
Suspect2vec: A Suspect Prediction Model
for Directed RTL Debugging

Neil Veira, Zissis Poulos and Andreas Veneris
Department of Electrical and Computer Engineering

University of Toronto, Toronto, Canada
Email: {nveira, zpoulos, veneris}@eecg.toronto.edu

Abstract—Automated debugging tools based on Boolean Satis-
fiability (SAT) have greatly alleviated the time and effort required
to diagnose and rectify a failing design. Practical experience
shows that long–running debugging instances can often be re-
solved faster using partial results that are available before the
SAT solver completes its search. In such cases it is preferable
for the tool to maximize the number of suspects it returns
during the early stages of its deployment. To capitalize on this
observation, this paper proposes a directed SAT–based debugging
algorithm which prioritizes examining design locations that are
more likely to be suspects. This prioritization is determined by
suspect2vec — a model which learns from historical debug
data to predict the suspect locations that will be found. Exper-
iments show that this algorithm is expected to find 16% more
suspects than the baseline algorithm if terminated prematurely,
while still retaining the ability to find all suspects if executed to
completion. Key to its performance and a contribution of this
work is the accuracy of the suspect prediction model. This is
because incorrect predictions introduce overhead in exploring
parts of the search space where few or no solutions exist.
Suspect2vec is experimentally demonstrated to outperform
existing suspect prediction methods by an average accuracy of
5-20%.

I. INTRODUCTION

Ensuring the functional correctness of modern electronic
designs adds a layer of significant complexity to their develop-
ment process, with verification and debugging often accounting
for up to 70% of the design cycle [1]. The verification stage
asserts that a design behaves as intended, while debugging fo-
cuses on localizing and correcting the root cause of verification
failures.

Several automated debugging methods have been proposed
to obviate the associated costs, with those based on formal
methods such as Boolean Satisfiability (SAT) [2]–[5] proving
to be particularly effective. Given a failing design and an error
trace (i.e., a sequence of input stimuli that can reproduce the
erroneous behaviour), such tools identify a set of RTL locations
where a modification can rectify the erroneous behaviour.
These locations are referred to as suspects. In the SAT–based
approach the debugging problem is encoded as a propositional
formula with variables corresponding to potential suspect
locations. The suspects are then identified by searching for
satisfying assignments in which these variables are activated.

Recent work extends the SAT–based debugging methodol-
ogy with techniques that allow it to scale to larger designs and
longer error traces [6], [7]. However, further scalability can be
achieved by exploiting the fact that these tools return solutions
“on the fly” as they are discovered during the search process.
This means that partial results are available before execution
completes. If this partial suspect set is sufficiently large then
it may enable the engineer to begin detailed debugging earlier.
This could make further execution of the tool unnecessary and
reduce the overall time needed to identify the bug. Therefore,
the number of solutions that have been returned at each point
in time becomes a key performance characteristic.

In the ideal case, SAT–based debugging would return most
solutions at the very early phases of its search, with the
remaining time spent only to prove that few or no other
solutions exist. The extent of this behaviour can be quantified
by the average suspect recall, where suspect recall is defined
as the fraction of suspects (over the complete set) returned
after a given amount of time, and the average is taken over
the period of execution.

Prior work does not directly attempt to optimize debugging
for this metric. To do so requires the SAT solver to adopt
a search strategy that prioritizes regions of the search space
where solutions are more abundant. Current debugging tools
merely rely on the default heuristics of the solver [8] to
define the search strategy and the order in which branching
decisions are made. While these heuristics can be effective
on a wide range of tasks, research in other domains [9] has
shown that SAT solvers can be directed to a solution faster by
taking problem-specific information into consideration when
ordering the decision variables. We therefore expect that a
similar approach may be a means to improve the average recall
of the debugging algorithm.

The challenge lies in determining a good variable ordering
for a specific debugging instance. To achieve this we develop
a model which aims to predict the set of suspects the debugger
will find given a subset of these suspects and a history
of suspect sets from past debugging sessions. This suspect
prediction model can then be integrated into the debugging
algorithm as a mechanism to guide the underlying SAT search.

