
Searching for Bugs using
Probabilistic Suspect Implications

Neil Veira, Student Member, IEEE, Zissis Poulos, Member, IEEE,
and Andreas Veneris, Senior Member, IEEE

Abstract—Due to the excessive cost associated with manual
RTL design debugging, automated tools are often employed to
identify a set of suspect bug locations. To further accelerate the
process, one observes that the anytime behaviour of these tools
allows partial results to be analyzed before the suspect search is
complete. Thus, it is preferable for the tool to maximize the
number of suspects that are found in the early stages of its
search. Towards this end, this paper proposes a new SAT–based
debugging algorithm which predicts where solutions are most
likely to be found and prioritizes examining these locations. Two
techniques are proposed to predict solution locations by learning
from historical debug data. The first technique does so using belief
propagation on a probabilistic graph, while the second trains
a neural network to classify candidate suspects as solutions or
non-solutions. Intensive empirical evaluation demonstrates that
these techniques can predict suspect sets with accuracies of 81%
and 87%, respectively, but the second method requires more
training data and careful hyperparameter tuning in order to do
so. Furthermore, when guided by these suspect prediction models,
the proposed debugging algorithm finds an average of 83% more
suspects within a given amount of time.

Keywords—Debugging, Verification, RTL, Suspect implications,
Prediction models, VLSI

I. INTRODUCTION
State-of-the-art verification tools provide a highly robust,

automated framework to prove the functional correctness of
Very Large Scale Integration (VLSI) designs. However, when
verification fails, identifying the root cause of the failure, i.e.
debugging, can be challenging. Debugging is typically based
on fixing a counterexample or error trace — a sequence of
input stimuli that exposes the erroneous behaviour and char-
acterizes the failure — but the size and complexity of modern
VLSI designs have made this the most time–consuming stage
of the verification cycle [1].

To help alleviate this cost, a line of work in Computer
Aided Design (CAD) aims to automate the bug searching
process. Most popular approaches to this task compute a
set of possible or probable bug locations, called suspects.
Approaches based on Boolean Satisfiability (SAT) [2] or 0-1
Integer Linear Programming (ILP) [3] do so by searching for
design locations at which a change can rectify the error trace.
This provides a formal guarantee that the returned suspect set
will include the bug location, when defined at the same level
of granularity as the CAD tool.

This provides a formal guarantee that the bug location will
be among the returned suspects, each of which can then be
investigated in greater detail.

Many techniques have since been developed to improve
the scalability of SAT–based debugging. Techniques involving
design abstraction [4], time frame abstraction [5], or unsat-
isfiable cores [6] are able to greatly reduce the size of the
SAT instance. Others make use of alternative formal engines

such as Maximum Satisfiability [7] or Quantified Boolean
Formulas [8] to reduce the problem size. Once all suspect
locations have been found, further techniques can be applied to
narrow down or prioritize the possibilities [9], [10] in order to
pinpoint the actual bug location from among them. Yet despite
these advances, debugging remains an expensive and time–
consuming process on industrial–scale designs.

In this paper we develop a complementary enhancement
methodology by capitalizing on the anytime behaviour of the
bug search: because most automated debugging tools return
candidate solutions “on-the-fly”, suspects found early on can
be analyzed before the search is complete. As such, an ideal
search algorithm would prioritize areas of the search space
that contain solutions, while non-solution areas would be
examined later. Our methodology realizes this behaviour by
predicting which candidate suspects are most likely to be
solutions and then guiding the search accordingly. This reduces
the average time required to find a given number of solutions,
allowing for detailed analysis of the identified suspects to begin
earlier. It also means that on average, more solutions will be
found within a given amount of time, which leads to greater
flexibility in correcting the error. This can also be particularly
beneficial for applications in which a large set of suspects is
desired, including design rewiring [11], failure triage [12], and
unreachability diagnosis [13].

Our method draws upon work on the use of structural
dominance relationships in SAT–based debugging [14]. The
key insight of [14] is that the presence of a suspect at a certain
design location implies the presence of suspects at all structural
dominators of this location. This allows the SAT search to
avoid explicitly modeling and examining dominator locations,
as the suspects can instead be inferred from other suspects.

While this technique improves debugging efficiency, it is
limited by considering only suspects implied via structural
dominance. In general, suspects can be related in much
more complex ways, and other, weaker forms of implication
relationships may exist. For instance, it may be the case
that the presence of one suspect induces the presence of
another in all usual design behaviour, while only under rare
stimuli can the former be a suspect while the latter is not.
Such a relationship cannot be detected using only structural
dominance. Yet if one could learn this fact, then it would be
reasonable to guess that the latter suspect (the consequent) will
exist having observed the former (the antecedent). We call such
relationships probabilistic suspect implications.

Probabilistic suspect implications are key to achieving the
objective outlined above, as we can predict that probabilisti-
cally implied suspects are more likely to be solutions. More
specifically, we use probabilistic suspect implications to rank
all candidate suspects by their probability of being solutions. If

this ranking is reasonably accurate, then on average, a search
algorithm which prioritizes candidate suspects accordingly
would find solutions faster. Probabilistic suspect implications
also lead way to an approximate debugging methodology: one
can first use an incomplete SAT search to find a subset of
the suspects, and then predict the remaining suspects from
the implications. This can greatly mitigate the cost of the bug
search, at the expense of some inaccuracies in the returned
suspect set.

