toronto.edu

1 Department of Electrical and Computer Engineering, University of Toronto,
10 King’s College Road, Toronto, Ontario, M5S 3G4, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-018-9578-x&domain=pdf
http://orcid.org/0000-0003-0561-5090
mailto:ryan@eecg.toronto.edu
mailto:veneris@eecg.toronto.edu

R. Berryhill, A. Veneris

1 Introduction

Functional verification has become the primary bottleneck in the modern design cycle,
accounting for up to 70% of the design effort [10]. Debugging accounts for half of the time
spent in verification [9]. Many verification and debugging tasks are automated or partially
automated, somewhat mitigating this substantial cost. However, due to the computational
resources they demand, some of these techniques can be difficult to apply in practice,
particularly when considering large designs.

When verification reveals erroneous behavior in the form of an observation value mis-
match, an error-trace is returned that demonstrates the problem. A traditional SAT-based
debugging tool [17] can then be applied to diagnose the failure. Many techniques [11, 12,
14, 16] are used to increase the scalability of SAT-based debugging tools, allowing them to
handle larger designs and error traces than would otherwise be possible.

Functional verification may also involve model checking, which determines if a given
state is reachable. When model checking reveals that a state is unreachable in violation of
the design specification, no error-trace is readily available. Debugging therefore requires a
labor-intensive first step where the engineer must manually find a trace that should reach
the desired state but instead reaches a different state. Recently, specialized SAT-based auto-
mated debugging tools [1, 2] have been developed to diagnose this type of error. The
work of [1] involves determining an approximation of the set of reachable states which
is used as part of the input to a traditional debugging tool. While useful to the engi-
neer, this approach may not find the complete solution set to the problem. Conversely, the
work of [2] is complete with respect to its input set of suspect locations. That is, given
a set of suspect locations, it returns every location in that set where a change can be
made to make the target state reachable (i.e., solutions). However, its runtime appears to
increase sharply as more suspects are added, limiting its applicability in debugging large
designs.

To address this limitation, this work presents a novel automated debugging framework
that eliminates the need to specify a suspect set [3]. Given an unreachable target state, the
algorithm returns the complete set of solutions to the problem. Unlike the approach of [2],
it neither requires an input suspect set nor exhaustively considers every design location as a
suspect. Instead, it proceeds through a series of iterations, each of which considers a suspect
set that is small relative to the size of the circuit. The key innovation is that the non-solution
suspects may indicate that other design locations are not solutions, and can be ignored in
future iterations. In this manner, the algorithm is able to find the complete solution set while
considering only a small number of suspects. Experimental results show that only 18.7% of
the design locations are considered as suspects. Ultimately, this avoids the runtime explo-
sion of the previous approach. The approach is complete under the assumption that the
observed failure is caused by a single erroneous design location. In practice, diagnosis algo-
rithms are typically used under this assumption anyway, meaning this limitation is of little
concern.

In greater detail, the methodology operates as follows. The algorithm accepts a circuit
represented by an And-Inverter graph (AIG) and a predicate representing an unreachable
target state as input. It begins by constructing an initial suspect set that includes all registers
that appear in the target state predicate. The initial suspect set also includes all locations in
the design with multiple fanout, as these locations could otherwise be incorrectly ignored.
An underlying debugging algorithm such as that of [2] is executed with this suspect set.
Any solution returned by the debugging algorithm is recorded to later be returned to the
user. Additionally, the fanin of any solution is added to the suspect set for the subsequent

Efficient suspect selection in unreachable state diagnosis

iteration. Iterations are executed in this manner until an iteration finds no solutions. The
solution set of each iteration tends to be small in practice, so most locations are ignored.
Assuming the observed failure has a single root cause, all ignored locations are provably
not solutions, so the algorithm remains complete under this assumption.

Experiments on industrial designs demonstrate the effectiveness of the proposed
approach. It is compared against the debugging approach of [2], where the debugging algo-
rithm is given a suspect set that includes every design location. In all cases, both approaches
find the same solution set, but the proposed methodology is found to be an average of 15×
faster than the previous approach, while ignoring 81.3% of design locations.

The remainder of this paper is organized as follows. Section 2 presents background
material. Section 3 explains the debugging algorithm of [2], as it is important to the work
presented here. Section 4 presents the efficient suspect selection algorithm. Section 5
presents experimental results demonstrating the benefits of the presented approach. Finally,
Section 6 concludes the paper.

2 Preliminaries

2.1 Notation and terminology

The following notation and terminology is used throughout this work. Each assignment to
the state elements of a sequential circuit C is referred to as a state of C. The transition
relation of C is denoted by T . For a state pair 〈t, t ′〉, 〈t, t ′〉 ∈ T if and only if there exists an
assignment to the primary inputs that causes C to transition from state t to state t ′. The set
of initial states of C is denoted I . For a predicate P over the state elements of C, any state
t ∈ P is a P -state. A sequence of states t0, ..., tn is a trace of C if and only if 〈ti , ti+1〉 ∈ T

for all 0 ≤ i < n and t0 ∈ I . A state t is reachable under C if it appears in a trace of C. It
is also i-step reachable if it appears in a trace of i or fewer cycles.

A circuit can be represented by an And-Inverter graph (AIG) [6]. An AIG is a directed
acyclic graph (DAG) in which each vertex represents either an AND-gate, a NOT-gate
(inverter), an input, an output, or a sequential element (register). An AND-gate vertex has
exactly two in-edges representing its inputs and one or more out-edges representing its out-
put. Similarly, a NOT-gate vertex has a single in-edge representing its input and one or
more out-edges representing its output. An input vertex has an in-degree of zero and one
or more out-edges, while an output vertex has no out-edges and one in-edge. A register is
represented by two vertices. The register’s next-state input is a vertex with one in-edge rep-
resenting the input signal and no out-edges. A register’s output is a vertex with no in-edges
and at least one out-edge representing the register’s output signal.