The suspect prediction task was first explored by [10] for
the purpose of approximate debugging. The method mainly
relies on heuristics to estimate the number of suspects in
the approximation, which can lead to inaccurate predictions
in certain cases. In contrast, this paper proposes a model
where the prediction task is cast as a binary classification
problem over all potential suspect locations, with the objective
of separating the true suspects from the non-suspect locations.
The classification is performed by learning representations of
the suspects so as to maximize prediction accuracy on the
historical data. This allows us to depart from heuristic–based
approaches.

In summary, the contribution of this paper is two-fold. First,
we present a model named suspect2vec which predicts
the set of suspect bug locations given an initial sample of
suspects. We empirically demonstrate the superiority of this
approach over existing methods by an average prediction
accuracy of at least 5%, with up to 20% gains seen at
smaller sample sizes. Second, we describe a novel SAT–based
debugging algorithm which imposes customized constraints on
the branching order of suspect decision variables based on
predictions from suspect2vec. Experiments show that this
algorithm improves average suspect recall by 16%.

The remainder of this paper is organized as follows.
Section II reviews the prerequisite topics of SAT–based de-

bugging, suspect set prediction, and embedding–based predic-
tion models. Section III then describes the suspect2vec
model while Section IV describes the new directed debugging
algorithm. Section V provides an empirical evaluation of both
contributions, and Section VI concludes the paper.

II. PRELIMINARIES

A. SAT–based Automated Debugging
Design debugging is undertaken when a mismatch occurs

between expected and observed signal values, often cap-
tured by assertions, golden-model checkers and/or scoreboards.
Given the failing design’s implementation, an error trace
exposing a failure F , and a specification of the intended
behaviour, a SAT–based debugger [3] returns the set of all
suspects with respect to failure F , denoted by S. This is
accomplished by introducing additional circuitry to model
potential bugs at each design location, represented by Boolean
variables s1, . . . , sn. The augmented circuit and simulation
vectors are then encoded in a Conjunctive Normal Form (CNF)
formula Φ such that the location corresponding to si is a
suspect if and only if there exists a satisfying assignment
π : M → {0, 1} of Φ with π(si) = 1. Here M denotes
the set of variables in Φ. Thus the suspect set S is obtained
by repeatedly invoking a SAT solver on Φ until all satisfying
assignments have been found.

B. Suspect Set Prediction
In this work we propose an improvement to the SAT–based

debugging procedure by guiding the search so as to find more
solutions in a given amount of time. To accomplish this we
shift the focus to later stages of the development cycle when
the design is closer to its final form and data from several
historical debugging sessions are available. If this historical
data is sufficiently diverse and representative with respect to
bug types and buggy design locations then it can be used
to predict the suspect set that a SAT–based debugger will
find. These suspects should be prioritized accordingly when
searching for satisfying assignments.

In detail, the suspect set prediction problem is defined as
follows. Given a history of failures Fhist = {F1, . . . , FN}
along with their complete suspect sets Shist = {S1, . . . , SN}
and a new failure F whose suspect set S is unknown, the
formal debugger is run non-exhaustively only until a subset of
the suspects, denoted Sobs ⊆ S, is found. This observed subset
serves as an indicator which characterizes the failure and can
be used to approximately predict the remainder of S without
needing to run the formal tool any further. The motivation for
this approach is that there tend to exist strong relationships
between suspects such that if certain suspects occur in the
solution set then other suspects are likely to occur as well.
The historical data serves to identify these relationships.

This problem was recently addressed by [10] which pro-
poses the following prediction mechanism. Let SU = S1 ∪
S2∪. . .∪SN denote the set of all previously observed suspects
in Shist. First, the suspect relationships are made explicit in
the form of a graph containing all si ∈ SU as nodes and
directed edges between each pair of suspects (si, sj) weighted
by the conditional probability P (sj |si). These probabilities
are estimated from Shist using Bayesian inference. Next,
all potential suspect locations are ranked by the probability
P (si|Sobs), which is computed using a single pass of belief
propagation on the suspect graph from the observed suspects
to the unknown ones. Finally, a simple heuristic is proposed
to estimate the cardinality of S and thereby draw a hard cutoff
line to separate the predicted solutions from the non-solutions.

C. Embedding Representations and Word2vec
While the above methodology generally yields a good

suspect ranking, the cardinality estimation often introduces
significant error and limits the model’s overall predictive
ability. We instead propose an alternative model based on the
concept of suspect embeddings — an idea inspired by the
word2vec model [11] from Natural Language Processing
(NLP), which we briefly review below.