Unlike dominance relationships, probabilistic implications
are defined by empirical observation rather than design struc-
ture. We propose two methods to compute probabilistic suspect
implications using statistical techniques that rely on data from
historical debugging sessions. Both methods are complemen-
tary to one another and offer different sets of advantages
and tradeoffs. The first method builds a probabilistic graph
of implications between pairs of suspects, and estimates the
probability of a suspect using a pass of belief propagation on
this graph [15]. We refer to this method as suspect implication
graphs (SIG). Experiments show that SIG is effective for
ranking candidate suspects, but loses accuracy when predicting
which candidate suspects will actually be in the solution set.

The second method, named suspect2vec [16], ad-
dresses this shortcoming by instead formulating the primary
objective as a binary classification task. A single–layer neural
network is trained to classify each candidate suspect as a
solution or non-solution. The output of the network also
yields a suspect ranking as a by-product. Suspect2vec
can outperform SIG on average, achieving an accuracy of
93.5% and 86.9% in the suspect ranking and set prediction
tasks, respectively. However, it requires more training data and
careful hyperparameter tuning in order to achieve these results.

As a third contribution, we describe how suspect prediction
can be incorporated into a SAT–based debugging algorithm so
as to prioritize areas of the search space that are more likely
to contain solutions. The proposed algorithm accomplishes this
by partitioning the search into multiple passes, each of which
models only a subset of potential bug locations in the SAT
instance. Suspect priority is enforced by placing higher priority
suspects in earlier passes. To evaluate the new algorithm we
measure the suspect recall — defined as the fraction of suspects
that have been found at a specific point in time — and take
the mean over the period of execution. Results indicate that on
difficult debug instances, our method can improve the average
suspect recall by 83%.

The remainder of this paper is organized as follows.
Section II introduces the prerequisite concepts on SAT–based
debugging and suspect implicature . Sections IV and V de-
scribe each of methods for estimating probabilistic suspect
implications, while Section VI explains the new debugging
algorithm which incorporates this information. Section VII
then presents independent experimental evaluations of both
the suspect prediction and debugging techniques. Finally, Sec-
tion VIII concludes the paper.

II. PRELIMINARIES
A verification failure occurs when the observed design

behaviour differs from the expected (golden) behaviour. Er-
roneous behaviour is often exposed by simulators or property
checkers, in the form of an assertion failure or a mismatch
between the primary output signal values of the design under
test and the golden values. These tools can then produce an

x1 D Q y1
l1

(a) Original circuit

x
(1)
1 0

1

l
(1)
1

w
(1)
1 z

(1)
1

x
(2)
1 0

1

l
(2)
1

w
(2)
1 z

(2)
1

s1

(b) Unrolled and augmented circuit

Fig. 1. Example circuit augmentation for SAT–based debugging. A potential
bug is modeled at location l1 over two time frames.

associated counterexample or error trace — a sequence of
signal values leading up to the point of failure.

Given an error trace, debugging aims to identify the design
location at which an incorrect logic element initiated the
erroneous behaviour, and at which a change can rectify the
error. In general, many such locations may exist, and so a
deeper understanding of the design — beyond the constraints
of the error trace — is required to identify the bug. Therefore,
a common approach to debugging involves first finding all
possible bug locations, called suspects, using automated tools.
Further techniques can then be applied to rank or filter the
suspects to help identify the bug faster. Throughout this paper
we also use the term candidate suspects to refer to design
locations that are being examined during the suspect search.

A. SAT-Based Design Debugging
SAT-based design debugging [2] formulates the suspect

search problem as an instance of Boolean Satisfiability (SAT).
Given a buggy circuit and an error trace, the circuit is aug-
mented as shown in Figure 1. First, the circuit is unrolled over
the length of the error trace, yielding a fully combinational
iterative logic array (ILA) representation [17]. Each circuit
location is augmented with error select logic, which effectively
selects between applying a change at this location or retaining
the original behaviour. The augmented circuit is then trans-
formed into a conjunctive normal form (CNF) formula, with
the input and output signals constrained to the test vectors and
the expected outputs, respectively. Another constraint is added
to ensure that at most N select signals may be activated in a
satisfying assignment, where N is a configurable parameter.
In practice, solutions of cardinality N = 1 are often the most
valuable, as they indicate single bug locations which can be
more easily fixed. Therefore, throughout this paper we focus
on the task of finding all single–cardinality solutions.

After constructing the CNF formula, the complete set of
single–cardinality solutions is found with an iterative pro-
cedure. In each iteration a SAT solver returns a satisfying
assignment, and the activated select variable si is added to
the solution set. The clause ¬si is then added to the formula
so that this solution is no longer valid, and the solver must find
an assignment with a different select variable activated. This
process is repeated until the formula becomes unsatisfiable.

III. MOTIVATION
In practice, suspect bug locations tend to be strongly related

to one another. One important form of relationship is structural
dominance. Formally, in a gate–level netlist representation of
the design, a node u is said to be a dominator of node v if
every path from v to a primary output passes through u [18].
This means that if a change at node v can fix the erroneous
behaviour, then there must also exist a change at the dominator
node u which can fix the erroneous behaviour. Thus, in the
context of design debugging, a structural dominance relation
between nodes is equivalent to an implication relation between
suspects: sv =⇒ su, where su and sv denote bug suspects
corresponding to u and v.