In a circuitC, a location refers to any vertex of the AIG. For a location l, the set f anin(l)

refers to all locations in the fanin of l. In the AIG representation, f anin(l) contains every
location l′ for which an edge (l′, l) exists. Additionally, if l is the output of a register,
f anin(l) is the next-state input of the register. Similarly, the set f anout (l) refers to all
locations in the fanout of l. These relations are symmetric. If l ∈ f anout (l′), then l′ ∈
f anin(l) and vice versa. The cone-of-influence (COI) for a location is defined recursively
in terms of i-step COIs as follows. The 1-step COI for a location l is the set of all locations
l′ for which the AIG contains a path from l′ to l, as these are the set of all locations that can
influence the value at l in a single clock cycle. The i-step COI for a location l is the set of
all locations l′ for which a path exists from l′ to a register in the (i − 1)-step COI. The COI
for l is the set of locations that appear in any i-step COI of l.

R. Berryhill, A. Veneris

2.2 Circuit verification with boolean satisfiability

Circuit verification often involves proving that a particular condition can never occur. For
instance, it may be of interest to prove that a given circuit can never produce invalid output.
Boolean Satisfiability (SAT) is well-suited to this sort of problem. A combinational circuit
can be converted into a Boolean formula in Conjunctive Normal Form (CNF) in linear
time [18]. Additional constraints can be added to produce a formula that is satisfiable if and
only if the circuit can produce some particular output. The formula is then given to a SAT
solver. If it is unsatisfiable, no input to the circuit causes it to produce the output in question.
Alternatively, if the formula is satisfiable, then the satisfying assignment indicates an input
assignment that produces the relevant output.

Often, verification problems are concerned with the sequential behavior of the circuit.
Sequential behavior can be modeled for a fixed number of clock cycles using a CNF for-
mula. This is accomplished using an Iterative Logic Array (ILA) [13] representation of
the circuit, which is constructed as follows. In an ILA representation, the circuit’s transi-
tion relation is converted to a CNF formula using a Tseitin transformation [18] or similar
approach. Then, the formula is replicated once for each clock cycle to be modeled. Each
copy of the transition relation is referred to as a time-frame. For each register, the next-state
input from time-frame i is connected to the register output in time-frame i + 1. An example
is shown in Fig. 1, where the circuit has been unrolled into an ILA with two time-frames.

The ILA representation of the circuit can be used to reason about the circuit’s behavior
over a bounded number of clock cycles. For instance, bounded model checking (BMC) [4]
constructs ILA representations of the circuit with increasing numbers of time-frames, from
1 up to k. In each ILA, it asks if a particular condition can be reached in the final time-
frame. If each SAT instance is unsatisfiable, that means the condition cannot occur within k

clock cycles.

2.3 Property-directed reachability

While useful in verification, BMC is often only able to definitively prove that a condi-
tion cannot occur in a bounded number of clock cycles. However, it is often important to
prove that a condition can never be reached in any number of clock cycles. This can be
accomplished using an unbounded model checking technique, such as Property Directed
Reachability (PDR) [5, 8]. For the purposes of this work, PDR can be considered as a “black
box” procedure. Due to its complexity, it is not described in great detail here, only its input
and output characteristics are explained. Given a circuit C, initial state set I , and a predicate

Fig. 1 a A sequential circuit b ILA representation with 2 time-frames

Efficient suspect selection in unreachable state diagnosis

P representing some “unsafe” states, PDR attempts to prove that every reachable state of C

is a ¬P -state. It either returns a certificate proving that no unsafe states are reachable or a
counter-example trace showing that an unsafe state is reachable. In this paper, it is assumed
that PDR exists as an algorithm PDR(C, I, P) that returns REACHABLE if and only if a
P -state is reachable from I under circuit C. It returns UNREACHABLE otherwise.

2.4 SAT-based debugging

The work presented here draws heavily on ideas from SAT-based automated debugging [17].
Due to its importance to our work, it is explained in greater detail here. In circuit verification
and debugging, a failure is behavior that violates the design specification. For a particular
failure, an error is a location in the circuit that can be changed to correct the failure. Design
debugging is the task of locating errors when functional verification reveals a failure.

Often, verification reveals a failure through firing assertions or observation value mis-
matches. In these cases, an error trace demonstrating the failure is returned. The error trace
can then guide an automated debugging tool to aid the engineer in finding the error. Letting
L = {l1, l2, ..., l|L|} denote the suspect locations, the transition relation is enhanced with a
set of error select lines e = {e1, e2, ..., e|L|} and free variables W = {w1, w2, ..., w|L|}. If
ei = 0, then the circuit’s behavior is unaffected by the presence of ei . Conversely, if ei = 1,
then li is replaced by the free variable wi . This can be implemented by the multiplexer
shown in Fig. 2.

Subsequently, the enhanced transition relation is unrolled into an ILA containing one
time-frame for each clock cycle in the error trace. The error-select registers are not repli-
cated, instead a single copy of each ei is used across all time-frames. This ensures that
the same location is replaced by its corresponding free variable across the entire ILA.
Additional constraints are constructed to set the primary input values to those from the
error trace and to force the primary output values to the known reference (correct) val-
ues. An additional constraint is added to force the circuit to begin in a particular initial
state. Finally, cardinality constraint φn is used to ensure that exactly n error-select lines
are active. The constrained ILA is converted into a CNF formula in which each satisfying
assignment indicates an n-tuple of suspect locations that can be simultaneously modified
to correct the erroneous behavior exposed by the error trace. Such a tuple is referred to
as a solution. As such, an all-solutions SAT solver is used to find every solution to the
problem.