Word2vec is a model for learning dense representations
of words as vectors in a fixed-dimensional vector space, also
called embeddings. Given a corpus of word tokens w1, . . . , wT ,
vectors vt and v′t are associated with each word wt ∈ W in
the corpus vocabulary W . These vectors play the role of model
parameters and are learned so as to maximize the likelihood
of the surrounding words wt−c, . . . , wt+c given the word wt.
Stated otherwise, the vector representation of wt is trained to
predict the words that occur in a context window of width 2c
around wt. It is this predictive ability that motivates the use
of an embedding–based model for the suspect prediction task
in the present work. More concretely, the word2vec model
can be summarized by the following objective function:

maximize
1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

logP (wt+j |wt) (1)

where the conditional probability P (wt+j |wt) is defined using
the softmax function:

P (wt+j |wt) =
exp(v′t+j · vt)

|W |∑
i=1

exp(v′i · vt)

(2)

This formulation allows the model to be viewed as a single
hidden layer neural network with the two vector representa-
tions for each word, v and v′, as weights on the input and
output side, respectively.

III. SUSPECT2VEC
In this section we present a novel approach to the suspect

set prediction problem which frames the problem in terms of
binary classification. For each suspect si ∈ SU we predict a bi-
nary label yi which should be 1 if si ∈ S or 0 otherwise, where
S is the set we wish to predict. These labels must be predicted
from a given subset Sobs, which is analogous to the prediction
of a word given its context words. Moreover, the effectiveness
of embedding representations in word2vec is grounded in the
distributional hypothesis [12], which states that semantically
similar words tend to occur in similar contexts. Likewise,
related design suspects tend to occur in the same or similar
suspect sets. This suggests that embeddings may also serve
as a powerful means to capture suspect relationships for the
suspect prediction task.

While parallels exist between the word prediction and
suspect set prediction tasks, there are also crucial differences
which necessitate considerable modifications to the presented
model. Firstly, a suspect set is not perfectly analogous to a sen-
tence of words because there is no meaningful order or locality
defined between suspects, and the notion of a context window
around a suspect is not applicable. The prediction model of
word2vec (Eq. 2) is therefore not directly applicable, as it is
only able to predict a single item given a single item. This is a
consequence of defining the probability as a softmax function
— it must be the case that

∑
w∈W P (w|wt) = 1, meaning

that at most one item in the vocabulary can have a strong
(greater than 0.5) weight. This is at odds with our objective
of predicting labels yi = 1 for all si ∈ S. Thus, predicting
a set of items given another set of items, both of arbitrary

size, requires a reformulation of the prediction model (Eq. 2)
as well as the corresponding optimization objective (Eq. 1).
The following two subsections address each of these aspects
in detail.

A. Prediction Model
With each potential suspect location si ∈ SU we associate

an input and an output vector representation, denoted vi and
v′i, respectively. The conditional probability between suspects
si and sj is then defined as:

P (si|sj) = σ(v′i · vj) (3)

where σ(x) = 1
1+exp(−x) denotes the logistic function. This is

fundamentally different from Eq. 2 in that it treats all suspects
independently, that is, the value of P (si|sj) does not impose
any constraints on P (sk|sj) for any k 6= i. This is a highly
desirable property considering that we wish to predict sets of
arbitrary size.

To deal with an arbitrarily sized set of given suspects, Sobs,
we define a vector representation for Sobs as the arithmetic
mean of suspect vectors in the set:

vobs =
1

|Sobs|
∑

si∈Sobs

vi (4)

This is similar to the common practice in NLP of representing a
sentence by the mean of word vectors within the sentence [13],
and is motivated by the observation that sums of word vectors
produce semantically meaningful vectors. We incorporate this
idea directly into the prediction model by defining:

P (si|Sobs) = σ(v′i · vobs) (5)

where vobs is given in Eq. 4. The final prediction can now be
defined as si ∈ S if and only if yi = P (si|Sobs) ≥ 0.5.