This concept can be generalized to dominance between
groups of nodes or suspects. This is useful for RT–level
analysis, where a single block may contain multiple nodes
and multiple input and output signals. A group of nodes
U = {u1, ..., un} is said to dominate another group of nodes
V = {v1, ..., vn} if every path from a node V to a primary
output passes through some node in U . Analogously, for
RT–level debugging we can say that a group of suspects
SV = {s1, ..., sn} implies a suspect su if the existence of
a debugging solution for every si ∈ SV implies the existence
of a debugging solution at su.

Structural dominance relationships have many applica-
tions [19], [20], and the corresponding suspect implications
have been used to enhance the performance of SAT-based
debugging [14]. The idea is to use a suspect implication
sv =⇒ su to infer that suspect su will be a solution, having
observed the suspect sv , rather than relying on the SAT solver
to find the solution su. This reduces the number of queries to
the SAT solver and greatly improves debugging runtime.

In this work we extend this idea by considering a more
general form of suspect relationships, which we coin as
probabilistic suspect implications. Intuitively, two nodes u and
v may be closely tied together even if neither node structurally
dominates the other. For example, it may be the case that
most signal propagation paths from v to a primary output pass
through u, and only under rare circumstances can a signal
propagate from v without passing through u. In such cases
we can say that the existence of a solution at sv implies
the existence of a solution at su with high probability. More
generally, we can extend the concept to groups of RTL suspects
and say that SV

p
=⇒ su if the existence of a solution for every

si ∈ SV implies the existence of solution su with probability
p.

Such relationships can be identified by observations from
a debug history, which is a set of solution sets from pre-
vious debug sessions on a given design. Such data makes
it possible to identify suspect locations that tend to occur
together using statistical methods, which has advantages over
formal structural analysis. In particular, statistical methods can
identify a much wider variety of relationships than would be
feasible using structural analysis alone. This is because if a
probabilistic relationship exists between si and sj , whether or
not si and sj occur together as suspects for a bug (essentially
“activating” the implication) depends on the stimuli of the
circuit. Determining the probability that the stimuli will cause
si and sj to occur together (i.e., the strength of the implication)
may require considering an exponential number of execution
paths.

Additionally, structural analysis is unable to account for
the different likelihoods of different stimuli occurring during
realistic operation of the design. This information should be
reflected in data generated from the design’s testbench, which
would allow it to be discovered by statistical methods.

A potential drawback of the observational approach is its
reliance on historical debug data.However, such data is often
readily available during the later phases of the development
cycle, at which point many bugs have already been created,
debugged, and fixed. For instance, design modules are often
maintained and updated for many years after their initial de-
ployment. Any new bugs that are introduced by these updates
can be more easily resolved by learning from previous bugs.
As long as suspect sets from these debugging sessions are
persisted, then the proposed methodology can be applied at no
additional cost.

Formally, let FH = {F1, ..., FN} denote a set of N histor-
ical failures, each of which may be a single assertion failure or
an incorrect signal value. Let SH = {S1, ..., SN} denote their
associated suspect sets, where each Si is the set of all single–
cardinality solutions for the SAT–based debugging instance
corresponding to Fi. We also define SU = S1 ∪ ... ∪ SN
to be the set of all historically observed suspect locations.

As with suspect implications based on structural domi-
nance, probabilistic implications based on historical data can
be useful in SAT–based debugging. Having observed a set of
suspects SV , we can guess that the probabilistically implied
suspects of SV will also be solutions, and guide the SAT search
accordingly. Moreover, because probabilistic implications are
necessarily approximate in nature, these relationships can be
estimated using highly efficient statistical procedures. The
following two sections present two methods to precisely define
and compute probabilities between suspects and to identify
probabilistic implications.

IV. SUSPECT PREDICTION VIA IMPLICATION GRAPHS
In this section we present the first method for estimating

probabilistic implication relations between suspects. We then
show how these relationships can be used to predict the
solution set of a debug instance, given a subset of the solutions.

Let F denote a failure and S denote its set of single–
cardinality debug solutions. We assume the availability of a
debug history (FH ,SH), where FH may or may not contain
F . The set S is thus not known, however, we are given a subset
of suspects Sobs ⊆ S. Then the relation si

p
=⇒ sj between some

pair of suspects si and sj is characterized by the probability
p = P (sj ∈ S|si ∈ S). To simplify the presentation, we use
the shorthand notation P (sj |si) to mean the same thing. These
probabilities can then be used for the suspect set prediction
task, whose goal is to estimate the suspect set S given only
SH and Sobs; that is, find a function Pred such that Pred(Sobs)
is as similar to S as possible.

A. Learning Suspect Relationships
Consider two suspects si, sj ∈ SU . Let count(si) = |{S :

si ∈ S ∧ S ∈ SH}| (i.e., the number of times that si occurs
in the historical data). We also let count(si, sj) = |{S : si ∈
S ∧ sj ∈ S ∧S ∈ SH}| (i.e., the number of times that both si
and sj occur together in the historical data).