Fig. 2 Multiplexer and
error-select line used in
SAT-based debugging

R. Berryhill, A. Veneris

3 Debugging unreachable states

The work presented in this paper makes extensive use of an underlying debugging algorithm.
It is not tied to a particular debugging algorithm, but does require one that returns every
solution in a given suspect set. That is, the underlying algorithm must return every location
from its suspect set where a change can be made to make a target state reachable. To the
best of our knowledge, the work of [2] is the only such algorithm. Due to its importance to
our work, it is explained in greater detail here.

Given an erroneous circuit C, initial state set I , suspect set L = {l1, l2, ..., l|L|}, and an
unreachable target state predicate S , the algorithm returns a solution set Lsol ⊆ L. The
initial state set I is represented by a Boolean formula also referred to as I , since these are
merely different representations of the same thing. Similarly, the target state predicate S
is represented by a Boolean formula, and it represents the target state that is erroneously
unreachable from I . Any vertex in the AIG representation of the circuit can be included
in the suspect set L. The solution set Lsol contains every design location from L where
a change can be made to make some S-state reachable (i.e., every solution in L). This
additionally implies that all locations in L \ Lsol are not solutions. The following example
demonstrates the results of running the algorithm.

Example 1 In order to understand the characteristics the input and output of the algorithm,
consider the circuit shown in Fig. 3. Assume the initial state has s1 = 0 (i.e., I = (s̄1)). The
reader can verify that it is impossible to reach a state in which s1 = 1. A user could choose
to execute the algorithm using suspect set L = {l1, l2} and target state S = (s1). It returns
a set of solutions Lsol ⊆ L such that it is possible to implement a change at any location in
Lsol so that a S-state is reachable. In this example, the solution set is Lsol = {l2}, indicating
that l2 can be modified to correct the error. Indeed, replacing the AND-gate with an OR-gate
makes the target state (i.e., the state where s1 = 1) reachable. Other corrections are also
possible. Additionally, the fact that l1 �∈ Lsol indicates that the problem can not be fixed by
changing l1. The reader can verify that no correction is possible at l1.

The algorithm solves a series of unbounded model checking problems using PDR. As
input, PDR requires a circuit, initial state set, and unsafe state set. It returns a Boolean out-
put that indicates if any unsafe state is reachable from any initial state. We first describe the
construction of the enhanced circuit Cen that contains extra hardware to facilitate debugging
in conjunction with PDR. Next we describe the enhanced initial state state Ien that appro-
priately constrains Cen to get meaningful results. Finally, it is explained how using S as the

Fig. 3 Circuit in which s1 = 1
is an unreachable state

Efficient suspect selection in unreachable state diagnosis

Fig. 4 Error-select register and
multiplexer at suspect location li

unsafe state set allows the algorithm to find solutions using the results from PDR. Each step
is clarified with an example.

The enhanced circuit Cen is constructed by the addition of extra hardware to facili-
tate debugging. It behaves identically to the original circuit with certain suspect locations
replaced by arbitrary Boolean functions. Which locations are replaced depends on value
assignments to the error-select registers, which are new hardware added to the original cir-
cuit. Figure 4 depicts one error-select register and the associated hardware. It can be seen
that, when ei = 0, the multiplexer selects the original functionality for suspect location li ,
leaving the circuit’s behavior unaffected. Conversely, when ei = 1, the free variable wi is
selected. Since wi can assume any value during model checking, Cen behaves as though li
is replaced by an unknown arbitrary Boolean function. The error-select register’s output is
fed to its input, making it immutable (i.e., its value can never change). In effect, in any trace
of Cen the values of the error-select registers are constant. However, in different traces they
can assume different values. As is explained later, this is necessary to associate the reach-
ability of particular states with a suspect location being a solution. The following example
demonstrates the construction of the enhanced circuit.

Example 2 To illustrate the behavior of Cen, consider the circuit depicted in Fig. 3. It has a
single state element s1, two primary inputs x1 and x2 and two suspect locations are labeled
as l1 and l2. As in the previous example, assume the initial state has s1 = 0, which implies
that any state in which s1 = 1 is unreachable. The algorithm is executed with target state
S = (s1). In doing so, the enhanced circuit is constructed as shown in Fig. 5. When e1 =
e2 = 0, this circuit behaves the same as the original circuit. When e1 = 1, l1 is set to the
free variable w1, allowing it to assume any value during model checking. Similar behavior

Fig. 5 Enhanced circuit

R. Berryhill, A. Veneris

applies to e2, l2, and w2. More generally, when any ei = 1, the enhanced circuit behaves
like the original with li replaced by some unknown Boolean function.

As mentioned earlier, the reachability of particular states in the enhanced circuit is asso-
ciated with a specific location being a solution to the debugging problem. Consider a trace of
the enhanced circuit, consisting of states t1, ..., tm. All states in the trace have the same active
error-select registers by the construction of Cen. Let e1, ..., en denote the active error-select
registers. The enhanced circuit therefore behaves like the original circuit with locations
l1, ..., ln replaced by arbitrary Boolean functions. It can be concluded that tm is reachable
from t1 in the original circuit if those locations are simultaneously replaced by arbitrary
Boolean functions. If tm ∈ S and t1 ∈ I , then a fix made at locations l1, ..., ln can make a
target state reachable. As is the case for traditional automated debugging techniques [17],
the engineer is responsible for determining how to make such a fix and for re-verifying the
corrected design.