Like word2vec, suspect2vec can be expressed as a
neural network with the embedding vectors aggregated into
weight matrices W and W′. Here vi is the ith column of W,
and v′i is the ith row of W′. This is illustrated in Figure 1.
The input is a binary vector x of length |SU | representing
the set Sobs, where xi = 1 if si ∈ Sobs and 0 otherwise.
x is first passed through a normalization layer so that h1 =

1
|Sobs|x. The next layer multiplies this vector by weight matrix
W to produce a hidden layer vector h2 = vobs. The final
layer multiplies h2 by the output weights W′ and applies a
logistic activation function, producing the output vector y with
yi = σ(v′i · vobs). Thus, the output is a vector of prediction
scores P (si|Sobs) for all suspects si ∈ SU .

B. Training Procedure
This subsection describes the procedure used to learn the

vectors v and v′ such that Eq. 5 generates accurate predictions.
This is achieved by optimizing an objective function that
penalizes mispredictions on the historical (training) debug
data Shist. For a suspect set Sj ∈ Shist, let ŷi(Sj) denote
the ground truth label for suspect si, where ŷi(Sj) = 1 if
si ∈ Sj or ŷi(Sj) = 0 otherwise. Because the prediction
scores are defined by logits yi = P (si|Sobs), we employ the
standard cross-entropy loss to penalize the model for predicting
discrepancies between yi and ŷi. The cross-entropy loss is
given by:

−
|SU |∑
i=1

ŷi log yi + (1− ŷi) log(1− yi)

x h1 h2 y

L1 norm

W × h1 σ(W ′ × h2)

Fig. 1. The suspect2vec model as a neural network

Algorithm 1 SUSPECT2VEC-TRAIN(Shist, e, d, α)
1: for i← 1 to |SU | do
2: vi ← RANDOM-VECTOR(d)
3: v′i ← RANDOM-VECTOR(d)
4: end for
5: for iter ← 1 to e do
6: for each Sj ∈ Shist do
7: Sobs ← RANDOM-SUBSET(Sj)
8: for i← 1 to |SU | do
9: vi ← vi − α∇vi

L
10: v′i ← v′i − α∇v′

i
L

11: end for
12: end for
13: end for

Ideally we would like to minimize this loss over all Sj ∈
Shist and all possible observed subsets Sobs ⊆ Sj . This leads
to the minimization objective:

L = −
∑

Sj∈Shist

1

2|Sj |

∑
Sobs⊆Sj

|SU |∑
i=1

[
ŷi(Sj) logP (si|Sobs)

+(1− ŷi(Sj)) log(1− P (si|Sobs))
] (6)

The term 1

2|Sj |
is introduced to balance the total contributions

of all Sj regardless of their varying sizes. Of course, Eq. 6
cannot be directly optimized or even computed in practice
because the number of possible subsets Sobs is too large.
However, it can be approximated by selecting many Sobs ⊆ Sj
at random. For each Sobs, the embedding vectors are updated
according to gradient descent optimization, where the gradients
of Eq. 6 are as follows:

∇viL =

 1
|Sobs|v

′
i [σ(v′i · vobs)− ŷi] , si ∈ Sobs

0, si /∈ Sobs

∇v′
i
L = vobs [σ(v′i · vobs)− ŷi]

(7)

Algorithm 1 summarizes the training procedure. The sub-
routine RANDOM-VECTOR(d) returns a random vector of
length d, while the subroutine RANDOM-SUBSET(S) generates
a random subset of S by independently including or excluding
each si ∈ S with probability 0.5. The number of iterations e,
the learning rate α, and the dimensionality of the vectors d are
all hyperparameters which can be tuned to the specific data set.

IV. DIRECTED DEBUGGING USING SUSPECT PREDICTION

In this section we describe a new SAT–based debugging
procedure with improved average suspect recall. In effect, by
optimizing for this metric we increase the expected number of
returned suspects should the tool be terminated early or should
detailed debugging commence before the tool completes. The
proposed algorithm leverages a suspect prediction model to
estimate which areas of the search space are most likely
to contain solutions and should therefore be explored first.
It then dictates this search strategy to the SAT solver by

Algorithm 2 DIRECTED-DEBUG(Φ,m)
1: Sobs ← ∅
2: A ← ∅
3: while |Sobs| < m do
4: s← SOLVE(Φ,A)
5: if s 6=⊥ then
6: Sobs ← Sobs ∪ {s}
7: Φ← Φ ∧ ¬s
8: else
9: return Sobs