From a statistical perspective, we can view count(si, sj) as
a data point which is generated by the underlying parameter
P (sj |si). Here the random variable Xj = I[sj ∈ S], where

I is the indicator function, is a Bernouilli random variable
with probability p = P (sj |si) of being 1. Each occurrence of
si in SH is a Bernouilli trial, of which there are count(si).
Therefore, the number of successful trials is the random
variable count(si, sj), which follows a binomial distribution:

P (count(si, sj)|P (sj |si), count(si)) =

B(x = count(si, sj);n = count(si); p = P (sj |si))
(1)

Eq. 1 is the data likelihood with respect to si and sj —
the probability of observing the data count(si, sj) given the
parameter P (sj |si). As such, we can estimate the value of
P (sj |si) by the maximum likelihood estimation (MLE), which
is defined as the value that maximizes the data likelihood. For
a binomial distribution, this is given by:

PMLE(sj |si) =
count(si, sj)

count(si)
(2)

Unfortunately, a major deficiency of the MLE estimate is
that it is prone to overfitting, especially when the amount of
data is small, as it can be often the case in the application
described here. For instance, suppose a suspect si occurs only
once in SH , as part of some suspect set Sk ∈ SH . Eq. 2 would
give PMLE(sj |si) = 0 for all sj /∈ Sk. However, it would much
too strong of a conclusion that all suspects sj /∈ Sk can never
co-occur with si, having only observed si once. Eq. 2 would
also give PMLE(sj |si) = 1 for all sj ∈ Sk, which is similarly
problematic.

This issue is typically dealt with by using the maximum
a posteriori (MAP) estimate [21] instead of the MLE. With
MAP, the parameter values are selected so as to maximize
the posterior distribution rather than the likelihood. Using
Bayes’ rule, this is equivalent to maximizing the prod-
uct of the likelihood and the prior distributions: WMAP =
argmaxW P (W |D) = argmaxW P (D|W)P (W), where W
and D denote the parameters and data of a model, respectively.
The prior distribution P (W) is chosen to reflect one’s prior
belief or bias regarding the values of W .

In our scenario, we heuristically choose the prior to be a
Gaussian distribution N (x;µ, σ2) with µ = 0.5 and σ2 = 0.2.
The Gaussian shape is chosen to reflect our subjective bias
that most suspect pairs are unrelated (with P (sj |si) near 0.5),
while relatively few suspect pairs are strongly related (with
P (sj |si) near 0 or 1). The mean of 0.5 reflects the fact that
the parameters are probabilities and must lie between 0 and 1.
The variance of 0.2 was chosen to be sufficiently large so as to
allow the model to fit the data, while being sufficiently small
to prevent extreme overfitting. Empirically, we found that the
end results are quite robust to the value of σ2; anything in the
range of 0.1–0.5 tends to work well.

Overall, this gives the following estimate for the suspect
implication probabilities:

PMAP(sj |si) = argmax
p

exp

(
− (p− 0.5)2

0.4

)
×
(

count(si)
count(si, sj)

)
pcount(si,sj)(1− p)count(si)−count(si,sj)

(3)

Eq. 3 has the effect of pulling extreme values towards 0.5 when
the amount of data for si is small, thereby regularizing them.
This is illustrated by the following example.

Fig. 2. Likelihood, prior, and posterior distributions for Example 1.

Example 1. Consider the following historical debug data:

SH = {S1, S2, S3, S4, S5}
S1 = {s1, s4, s5}
S2 = {s2, s5}
S3 = {s1, s2, s3, s4, s5}
S4 = {s3, s5, s6}
S5 = {s1, s3, s4}

To estimate the probability of the implication s2
p

=⇒ s5, we
begin by computing count(s2) = 2 and count(s2, s5) = 2. By
Eq. 2, the MLE estimate for PMLE(s5|s2) would be 1.0. By
Eq. 3, the MAP estimate is:

PMAP(s5|s2) = argmax
p

exp

(
− (p− 0.5)2

0.4

)
×
(

2

2

)
p2(1− p)2−2

= 0.93

Figure 2 plots the likelihood, prior, and posterior distributions
for this example. The MLE estimate of 1.0 is severely overfit
to a small amount of data. On the other hand, MAP provides
a regularized estimate by pulling the value closer to 0.5. The
degree of regularization can be tuned by adjusting the prior
variance.

B. Multiple–Suspect Implications
In this section we extend the preceding methodology to

estimate the probability of a multiple–suspect implication
SA

p
=⇒ sj , where SA ⊆ SU denotes an antecedent set of

suspects, and sj denotes a single consequent suspect. We
denote this probability by P (sj |SA). The approach taken in
Eq. 3 would not be suitable for this task, because most possible
antecedent sets SA will have never occurred in the historical
data (assuming a small data set), meaning that count(SA)
would be 0. Instead, we show how to approximately de-
rive P (sj |SA) from the estimated single–suspect probabilities
P (sj |si) for every si ∈ SA. This approach can be applied to
any possible SA and sj .

Consider the directed graph G = (V,E), where each
vertex vi ∈ V corresponds to the suspect si ∈ SU . For
each ordered pair of suspects (si, sj), there exists a directed
edge (vi, vj) ∈ E weighted by P (sj |si). Thus, G is a
graphical model for the events of each suspect being a solution,
with edges modeling conditional dependencies between these
events. Given the antecedent set SA, P (sj |SA) for any sj can
be estimated using a single pass of belief propagation on G.
The result is given by the following proposition [22].

s1

s2

s3

s4

s5

s6

0.62

1.00

0.62

4e-6

0.50

0.50

0.93

0.07

Fig. 3. Suspect implication graph for Example 2. Only edges from si ∈ Sobs
to sj ∈ SU \ Sobs are shown.