For the trace to indicate a solution to the debugging problem, it must satisfy additional
properties. It must start from an initial state, end on a target state, and have exactly one
active error-select register ej . The last requirement is because we assume a single error is
responsible for the observed unreachability. Using the argument in the previous paragraph,
replacing lj with a different Boolean function makes a target state reachable. This implies lj
is a solution. Solutions can be found by finding traces that satisfy these three properties. The
approach can also be extended to handle higher error cardinalities n by requiring exactly
n active error-select registers. In that context, a solution is an n-tuple of suspect locations.
However, for the purposes of this paper, solutions are restricted to single locations (i.e., an
error cardinality of one).

This motivates the construction of the enhanced initial state set Ien. The original registers
of the circuit are constrained with I . This forces Cen to start on an initial state of the original
circuit. Since exactly one error-select register must be active, a cardinality constraint [17] is
used to constrain the error-select registers. The cardinality constraint φ ensures that exactly
one error-select register is active. The enhanced initial state set is therefore represented by
the formula Ien = I ∧ φ. The following example clarifies this process.

Example 3 Consider again the example from Fig. 3. The enhanced initial state condition Ien

is the conjunction of I = (s̄1) and the cardinality constraint φ. Therefore, Ien = (s̄1)∧ (e1∨
e2) ∧ (ē1 ∨ ē2). The set of states in Ien is {(s̄1 ∧ e1 ∧ ē2), (s̄1 ∧ ē1 ∧ e2)}. Notice that these
are all states in which s1 = 0, which is the initial state condition. Additionally, every state
of Ien has one active error-select register, matching the requirements for traces that indicate
solutions.

All that remains is to provide the model checker’s unsafe state set. As mentioned earlier,
three properties are needed for a trace to indicate a solution. The enhanced circuit and initial
state set ensure that any trace found begins at an initial state and has exactly one active
error-select register. The only remaining property is that the trace must end on a target state.
Therefore, using S as the unsafe state set ensures all three properties are met. The following
example demonstrates how a solution is found using the model checker.

Example 4 Continuing the illustration of the methodology from the previous example,
recall that the target state condition is S = (s1) and the initial state condition is I = (s̄1).
The enhanced circuit has the following counter-example trace: 〈t0, t1〉 = 〈(s̄1∧ē1∧e2), (s1∧
ē1 ∧ e2)〉. Notice that t0 corresponds to an initial state of the original circuit, t1 is a target

Efficient suspect selection in unreachable state diagnosis

state, and e2 is the active error-select register. In states t0 and t1 the model behaves identi-
cally to the original circuit with l2 replaced by an unknown function. Since t0 is an initial
state and t1 is a target state, replacing l2 with a different function makes a target state reach-
able in the original circuit. This indicates that location l2 is a solution. Indeed, the reader
can confirm that replacing the AND-gate that drives l2 with an OR-gate makes the target
state reachable. Other corrections to the problem are also possible.

When a solution is found, Ien is updated to force the corresponding error-select register
to 0 so that the algorithm can search for additional solutions. For a solution lj , this is done
by conjoining the unit literal clause ¬ej to the formula for Ien. Doing so prevents PDR from
finding additional counter-examples in which ej is active. The model checker is called with
the updated version of Ien. This process continues until the model checker indicates that S
is unreachable. This implies that no single location in L \ Lsol can be changed to make a
target state reachable. In other words, Lsol contains every solution from L and the algorithm
can terminate. The following example demonstrates the process of finding and blocking a
solution.

Example 5 For the circuit of Fig. 3, after finding the solution l2, the enhanced initial state
condition becomes Ien = (s̄1) ∧ (e1 ∨ e2) ∧ (ē1 ∨ ē2) ∧ (ē2), leaving (s̄1 ∧ e1 ∧ ē2) as the
only remaining initial state. It is easily verified that this state cannot reach any target states,
implying that l1 is not a solution. This is indeed the case. To reach a state where s1 = 1 the
output of the AND-gate must be 1. In the initial state s1 = 0, so regardless of the value at
l1 the AND-gate will never output 1. Therefore, there is no way to modify the circuit at l1
to rectify the unreachability of the target state.

The steps of the algorithm are shown in Algorithm 1. Lines 1 through 3 perform initial-
ization. Lines 4 through 8 contain the main loop in which solutions are found. Line 4 runs
PDR to either find a solution or conclude that no more solutions exist. Line 5 extracts the
solution from the trace returned by PDR. The following line updates the solution set, and
then line 7 blocks the solution from appearing in future traces. Finally, line 9 returns the
solution set.

The approach is both sound and complete with respect to its input suspect set. That is,
every location in Lsol is a solution, and Lsol contains every solution from L. Soundness
follows directly from the construction of Cen – if a trace reaches S then it has exactly one
error-select register assigned to 1 and that error-select register corresponds to a solution.
Completeness follows from the completeness of the underlying unbounded model checking
technique of PDR. Note that, while not described here, this approach can easily be extended
to handle higher error cardinalities. That is, it can be extended to find solutions that consist
of an n-tuple of suspect locations, where all n must be modified simultaneously to correct
the error.