10: end if
11: end while
12: Spred ← SUSPECT-PREDICTION(Sobs)
13: A ← {¬s : s /∈ Spred}
14: while True do
15: s← SOLVE(Φ,A)
16: if s 6=⊥ then
17: Sobs ← Sobs ∪ {s}
18: Φ← Φ ∧ ¬s
19: else if A 6= ∅ then
20: Φ← Φ ∧

∧
s∈Spred

¬s
21: S′pred ← SUSPECT-PREDICTION(Sobs)
22: if S′pred 6= Spred then
23: A ← {¬s : s /∈ S′pred}
24: Spred ← S′pred
25: else
26: A ← ∅
27: end if
28: else
29: return Sobs
30: end if
31: end while

imposing constraints on the order in which suspect variables
are branched on as true. We expect this decision ordering to
find most solutions earlier than the default order which is
governed by the general-purpose VSIDS heuristic [8], as the
latter has no understanding of the underlying problem or the
significance of the variables it is ordering.

Enforcing the desired decisions is implemented by adding
assumption constraints to the SAT instance, which are single-
literal clauses that can be added or removed between queries.
The justification for this approach is two-fold: it is a non-
intrusive scheme in that it allows the solver to be treated as a
black box, and it also allows constraints to be conveniently
removed in later SAT queries. This latter point is critical
because we still wish for all solutions to be found; therefore,
any constraints that are imposed to guide the search must
ultimately be removed.

One might naturally hope to achieve the desired behaviour
by ordering the suspect variables by probability scores (see
Eq. 5), sp1 , . . . , sp|SU| , and successively calling the SAT solver
with the assumption literal spi

for each i = 1, . . . , |SU | in
this order. Unfortunately, we found experimentally that this
method can severely slow down the overall search procedure
because the frequent removal of constraints can be difficult for
an incremental SAT solver to deal with. Instead, we take an
approach that only infrequently requires removing constraints.
Rather that forcing the solver to immediately branch true on the
next predicted suspect, we prevent the solver from branching
true on any of the non-predicted suspects by imposing the set
of blocking assumptions {¬si : P (si|Sobs) < 0.5}.

This is described in detail in Algorithm 2 and works as
follows. The input consists of Φ, the CNF encoding of the
augmented circuit as described in [3], and the parameter m
which controls the size of the initial solution subset. This

subset is found in lines 3-11 using the original debugging
algorithm from [3]. The subroutine SOLVE(Φ,A) returns a
suspect variable corresponding to a satisfying assignment of
Φ under assumption set A, or the null value ⊥ if none exists.
Each time a solution s is found it is added to the solution
set Sobs and blocked with the hard clause ¬s to prevent it
from recurring in subsequent calls. Then in lines 12-13 the
prediction is run on Sobs, and all s /∈ Spred are temporarily
blocked by assumptions. Lines 14-18 find all solutions until the
solver returns UNSAT. At this point (lines 19-27) the predic-
tion is rerun because new solutions have been found, so Spred
is updated using this additional information. Line 23 removes
the blocking assumptions of any newly predicted suspects, and
the process is repeated. Eventually the prediction stabilizes and
lines 25-26 are executed. Here all assumptions are removed
and the solver searches for any remaining solutions that were
previously blocked. Once all such solutions have been found
lines 28-29 are executed and the search terminates.

Note also that the SUSPECT-PREDICTION subroutine does
not incur significant runtime overhead because the training step
(Algorithm 1) can be performed offline. DIRECTED-DEBUG
only needs to run the prediction step which is extremely
efficient.

We now argue the soundness and completeness of
DIRECTED-DEBUG. In this context soundness means that all
returned suspects are possible bug locations; completeness
means that all possible bug locations are returned. Let Sbase
and Snew denote the suspect sets returned by the baseline
algorithm of [3] and DIRECTED-DEBUG, respectively. For
notational convenience we also define CNF(A) =

∧
l∈A

l.

Lemma 1. Sbase ⊇ Snew

Proof: For each si ∈ Snew there exists a satisfying
assignment π with π(si) = 1. Since π |= Φ ∧ CNF(A) then
π |= Φ so si ∈ Sbase.