Proposition 1. Under the assumption of independence be-
tween the weights of E, the probability of suspect sj occurring
given SA is:

P (sj |SA) =


1, sj ∈ SA

1−
∏

si∈SA

(1− P (sj |si)), sj /∈ SA
(4)

Proof: For sj ∈ SA, P (sj |SA) is trivially 1. For sj /∈ SA,
consider the complementary event of suspect sj not being a
solution, and let P (s̄j |SA) denote its probability. The only
way this event can occur is if sj is not implied by any
of the suspects si ∈ SA. Assuming independence between
implication events, this gives P (s̄j |SA) =

∏
si∈SA

(1−P (sj |si)).

Eq. 4 then follows immediately.
While the derivation of Eq. 4 involves several assumptions

and approximations which may not hold perfectly in practice,
it nonetheless serves as a useful tool for the purposes of suspect
ranking and suspect set prediction, as shown in Section VII.
The following example demonstrates its use.

Example 2. Consider the data SH from Example 1. Suppose
the suspects Sobs = {s1, s2} have been found as solutions. We
can build the suspect implication graph G using edge weights
P (sj |s1) and P (sj |s2) for each j = 3, 4, 5, 6 computed with
Eq. 3. The result is shown in Figure 3. Next, the multiple–
suspect implication probabilities P (sj |Sobs) are computed with
Eq. 4:

P (s3|Sobs) = 1− (1− P (s3|s1))(1− P (s3|s2))

= 0.89

And similarly,

P (s4|Sobs) = 0.999998

P (s5|Sobs) = 0.973

P (s6|Sobs) = 0.070

C. Suspect Set Prediction
In this subsection we show how probabilistic suspect

implications can be used to predict the debugging solution set
S, given a subset of suspects Sobs ⊆ S. First, we can compute
the probability of every candidate suspect sj ∈ SU being a
solution using Eq. 4. This leads to a ranking of all candidate
suspects, which we denote by Rank(SU |Sobs) = sr1 , ..., sr|SU| .
This ranking is key to the enhanced debugging search algo-
rithm that we present in Section VI.

This ranking does not tell us which candidate suspects will
actually be in the solution set and which will not, which may

Fig. 4. Illustration of the termination point for Example 3.

be useful for approximate debugging [12], [15]. However, if
the ranking is good then there should exist some k such that
sri is a solution for most i ≤ k, and sri is not a solution for
most i > k. Intuitively, k draws a line through Rank(SU |Sobs)
to approximately separate the solutions from the non-solutions.
The following definition explains how to find such a k.

Definition 1. Termination Point
Given Rank(SU |Sobs) obtained from Eq. 4, for each i such

that |Sobs| < i ≤ |SU |, define the function f : Z→ R where

f(i) = P (sri |{sr1 , ..., sri−1
})

= 1−
∏

1≤j<i

(1− P (sri |srj)) (5)

Let fsmooth(i) = 1
2δ+1

∑i+δ
j=i−δ f(j). Then the termination

point, k, is the smallest index i such that fsmooth(i) is a local
minimum.

Intuitively, f(i) can be thought of as the incremental
conditional probability of the next ranked suspect being a
solution, given that the previous i − 1 suspects are solutions.
Because f can be quite noisy, smoothing is applied by taking
the running average with a smoothing width of δ, whose value
is determined empirically. Local minima of fsmooth are points
at which, according to the data set SH , further solutions are
unlikely.

Example 3. To properly illustrate the termination point a
larger data set is needed. Figure 4 plots f and fsmooth for
a failure from our experimental data (see Section VII). The
horizontal axis is the suspect rank index, while the blue points
show P (sri |{s1, ..., sri−1}). The solid green line plots fsmooth.
As shown in the figure, the estimated stopping point is k = 231,
while the actual number of suspects is |S| = 262.

To summarize, the full procedure to predict a suspect set
is outlined in Algorithm 1. We refer to this method as Suspect
Implication Graph (SIG) prediction.

V. SUSPECT2VEC : A NEURAL PREDICTION MODEL FOR
SUSPECT IMPLICATIONS

In this section we present suspect2vec — an alternative
method to estimate suspect implications and infer the solution
set of a debug instance, given a subset Sobs. Suspect2vec
addresses the main performance bottleneck of the SIG method,

Algorithm 1 SIG-PREDICTION(SH , Sobs)
1: Compute P (si|sj) for every ordered pair si, sj using Eq. 3
2: Compute P (si|Sobs) for every si using Eq. 4
3: Sort SU by P (si|Sobs) to obtain Rank(SU |Sobs)
4: Compute k using Definition 1
5: Return Pred(Sobs) = {sr1 , ..., srk}

which is estimating the number of suspects k. Instead of trying
to predict k directly, suspect2vec aims to classify each
candidate suspect as a solution or non-solution. As a side–
effect, suspect2vec is also able to estimate probabilities for
single–suspect and multiple–suspect implications, as well as a
suspect ranking. As shown in Section VII, suspect2vec is
able to outperform SIG in prediction accuracy in the majority
of cases.