4 Efficient suspect selection

This section presents an algorithm that uses Algorithm 1 to find the complete solution set
without choosing L to include every design location. Using this methodology, only a subset
of the design locations are passed to the underlying debugging algorithm. Despite that, the
methodology still returns the complete solution set to the problem. However, this depends
on the assumption that only a single design error is responsible for the observed failure, or

R. Berryhill, A. Veneris

Algorithm 1 UNREACHABILITY(C, I,S, L)

1: Lsol = ∅
2: Construct Cen

3: Ien = I ∧ φ

4: while PDR(Cen, Ien,S) == REACHABLE do
5: ej = active error-select register in counter-example
6: Lsol = Lsol ∪ {lj }
7: Ien = Ien ∧ (¬ej)

8: end while
9: return Lsol

in other words, the error cardinality is one. In practice, this is commonly the case, meaning
that this is often not a significant limitation. It may be possible to extend the approach to
handle higher error cardinalities, but doing so is expected to require examining many more
suspect locations, reducing the performance benefits gained by this approach.

4.1 Suspect selection methodology

The algorithm accepts as input a circuitC, initial state set I , and predicate S representing the
unreachable target state. As was the case for Algorithm 1, I and S are defined by Boolean
formulas over the state elements of C. Unlike that algorithm, the user does not specify
a suspect set. Instead, the approach completes a series of iterations, each of which calls
Algorithm 1 with a different suspect set. The suspect set in each iteration is constructed
from the solution set obtained in the previous iteration.

Toward this end, the algorithm begins with a preprocessing step on the AIG representa-
tion of the circuit. The set of all fanout points is computed. A fanout point is simply a vertex
with an out-degree greater than one. Figure 6 depicts this concept graphically for both a cir-
cuit and its AIG representation. Let F = {l : |f anout (l)| > 1} denote the set of all fanout
points. Additionally, let R denote the set of all registers that appear in the formula represent-
ing S . These sets are used to construct the suspect set for the first iteration. The rationale
behind this step is explained in greater detail later in this section.

After preprocessing, the algorithm proceeds through a series of iterations, each of which
makes one call to Algorithm 1. Each iteration uses a different suspect set, constructed to
limit the total number of suspects examined across all iterations. Let Li (resp. Si) denote
the suspect set (resp. solution set) for iteration i. The initial suspect set is constructed as
L1 = R ∪ F , so it includes all fanout points and all registers that appear in the target state

Fig. 6 a Example circuit with fanout points highlighted b Equivalent AIG

Efficient suspect selection in unreachable state diagnosis

predicate. Algorithm 1 is then executed using this suspect set, returning a set of solutions S1.
Upon completion of iteration i, a new suspect set Li+1 is computed as shown in (1) below.

Li+1 = {l ∈ Si : f anin(l)} \
i⋃

j=1

(Lj) (1)

Note that Li+1 contains the fanin of every solution in iteration i. However, it excludes
any suspects that were used in previous iterations. Otherwise, the algorithm might consider
the same suspect more than once. This ensures that no location is a suspect in multiple
iterations, guaranteeing that the algorithm makes progress in every iteration and therefore
terminates.

The reasoning behind this approach is intuitive. If a location l is a solution, then l can
be replaced by a different Boolean function to make a target state reachable. It also may be
possible to make the change at a fanin of l, so the algorithm must also check if the fanin
locations are solutions. This occurs if the change needed at l is equivalent to changing only
one of its fanin locations. Alternatively, it may not be possible to correct the error at any
fanin of l, and therefore l is a solution but no element of f anin(l) is. For example, in the
figure in Fig. 7, it may not be possible to fix the circuit by making a change at the highlighted
location, but not by making a change at either of the OR-gates in its fanout. As a result,
the fact that l is a solution is not sufficient to prove whether or not its fanin locations are
solutions. They are therefore included in a suspect set.

Conversely, consider a location l′ that is not a solution. There is no way to modify the
design at l′ to fix the error. In some cases, this may imply that the locations in the fanin of l′
are not solutions. Consider a location l ∈ f anin(l′). If l has other fanout locations besides
l′, it may be possible for l to be a solution even if all of its fanout locations are not. This case
can occur if multiple fanouts of l need to be corrected to fix the error. Similarly, if l ∈ R,
then it may be the case that l is a solution but none of its fanout locations are. However, if
|f anout (l)| = 1, l �∈ R, and the single fanout of l is not a solution, then l is not a solution.
The following lemma formalizes this notion.

Lemma 1 For a location l �∈ (R ∪ F), if the single element of f anout (l) is not a solution,
then l is not a solution.

Proof Since l �∈ F , we have |f anout (l)| = 1. Suppose that l is a solution and that the
single element l′ ∈ f anout (l) is not a solution. This implies that it is possible to replace l

by some other Boolean function to make some S-state reachable. Also, since l �∈ R but l

is a solution, l is in the COI of R and either l′ ∈ R or l′ is in the COI of R. Otherwise, a
change at l would not be observable at R and could not correct the error.

Fig. 7 Example circuit with
fanout

R. Berryhill, A. Veneris

Algorithm 2 UNREACHABILITYENHANCED(C, I,S)
1: R = state elements in the formula defining S
2: F = {l : |f anout (l)| > 1}
3: L1 = F ∪ R

4: i = 1
5: while Si =UNREACHABILITY(C, I,S, Li) �= ∅ do
6: Li+1 = {l ∈ Si : f anin(l)} \ ⋃i

j=1(Li)
7: i = i + 1
8: end while
9: S = ⋃i

j=1 Sj

10: return S

However, since l′ is not a solution, there is no way to replace l′ with a different Boolean
function to make an S-state reachable. Since l′ is the only fanout of l, this implies that it is
possible to replace l in a manner that changes the behavior at R but not at l′. This is clearly
a contradiction, since the behavior of the circuit must also change at l′ to be observable at
R.

Note that l �∈ (R ∪ F) can be restated as l �∈ L1. This is the rationale behind the con-
struction of L1. It includes every location that is not handled by Lemma 1. Therefore, the
algorithm never needs to check a location that is only in the fanin of non-solution locations.
The next subsection presents theorems based on this fact demonstrating the soundness and
completeness of the approach.