Lemma 2. Sbase ⊆ Snew

Proof: This can be seen from line 26 where A = ∅ and

the solver is then run on Φ ∧
k∧

i=1

¬sbi , where sb1 , . . . , sbk

are the suspects that have previously been blocked. Thus any
si ∈ Sbase must either be found after line 26 executes or
have been blocked on line 7, 18, or 20. In each of these cases
it is clear from the pseudocode that si ∈ Snew, except for
suspects blocked on line 20. However, in this last case we
know that there does not exist π |= Φ with π(si) = 1 because
Φ ∧ CNF(A) is UNSAT, and ¬si /∈ A since si ∈ Spred,
implying that si /∈ Sbase. Therefore si ∈ Snew for all
si ∈ Sbase.

Theorem 1. DIRECTED-DEBUG is both sound and complete.
Proof: Lemmas 1 and 2 imply that Sbase = Snew, and [3]

is sound and complete. The theorem follows immediately.

V. EXPERIMENTAL RESULTS

In this section we evaluate the performance of
suspect2vec and DIRECTED-DEBUG on the same
data set as used in [10], which consists of 10 different designs
from OpenCores [14] and industry. Each design comprises
multiple bugs injected by randomly forcing signals to 0 or
1, as well as a variety of manually generated bugs which
more closely resemble human–introduced errors. For each
bug, all unique testbench errors were initially debugged using
a SAT–based debugger implemented as described in [3] to
extract the ground truth suspect sets. All experiments are run
on a i5-3570K 3.4 GHz machine with 16 GB of RAM.

A. Suspect2vec Prediction
We begin with an evaluation of the suspect2vec predic-

tion model in comparison to the baseline of [10]. We employ
a leave-one-out evaluation methodology whereby |Shist| − 1
failures are used as training data, and the remaining failure
serves as a test point. Note that this is equivalent to k-fold
cross validation with k = |Shist|. The prediction task is set
up by selecting a sample Sobs containing the first 50% of
the suspects that are found by the SAT–based debugger. This
choice of Sobs replicates the sample that would be obtained
in DIRECTED-DEBUG — our intended application for suspect
prediction. Hyperparameter settings include a learning rate α
of 0.01, dimensionality d of 20, and e = 4000 iterations. While
this dimensionality may seem extremely small compared to
typical values used with other neural embedding models such
as word2vec, no empirical improvement was observed at
higher values. The representational capacity of d = 20 appears
to be sufficient for the purposes of suspect prediction where
the number of objects |SU | is typically not much greater than
1000.

Performance is measured using three metrics: precision (the
fraction of predicted suspects that are true solutions), recall
(the fraction of true solutions that are predicted), and F1 score
(the harmonic mean of precision and recall). The F1 score
provides an overall measure of classification accuracy which
balances the values of precision and recall. On each design
we report the mean of these metrics over all failures. The
results are given in Table I, with the mean precisions, recalls,
and F1 scores in columns 5-10. The results clearly indicate
that suspect2vec outperforms the baseline, with a greater
average F1 score on nearly every benchmark. We also find it
informative to measure the relative error in the cardinality of
the predicted set, which is given in columns 11-12. However,
due to a large number of outliers in this metric (for both
prediction methods) we report the median over all failures. It
can be seen that suspect2vec generally predicts the suspect
set cardinality more accurately than the baseline, which largely
explains its greater F1 score.

We also consider how each model performs with varying
amounts of training data. This is controlled by reducing the
number of folds, k, as the fraction of data that is used for
training is k−1

k . Columns 13-16 give the prediction F1 scores
at k = 2 and k = 5. We observe that suspect2vec still
outperforms the baseline by 4% even when the training set
size is halved at k = 2.

Finally, we evaluate the predictions with different sizes of
the observed sample, Sobs. Figure 2 plots the mean F1 scores
over all designs against the sample size as a percentage of the
complete suspect set size from 10% to 90% in increments of
10%. The figure indicates that the performance gap widens
at smaller sample sizes, reaching as much as 20% at a 10%
sample size, while remaining near 5% at larger samples.

Fig. 2. Mean prediction F1 scores versus |Sobs|.