A. Prediction Model
Suspect2vec can be formulated as a neural prediction

model, taking as input an encoding of Sobs and outputting a
value yi for each si ∈ SU . Value yi is the predicted label
(solution or non-solution) for candidate suspect si, but can
also be interpreted as P (si|Sobs). To produce these values,
the network’s internal parameters learn embeddings of all
candidate suspects, which are representations of the suspects
as d-dimensional vectors.

Embedding representations have been shown to be highly
effective for capturing relationships between objects. For ex-
ample, the word2vec model [23] is able to learn embedding
representations of words, which can predict the occurrence of
a word given its context in a sentence. Word2vec assigns
similar embeddings to semantically similar words because
such words tend to occur in similar contexts [24]. The
suspect2vec model repurposes this property in order to
capture correlations between nodes in a logic circuit. Intu-
itively, the model should learn more similar embeddings for
more closely related suspects, because related suspects tend to
occur in the same or similar suspect sets.

In detail, with each candidate suspect si ∈ SU we associate
an input vector and an output vector, denoted by vi and v′i,
respectively. Intuitively, the use of two vectors for each suspect
allows the model to treat suspects differently depending on
whether they belong to the antecedent or the consequent of
the implication. Then the probability of each single–suspect
implication si

p
=⇒ sj is defined as:

P (sj |si) = σ(v′j · vi) (6)

where σ(x) = 1
1+exp(−x) denotes the logistic function. Defined

in this way, the product v′j · vi between the input and output
vectors measures the strength of the implication from si to sj :
strongly related suspects will have similar vectors and hence
a large positive score, while dissimilar suspects will receive
large negative scores. The logistic function σ then maps these
scores to the range (0, 1) so that they can be interpreted as
probabilities.

The probability of a multi–suspect implication Sobs can
be defined in a similar manner, because suspect embeddings
make it possible to derive representations for an arbitrary set of
suspects. We define the vector representation of Sobs, denoted
vobs, as the mean vector of all suspects in Sobs:

vobs =
1

|Sobs|
∑
si∈Sobs

vi (7)

x h1 h2 y

L1 norm

W × h1 σ(W ′ × h2)

Fig. 5. The suspect2vec neural prediction model

This is similar to the common practice in natural language
processing of representing a sentence by the mean of word
vectors within the sentence [25], and is motivated by the ob-
servation that sums of embedding vectors produce semantically
meaningful vectors. The mean is taken rather than the sum in
order to eliminate the dependence of the model on the size of
the input set.

With Eq. 7, we can define P (sj |Sobs) as:

P (sj |Sobs) = σ(v′j · vobs) (8)

This leads to a simple scheme for predicting an unknown
suspect set S: for each possible suspect sj , predict sj ∈ S
if P (sj |Sobs) ≥ 0.5, and sj /∈ S otherwise. Note that
it is not possible to predict S in this way with SIG, be-
cause the candidate suspect scores produced by Eq. 4 do
not have an interpretation as classification labels. In contrast,
suspect2vec is trained such that Eq. 8 can be interpreted
in this way. This is explained further in Section V-B.

Figure 5 shows how suspect2vec can be expressed as a
neural network. The embedding vectors vi and v′i are collected
into weight matrices W and W′, where vi is the ith column of
W, and v′i is the ith row of W′. The input set Sobs is encoded
as a bag-of-suspects vector x of length |SU |, with xi = 1
if si ∈ Sobs, or xi = 0 otherwise. This is passed through
an L1 normalization layer so that h1 = 1

|Sobs|x. Multiplying
h1 by the weight matrix W produces h2 = vobs in the next
hidden layer. The final layer multiplies by W′ and applies the
σ function, producing a vector y of length |SU | at the output.
The vector y contains the predicted labels for each suspect,
because yj = P (sj |Sobs) as defined by Eq. 8.

B. Training Procedure
We now describe the optimization objective and procedure

which, based on the historical data SH , trains suspect2vec
to maximize prediction accuracy and learn representative sus-
pect embeddings. For a suspect set S, each output yi should
be interpreted as a binary classification label for candidate
suspect si. Therefore, we wish to encourage yi to be close
to 1 for si ∈ S and close to 0 for si /∈ S. This is achieved
by means of the cross-entropy loss function. Letting ŷi denote
the target class label for candidate suspect si (1 if si ∈ S and
0 otherwise), the cross-entropy loss is defined as:

LCE = −
|SU |∑
i=1

ŷi log yi + (1− ŷi) log(1− yi)

To be able to predict any suspect set S, given any subset
Sobs ⊆ S, the full optimization objective is to minimize the

Algorithm 2 SUSPECT2VEC-TRAIN(SH , d, η, e)
1: for i← 1 to |SU | do
2: vi ← RANDOM-VECTOR(d)
3: v′i ← RANDOM-VECTOR(d)
4: end for
5: for iter ← 1 to e do
6: for each S ∈ SH do
7: Sobs ← RANDOM-SUBSET(S)
8: for i← 1 to |SU | do
9: vi ← vi − η∇vi

L
10: v′i ← v′i − η∇v′iL
11: end for
12: end for
13: end for

following loss function:

L = −
∑
S∈SH

1

2|S|

∑
Sobs∈2S

|SU |∑
i=1

[
ŷi(S) logP (si|Sobs)

+(1− ŷi(S)) log(1− P (si|Sobs))
] (9)

where 2S denotes the power set of S. The term 1
2|S|

is
introduced to balance the total contributions of all S ∈ SH
regardless of their differing sizes.