The steps of the approach are shown in Algorithm 2. In that description, algorithm
UNREACHABILITY is Algorithm 1. Lines 1 and 2 construct R and F , respectively. Line 3
constructs the initial suspect set. Lines 5–8 contain the main loop that repeatedly calls
UNREACHABILITY. Within the loop, the suspect set for the next iteration is constructed
on line 6 according to (1). Line 9 constructs the solution set from the solution sets of each
iteration. Finally, line 10 returns the solutions.

4.2 Soundness and completeness

The previous subsection describes the approach and the intuitive rationale behind the man-
ner in which suspect sets are constructed. This subsection proves that the reasoning is correct
and that the approach is both sound and complete. In this context, soundness implies that
every location Algorithm 2 returns is indeed a solution. Completeness requires that it also
returns every solution in the circuit. The soundness of the algorithm, stated in Theorem 1,
follows immediately from the soundness of Algorithm 1.

Theorem 1 Every location in S is a solution

Proof Immediate from soundness of Algorithm 1

Since S is the solution set of Algorithm 2, this proves that the algorithm is sound. The-
orem 2 below uses the construction of L1 along with Lemma 1 to demonstrate that the
algorithm is complete.

Theorem 2 When Algorithm 2 terminates, S includes every solution.

Efficient suspect selection in unreachable state diagnosis

Proof The initial suspect set is F ∪ R. Since Algorithm 1 is complete, S includes all
solutions from F ∪ R. For every location l not in the initial suspect set, l �∈ R and
|f anout (l)| ≤ 1. If |f anout (l)| = 0, l is not in the COI of any location other than itself.
Therefore, if l �∈ R and |f anout (l)| = 0, l is not a solution as it is clearly not in the COI of
R. Therefore, by Lemma 1, these locations are only solutions if they are in the fanin of other
solutions. On Line 6 of Algorithm 2, a new suspect set is constructed including the fanin of
all solutions found in the previous iteration. It continues in this manner until it reaches an
iteration in which no solutions are found. As a result, any location in the fanin of any solu-
tion is included in a suspect set passed to Algorithm 1. Therefore, by the completeness of
Algorithm 1, all of these solutions are found as well and S contains every solution when the
algorithm terminates.

Since S is the solution set of Algorithm 2, Theorem 2 proves that the algorithm is com-
plete. In contrast with Algorithm 1, the algorithm does not require the user to specify a set of
suspect locations. Since the algorithm intelligently selects the suspect sets it uses, it essen-
tially performs this step for the user. However, it is possible for the user to have additional
knowledge regarding the source of the error. For instance, if the user were to introduce a bug
when modifying a specific module, it may be beneficial to restrict the suspect set to loca-
tions within that module in order to improve the algorithm’s runtime. While Algorithm 2
does not provide this functionality, it can be easily achieved by adding a set of trusted loca-
tions that are never allowed to be included in the suspect set constructed on line 6. Empirical
results presented in the next section demonstrate that this is not necessary in most cases, as
the algorithm only considers a relatively small portion of the circuit as suspects.

5 Experimental results

All results presented in this section are run on a single core of an i5-3570K 3.4-GHz work-
station with 16 GB of RAM. The presented algorithm is built on top of an implementation
of Algorithm 1 [2] using a reference implementation of PDR [5]. Two sets of designs are
considered as benchmarks. The first consists of six designs from OpenCores [15] and one
commercial design of a serial interface from an industrial partner. Each problem instance
is created by injecting a design error that makes a state erroneously unreachable. Examples
of design errors include incorrect operators in expressions, complemented conditions in if-
statements, added incorrect state transitions, etc. These are all typical design errors observed
in industry. The second set of benchmarks consists of 17 circuits from the Hardware Model
Checking Competition (HWMCC) [7], and represents very hard problem instances. The
proposed algorithm is compared against Algorithm 1, where the suspect set L is chosen to
include every location in the circuit.

Table 1 shows comprehensive results. The first 17 rows relate to the HWMCC circuits,
and the following 7 rows relate to the OpenCores and commercial designs. The first col-
umn shows the name of the problem instance, The next three columns show the size of the
suspect set, number of solutions found, and runtime using Algorithm 1 as described above.
The remaining five columns relate to Algorithm 2. They show the number of solutions
found, number of iterations executed, total number of suspects considered across all itera-
tions, runtime, total percentage of suspects considered (| ⋃Li |/|L|), and speedup relative
to Algorithm 1, respectively.

It can be seen that both algorithms always find the same set of solutions, as expected.
Across all experiments, Algorithm 2 offers a geometric mean speedup of 15×with a median