B. Directed Debugging Evaluation
In this subsection we evaluate the performance of

DIRECTED-DEBUG against the baseline SAT–based debugging
algorithm of [3]. Unlike prior work, of primary interest is the
characteristics of the algorithms’ suspect recall versus time
curves rather than their total runtimes. Intuitively, an algorithm
that returns more suspects near the beginning of the search
would be preferable, even if the total runtime is not improved,
as it may allow detailed debugging to begin earlier. This notion
can be formalized by measuring the area under the recall-time
curve, which we denote by the symbol R. Each time a suspect
si ∈ S is returned we define a coordinate (i, ti), where ti is the
time at which the ith suspect is returned and i = 1, . . . , |S|.
Then the performance metric is computed as

R =

|S|−1∑
i=1

i

|S|
ti+1 − ti

T
+
T − tn
T

(8)

where T is the total runtime of the baseline algorithm. Note
that due to normalization of the time coordinates, R can also
be interpreted as the average or expected recall that would
be obtained if the debugging algorithm were terminated early.
This is illustrated in Figure 3, where we plot the recall-time
curves of both DIRECTED-DEBUG and [3] on an exemplary
failure from the ethernet design.

In our experiments the SUSPECT-PREDICTION subroutine
of DIRECTED-DEBUG is implemented using suspect2vec,
as it generally offers better performance over alternative meth-
ods. MiniSat [15] is used as the backend SAT solver. The
remaining configuration choice is the value of the hyperpa-
rameter m. If set too high then the solver will have already
explored most or all of the search space before the prediction
stage kicks in, rendering it ineffective. On the other hand, if
set too low then the prediction may exhibit poor accuracy,
causing many solutions to be incorrectly blocked and impairing
the algorithm’s performance. To balance these two effects we
heuristically set m to half the average suspect set size in Shist.

TABLE I. COMPARISON OF SUSPECT2VEC (S2V) AND THE BASELINE OF [10] (BASE) AT 50% SAMPLE SIZE

Design # gates # failures |SU | Precision Recall F1 score Size error (median) 2 folds 5 folds
s2v base s2v base s2v base s2v base s2v base s2v base

aemb 20603 29 592 0.768 0.810 0.784 0.687 0.749 0.727 0.162 0.264 0.708 0.696 0.732 0.728
divider 10334 71 153 0.944 0.965 0.917 0.688 0.923 0.794 0.074 0.318 0.846 0.729 0.894 0.774
ethernet 82803 66 533 0.935 0.863 0.929 0.837 0.926 0.831 0.052 0.237 0.762 0.717 0.873 0.794

fdct 546878 27 617 0.921 0.911 0.877 0.860 0.885 0.878 0.168 0.136 0.867 0.851 0.883 0.865
fpu 82938 27 367 0.786 0.752 0.775 0.734 0.753 0.726 0.227 0.245 0.626 0.662 0.738 0.707

mips789 55248 68 1143 0.889 0.905 0.791 0.722 0.826 0.797 0.152 0.241 0.806 0.787 0.821 0.794
rsdecoder 14890 72 1415 0.893 0.855 0.892 0.818 0.871 0.816 0.120 0.171 0.845 0.789 0.863 0.806
scam core 1315446 66 444 0.909 0.947 0.933 0.748 0.910 0.827 0.058 0.223 0.825 0.739 0.847 0.800

spi 2536 60 242 0.963 0.934 0.922 0.682 0.938 0.773 0.048 0.297 0.799 0.690 0.819 0.721
vga 44579 38 933 0.728 0.787 0.852 0.769 0.761 0.766 0.309 0.212 0.682 0.731 0.710 0.737

mean 0.874 0.873 0.867 0.754 0.854 0.793 0.137 0.235 0.777 0.739 0.818 0.773

Fig. 3. Example of recall versus time curves and the average recall R for a
failure from the ethernet design.

Fig. 4. Improvements in average suspect recall for all benchmark instances.

For each failure Fj ∈ Fhist we compute the metrics
Rj

base and Rj
new from Eq. 8 for [3] and DIRECTED-DEBUG,

respectively. We then compute the relative improvement which
is given by the ratio Rj

new/R
j
base. Each debugging instance is

run with a maximum time limit of 1 hour. Note that Eq. 8
is well–defined even when the run is terminated at the time
limit, so such instances are included in the reported results.
The results are depicted in Figure 4, which plots the relative
improvement on the x-axis and the cumulative number of
instances (aggregated over all designs) with an improvement
of at least this value on the y-axis.

Table II presents numerical results for the designs indi-
vidually, where column 3 summarizes average recall by the
geometric mean over all of failures. Columns 4-6 describe the
total runtimes of the algorithms, with columns 4 and 5 giving
the number of debug instances that were completed within the
time limit. Of such instances, the geometric mean of relative
runtime is given in column 6. These results indicate similar
total runtimes between the two algorithms.