Eq. 9 is minimized using gradient descent. However, an
exact minimization is not feasible in practice because the
power set 2S has size 2|S|, which can be extremely large.
Therefore, we approximate L by randomly sampling multiple
subsets. For each sample Sobs, the gradients are given by:

∇vi
L =


1
|Sobs|v

′
i [σ(v′i · vobs)− ŷi] , si ∈ Sobs

0, si /∈ Sobs

∇v′iL = vobs [σ(v′i · vobs)− ŷi]

(10)

Algorithm 2 describes the full optimization procedure,
named SUSPECT2VEC-TRAIN. This procedure takes as input
the training data SH and three hyperparameters: the embedding
dimensionality, d, the learning rate, η, and the number of itera-
tions over the data set, e. Embedding vectors are initialized by
the subroutine RANDOM-VECTOR(d), which returns a vector
of length d with random values between 0 and 1. For each
iteration and suspect set S, a random subset is generated by
randomly including or excluding each si ∈ S with probability
0.5. Gradients are then computed using Eq. 10 and used to
update the embeddings.

It is worth noting that the subset sampling strategy
RANDOM-SUBSET always produces subsets that are close to
|S|
2 in size. Alternatively, one could set the probability of

including a suspect differently for each training sample. This
would allow the model to observe a greater variety of set
sizes during training, which might allow it to perform better
when predicting from a small Sobs. However, it was found
empirically that a fixed inclusion probability of 0.5 performed
equally well compared to a training procedure that selected a
different inclusion probability between 0.25 and 0.75 for each
sample. This may be attributable to the L1-normalization step
in the network, which greatly reduces sensitivity to the input
set size.

VI. A DIRECTED SEARCH ALGORITHM USING SUSPECT
PREDICTION

In this section we show how a suspect prediction model
such as SIG or suspect2vec can be used to enhance the
bug search procedure. One possible approach is to find a subset
of suspects by running the search non-exhaustively, and then
approximate the remainder of the solution set from the implied
solutions [15]. This can greatly accelerate the suspect search
process, but it sacrifices the formal guarantees of SAT–based
debugging that all returned suspects are possible bug locations
and that all possible bug locations are returned.

For applications that demand such formal guarantees, we
propose a new SAT–based debugging algorithm that uses
suspect prediction only to guess where solutions are most
likely to be found, and then guides the search to prioritize
these locations. The resulting algorithm remains sound and
complete, but on average finds more suspects earlier in the
search. This also means that within a given amount of time,
more suspects will be available for downstream tasks such as
detailed suspect analysis or triage.

One might naturally hope to achieve this behaviour by
ordering the suspect variables by implication probability,
P (si|Sobs), and searching for each individual suspect in turn.
An individual suspect could be enforced, for example, by
adding an assumption literal of the form si to the CNF
formula, which would constrain the solver to only consider
solutions in which the variable si is activated. However, it
was observed empirically that such an approach can severely
slow down the overall search in many cases. This is because
in order to proceed to the next suspect, any constraints that
forced the previous suspect must be removed. This can be
highly detrimental to the incremental performance of modern
SAT solvers because removing constraints often forces learned
clauses to be invalidated. Instead, we propose an approach
which only infrequently requires the SAT solver to be reset.

A. Suspect Search in Multiple Passes
As a first step towards this goal, we explain how the SAT–

based suspect search algorithm of [2] can be modified to
process suspects or groups of suspects independently from one
another. This is a key prerequisite to being able to prioritize
certain candidate suspects above others. The idea is to partition
the search space into multiple passes, with only a subset of the
design locations examined in each pass. Letting Pj denote the
set of locations examined during the jth pass, the CNF formula
Φ(Pj) is constructed as described in Section II-A for N = 1,
but with error select logic only inserted at locations li ∈ Pj .
Φ(Pj) can be searched for all satisfying assignments as usual,
but the search space is greatly reduced.

Pseudocode for the full algorithm is given in Algorithm 3,
which takes as input a circuit C, an error trace err, and
parameters TL (the time limit) and split factor (the degree
of partitioning). The algorithm maintains a queue of passes to
be run, which is initialized with a pass containing all design
locations. The subroutine BUILD-CNF(C, err, P) constructs a
CNF formula for the debugging problem defined by (C, err),
but it only models design locations in P as potential error
sources. Each pass is popped from the queue and searched
for solutions by the subroutine SOLVE. Most crucially, this
subroutine is only allowed to run for at most TL seconds, after
which execution returns to line 9. This means that the set of
returned solutions, SP , may not be complete. Line 10 checks

Algorithm 3 MULTI-PASS-DEBUG(C, err, TL, split factor)
1: S ← φ
2: Pinit ← all locations in C
3: pass queue ← empty queue
4: pass queue.push(Pinit)
5: while not pass queue.empty() do
6: P ← pass queue.pop()
7: Φ← BUILD-CNF(C, err, P)
8: SP ← SOLVE(Φ, TL)
9: S ← S ∪ SP

10: if SOLVE timed out and |P \ SP | > 0 and |P | > 1
then

11: m← min(split factor, |P \ SP |)
12: (P1, ..., Pm)← PARTITION(P \ SP , m)
13: for i = 1 to m do
14: pass queue.push(Pi)
15: end for
16: end if
17: end while
18: return S

whether this is the case, and if so, then the remaining candidate
suspects P \ SP are partitioned uniformly into smaller passes
P1, ..., Pm, where m = min(split factor, |P \ SP |). Each
subpass is added to the queue. The process repeats until all
passes and subpasses have been executed.