R. Berryhill, A. Veneris

Table 1 Experimental results

Algorithm 1 Algorithm 2

bench- |L| #sol time #sol #it |⋃ Li | time % spee-

mark (s) (s) sus dup

beemlup1b1 2634 144 372.9 144 86 836 8.0 31.74% 46.4×
bjrb07amba1 1051 40 172.7 40 5 203 7.3 19.31% 23.8×
cmugigamax 661 299 15.8 299 28 168 3.0 25.42% 5.2×
kenflashp01 1345 386 13.8 386 79 309 1.6 22.97% 8.4×
kenflashp11 6366 155 415.7 155 47 956 12.6 15.02% 33.1×
kenoopp1 666 85 2.2 85 43 204 0.5 30.63% 4.3×
pdtvisgigamax3 1087 333 205.8 333 10 246 28.1 22.63% 7.3×
pdtvistwoall3 1752 240 30.3 240 8 325 4.6 18.55% 6.6×
pdtvisvending09 985 22 8.2 22 3 144 0.5 14.62% 16.7×
pdtvsarmultip13 2873 76 771.8 76 5 294 9.1 10.23% 85.1×
power2bit128 113 84 200.8 84 6 20 42.7 17.70% 4.7×
power2sum128 240 215 786.1 215 17 38 212.9 15.83% 3.7×
power2sum256 246 221 1783.3 221 17 38 513.3 15.45% 3.5×
power2sum32 228 203 109.8 203 17 38 25.0 16.67% 4.4×
shift1add512 119 59 559.9 59 8 32 80.8 26.89% 6.9×
vis4arbitp1 337 144 305.5 144 7 60 15.2 17.80% 20.2×
viselevatorp3 1173 173 69.5 173 13 256 3.6 21.82% 19.2×
mrisc core 9573 18 276.9 18 6 1696 6.1 17.72% 45.6×
design1 1208 9 11.4 9 4 227 0.4 18.79% 25.9×
divider 3915 38 419.6 38 3 1021 12.2 26.08% 34.3×
spi 1156 23 7.9 23 7 230 0.7 19.90% 11.6×
wb 451 193 10 193 8 52 0.5 11.53% 19.7×
usb core 5545 6 631.4 6 3 1137 3.5 20.50% 194.3×
ac97 ctrl 14967 13 496.4 13 4 2688 17.9 17.96% 27.8×
GEOMEAN 15.0×
MEDIAN 18.7% 17.9×

of 17.9×. The proposed approach is able to safely ignore a majority of all design loca-
tions. Across all experiments, the proposed approach is able to ignore a median of 81.3% of
all design locations, or equivalently, it considers 18.7% of design locations. Since the run-
time for the previous approach appears to be heavily influenced by the size of the suspect
set, eliminating the majority of locations from consideration seems to yield a substantial
reduction in runtime.

Figure 8 plots the number of solutions and non-solution suspects for each iteration for the
spi problem instance. It can be seen that the suspect set of the first iteration is drastically
larger than that of subsequent iterations. This occurs because the majority of locations are
not solutions. Many suspects are considered in the first iteration, and only a small portion
of them are found to be solutions. In the subsequent iterations only a subset of the locations
in the fanin of previously found solutions can be part of the suspect set. In most cases this
represents a very small portion of the design. In the case of spi, it can be seen that the first
iteration uses a suspect set with 229 locations, only 7 of which are found to be solutions. In

Efficient suspect selection in unreachable state diagnosis

Fig. 8 Solutions and
non-solutions per iteration for
spi

1 2 3 4 5 6 7

Iteration Number

S
u
s
p
e
c
ts

0
5

1
0

1
5

2
0

Solutions

Non−solutions

222

|̂

the following iteration, only locations in the fanin of these 7 solutions can be considered,
giving a much smaller suspect set.

Table 2 shows the number of solutions and number of suspects per iteration for selected
benchmarks. It demonstrates that in many cases, the initial suspect set contains few solu-
tions, meaning that very few suspects are considered in subsequent iterations. The wb
problem instance is one exception. This occurs because a fairly large portion of the design
locations are solutions. Even so, the algorithm appears to be highly efficient at ignoring non-
solutions locations, as it only considers a total of 237 suspect locations in order to find 193
solutions. Even in this somewhat pathological case, the proposed algorithm is able to ignore
nearly half of the design locations and achieve a 19× speedup over the previous approach.

The runtime of the the previous approach appears to be heavily-dependent on the suspect
set it is given. It can be seen in Fig. 9, which plots the runtime of each iteration for spi, that
the first iteration consumes substantially more runtime than later iterations. This appears
to confirm that larger suspect sets require more runtime to solve. This is not surprising, as
a larger suspect set substantially increases the complexity of the PDR instances solved by
UNREACHABILITY. It is additionally expected that suspect sets with many non-solutions
impact the algorithm’s runtime more substantially than those with many solutions. To find
a solution, PDR simply needs to find a counter-example trace that reaches a target state.
Conversely, to prove locations are not solutions PDR must prove that no such counter-
example exists. This seems to be an inherently difficult problem. When a large number of

Table 2 Suspects Li and solutions for selected benchmarks Si in each iteration of Algorithm 2

benchmark |S1|/|L1| |S2|/|L2| |S3|/|L3| |S4|/|L4| |S5|/|L5| |S6|/|L6|

bjrbamba1 14/202 10/11 10/15 4/5 2/3 0/3

pdrvsarmultip13 23/297 20/20 26/35 5/11 2/2 −
power2bit128 23/28 17/18 19/22 9/9 8/8 8/12

mrisc core 4/1688 4/4 2/2 3/4 3/6 2/4

divider 10/1028 10/10 18/18 − − −
spi 7/229 2/2 2/2 2/2 4/4 5/6

wb 33/76 33/34 33/33 34/34 4/4 8/8

ac97 ctrl 5/2689 2/2 2/2 2/2 2/2 −

R. Berryhill, A. Veneris

Fig. 9 Runtime for each
iteration for spi

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

Iteration Number

It
e
ra
ti
o
n
 R
u
n
ti
m
e
(
s
)

non-solution locations are in the suspect set, proving no counter-examples exist can be an
expensive operation due to increased complexity of the model used in PDR.

Figure 10 confirms this intuition. It plots the number of solutions found over time for
spi for both approaches. It can be seen that the previous approach appears to find many
solutions toward the beginning of the run. These solutions result from counter-examples
that PDR is able to find more easily. After exhausting the easy counter-examples, it begins
to take longer to find later solutions. Finally, after finding all solutions, the algorithm also
takes a substantial amount of time to prove no further solutions exist before terminating.