The average recall results exhibit a greater variance,
TABLE II. IMPROVEMENTS IN AVERAGE RECALL AND

RUNTIME FOR ALL BENCHMARKS

Design m
Geomean of # failures completed Relative

Rj
new/Rj

base base new runtime
aemb 71 1.32 28 27 0.79

divider 28 1.35 71 71 0.80
ethernet 39 1.26 66 66 0.79

fdct 42 1.16 27 27 0.93
fpu 18 1.24 27 27 0.79

mips789 108 0.95 50 50 0.95
rsdecoder 99 1.03 53 49 1.01
scam core 61 1.09 58 58 0.95

spi 40 1.38 60 60 0.76
vga 71 0.95 29 30 0.99

but 76% of test instances see positive improvements under
DIRECTED-DEBUG, with an overall geometric mean improve-
ment of 16%. Closer inspection of the cases that are negatively
impacted reveals that many are due to inaccurate suspect
predictions causing solutions to be incorrectly blocked. A
larger value of the parameter m could potentially mitigate this
issue, but a fully automated method to select the optimal value
on a failure-by-failure basis remains an open problem.

VI. CONCLUSIONS

In this paper we argue that a debugging algorithm that
returns more suspects earlier in its search can aid an engineer
in localizing the bug faster using partial results. This addresses
the gap in the existing literature which focuses primarily on
reducing the runtime of a complete search. We present an
optimized debugging algorithm that searches for solutions with
guidance from a suspect prediction model, which predicts the
set of solutions that will be found given a subset of these solu-
tions and historical debugging data. We further show how the
suspect prediction problem can be solved using an embedding–
based binary classification model named suspect2vec. Our
experiments demonstrate that suspect2vec vastly outper-
forms existing methods by an average prediction F1 score of
5-20%, while the directed debugging algorithm can improve
the average suspect recall by 16%.

REFERENCES
[1] H. D. Foster, “Trends in functional verification: A 2014 industry study,”

in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2015, pp. 1–6.

[2] O. Sarbishei, M. Tabandeh, B. Alizadeh, and M. Fujita, “A formal
approach for debugging arithmetic circuits,” in tcad, vol. 28, no. 5,
May 2009, pp. 742–754.

[3] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using Boolean satisfiability,” tcad, vol. 24, no. 10, pp.
1606–1621, 2005.

[4] S. Mirzaeian, F. Zheng, and K. Cheng, “Rtl error diagnosis using a
word-level sat-solver,” in itc, 2008, pp. 1–8.

[5] K.-h. Chang, I. Wagner, V. Bertacco, and I. L. Markov, “Automatic
error diagnosis and correction for rtl designs,” in High Level Design
Validation and Test Workshop, 2007. HLVDT 2007. IEEE International.
IEEE, 2007, pp. 65–72.

[6] B. Keng, S. Safarpour, and A. Veneris, “Bounded model debugging,”
tcad, vol. 29, no. 11, pp. 1790–1803, 2010.

[7] S. Safarpour and A. Veneris, “Automated design debugging with
abstraction and refinement,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1597–
1608, 2009.

[8] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in Proceedings of the 38th
annual Design Automation Conference. ACM, 2001, pp. 530–535.

[9] O. Shacham and E. Zarpas, “Tuning the vsids decision heuristic for
bounded model checking,” in Microprocessor Test and Verification:
Common Challenges and Solutions, 2003. Proceedings. 4th Interna-
tional Workshop on. IEEE, 2003, pp. 75–79.

[10] N. Veira, Z. Poulos, and A. Veneris, “Suspect set prediction in rtl
bug hunting,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2018. IEEE, 2018, pp. 1544–1549.

[11] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[12] M. Sahlgren, “The distributional hypothesis,” Italian Journal of Dis-
ability Studies, vol. 20, pp. 33–53, 2008.

[13] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International Conference on Machine Learning, 2014,
pp. 1188–1196.

[14] OpenCores.org, “http://www.opencores.org,” 2006.
[15] N. Eén and N. Sörensson, “An extensible sat-solver,” in International

conference on theory and applications of satisfiability testing. Springer,
2003, pp. 502–518.