Conversely, Fig. 10b shows that Algorithm 2 finds few of its solutions at the start of the
run. This is because the first iteration has a large suspect set. It can be seen that after finding
7 solutions (all of the solutions for iteration 1), there is a substantial gap before finding
the eighth solution. This gap represents the time required to prove that the non-solution
locations in the set L1 are in fact not solutions. As L1 is a relatively large suspect set, this
takes a significant amount of time. After the conclusion of iteration 1, the suspect sets are
all much smaller than L1. As a result, each iteration requires very little runtime and many
solutions are found in a short period of time. This confirms that using Lemma 1 to limit the
suspect sets is a highly effective means of accelerating the debugging process.

0 2 4 6 8

0
5

1
5

2
5

Time (s)

S
o
lu
ti
o
n
s
 F
o
u
n
d

0.0 0.2 0.4 0.6

0
5

1
5

2
5

Time (s)

S
o
lu
ti
o
n
s
 F
o
u
n
d

Fig. 10 Solutions found vs. running time (spi benchmark) for a the previous approach b Algorithm 2

Efficient suspect selection in unreachable state diagnosis

6 Conclusion

This work presented an algorithm to diagnose errors that cause unreachable states. The
presented algorithm returns the complete solution set of the problem without exhaustively
examining every design location. It improves upon the previous technique by ignoring
a large portion of the design locations that are provably not solutions. Empirical results
confirmed that a majority of design locations are safely ignored resulting in a substantial
runtime improvement relative to the previous approach.

References

1. Berryhill, R., Veneris, A.: Automated Rectification Methodologies to Functional State-Space Unreach-
ability. In: Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition,
DATE ’15, pp. 1401–1406 (2015)

2. Berryhill, R., Veneris, A.: A Complete Approach to Unreachable State Diagnosability via Prop-
erty Directed Reachability. In: Proceedings of the 2016 Asia and South Pacific Design Automation
Conference, ASP-DAC ’16 (2016)

3. Berryhill, R., Veneris, A.: Efficient Selection of Suspect Sets in Unreachable State Diagnosis. In:
Proceedings of the 2016 Int’l Symposium on Artificial Intelligence and Mathematics, ISAIM ’16 (2016)

4. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model Checking. In: Advances in
Computers, vol. 58, pp. 118–149 (2003)

5. Bradley, A.: Sat-Based Model Checking without Unrolling. In: Int’l Conf. on Verification, Model
Checking, and Abstract Interpretation, pp. 70–87 (2011)

6. Brummayer, R., Biere, A.: Local Two-Level And-Inverter Graph Minimization without Blowup. In:
Proceedings of the 2nd Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science, MEMICS ’06 (2006)

7. Cabodi, G., Loiacono, C., Palena, M., Pasini, P., Patti, D., Quer, S., Vendraminetto, D., Biere, A., Hel-
janko, K., Baumgartner, J.: Hardware model checking competition 2014: An analysis and comparison of
solvers and benchmarks vol. 9 (2016)

8. Eén, N., Mishchenko, A., Brayton, R.: Efficient Implementation of Property Directed Reachability. In:
Proceedings of the International Conference on Formal Methods in Computer-Aided Design, FMCAD
’11, pp. 125–134. FMCAD Inc, Austin (2011)

9. Foster, H.: Assertion-Based Verification: Industry Myths to Realities (Invited Tutorial). In: Int’l
Conference on Computer-Aided Verification (CAV), pp. 5–10 (2008)

10. Foster, H.: From Volume to Velocity: The Transforming Landscape in Function Verification. In: Design
Verification Conference (2011)

11. Keng, B., Safarpour, S., Veneris, A.: Bounded model debugging. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 29(11), 1790–1803 (2010). https://doi.org/10.1109/TCAD.2010.2061370

12. Keng, B., Veneris, A.: Path-directed abstraction and refinement for sat-based design debug-
ging. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(10), 1609–1622 (2013).
https://doi.org/10.1109/TCAD.2013.2263036

13. Mangassarian, H., Veneris, A., Safarpour, S., Benedetti, M., Smith, D.: A Performance-Driven Qbf-
Based on Iterative Logic Array Representation with Applications to Verification, Debug and Test. In:
Int’l Conf. on CAD (2007)

14. Mangassarian, H., Le, B., Veneris, A.: Debugging rtl using structural dominance. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 33(1), 153–166 (2014). https://doi.org/10.1109/TCAD.2013.2278491

15. OpenCores.org: http://www.opencores.org (2007)
16. Safarpour, S., Veneris, A.: Automated design debugging with abstraction and refinement. Trans. Comp.

Aided Des. Integ. Cir. Sys. 28(10), 1597–1608 (2009)
17. Smith, A., Veneris, A., Ali, M.F., Viglas, A.: Fault diagnosis and logic debugging using boolean

satisfiability. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 24(10), 1606–1621 (2005)
18. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Studies in Mathematics and

Mathematical Logic Part II, 115–125 (1968)

https://doi.org/10.1109/TCAD.2010.2061370
https://doi.org/10.1109/TCAD.2013.2263036
https://doi.org/10.1109/TCAD.2013.2278491
http://www.opencores.org

	Efficient suspect selection in unreachable state diagnosis
	Abstract
	Introduction
	Preliminaries
	Notation and terminology
	Circuit verification with boolean satisfiability
	Property-directed reachability
	SAT-based debugging

	Debugging unreachable states
	Efficient suspect selection
	Suspect selection methodology
	Soundness and completeness

	Experimental results
	Conclusion
	References