The benefit of MULTI-PASS-DEBUG is that the size of the
CNF formula is dynamically adjusted based on difficulty. If
the search cannot be completed within the time limit, then the
problem is scaled down by reducing the number of suspects
under consideration. This can greatly reduce the peak memory
requirements and total runtime of the search process.

However, the method is not without tradeoffs. In some
cases, interrupting the search to partition the pass can cause
performance to deteriorate, particularly if TL is set too low,
because it resets the SAT solver and abandons any progress
that has been made up until the time limit. Furthermore,
if TL is set lower than the time required to find a single
suspect, then MULTI-PASS-DEBUG is not guaranteed to find all
solutions. Theoretically, this issue can be solved by allowing
unlimited processing time when |P | = 1. Despite these
potential drawbacks, we show in Section VII that MULTI-
PASS-DEBUG frequently outperforms single–pass debugging
on difficult instances.

B. Implication–Guided Suspect Search
The greatest advantage of MULTI-PASS-DEBUG is that it

lends itself more easily to guidance from suspect implications.
Because passes are independent of one another, the order in
which candidate suspects are examined can easily be con-
trolled. If this order follows Rank(Sobs) from Eq. 4 or 8, then,
assuming a reasonably accurate ranking, most of the design
locations examined in the initial passes will be solutions, while
non-solution locations will be deferred to later passes. As a
result, more suspects will be available earlier.

In MULTI-PASS-DEBUG, candidate suspects are ordered
randomly; therefore, any ranking that is more accurate than
a random ordering should improve performance. However,
we expect that more accurate rankings should lead to greater
improvements. Intuitively, and as shown empirically in Sec-
tion VII, the suspect ranking techniques tend to be more
accurate when more known suspects are given (i.e. Sobs is

Algorithm 4 IMPLICATION-GUIDED-DEBUG(C, err, TL,
split factor)

1: S ← φ
2: Pool1 ← all locations in C
3: Pooli ← empty array for 2 ≤ i <∞
4: n1 ← 1
5: ni ← 0 for all 2 ≤ i <∞
6: for lv = 1 to ∞ do
7: if |Poollv| = 0 then
8: return S
9: end if

10: while nlv ≥ 1 do
11: RANK-SUSPECTS(Poollv, S)
12: P ← FIRST-PARTITION(Poollv, nlv)
13: Φ← BUILD-CNF(C, err, P)
14: SP ← SOLVE(Φ, TL)
15: S ← S ∪ SP
16: if SOLVE timed out and |P | > 1 then
17: Poollv+1 ← Poollv+1 ∪ S \ P
18: nlv+1 ← nlv+1 + min(split factor, |P \ SP |)
19: end if
20: Poollv ← Poollv \ P
21: nlv ← nlv − 1
22: end while
23: end for

larger). This suggests that to maximize performance, the global
suspect ranking should be updated regularly during the search
so as to always use the most up-to-date Sobs.

Unfortunately, this idea is at odds with the initial idea
of storing pending candidate suspects and passes in a queue,
because once candidate suspects are inserted into passes and
pushed onto the queue, their ordering is fixed. If more suspects
are found afterward and Sobs is updated, all pending candidate
suspects should be re-ordered and re-partitioned into a new set
of passes. Therefore, we present a reformulation of the multi-
pass search strategy which builds passes no earlier than they
are needed; this allows us to use the most accurate possible
ranking when choosing the next candidate suspects to examine.

The new algorithm, named IMPLICATION-GUIDED-
DEBUG, is described in Algorithm 4. The algorithm processes
candidate suspects in levels, beginning with level 1. Poollv
stores the candidate suspects to be processed in level lv.
Within each level, Poollv is partitioned into multiple passes.
Candidate suspects which cannot be searched within a time
limit of TL are added to Poollv+1 to be re-examined later.
The algorithm terminates in line 8 once no candidate suspects
remain.

The partitioning of Poollv is controlled by the parameter
nlv and the subroutine RANK-SUSPECTS. nlv is the number
of passes that Poollv is partitioned into, and it is set so that
higher levels examine fewer candidate suspects per pass. nlv is
approximately increased by a factor of split factor for each
level, with adjustments made in line 18 in case fewer than
split factor candidate suspects remain.

The prioritization of candidate suspects is governed by the
subroutine RANK-SUSPECTS. Given the set of discovered solu-
tions S, RANK-SUSPECTS(Poollv, S) computes Rank(Poollv|S)
using either Eq. 4 or Eq. 8 and sorts Poollv accordingly.
This is done immediately before each pass is built. In the
pseudocode, the partitioning itself is performed in line 12 by

MULTI-PASS-DEBUG IMPLICATION-GUIDED-DEBUG

level 1

level 2

level 3

level 4

P1

P2 P3

P4 P5 P6 P7

Pool1

Pool2

Pool3

P1

P2 P3

P4 P5 P6 P7

Fig. 6. Suspect processing flow for MUTLI-PASS-DEBUG (left) and
IMPLICATION-GUIDED-DEBUG (right) with split factor = 2. Passes are
solved in numerical order (P1, P2, P3, etc.).

the subroutine FIRST-PARTITION(Poollv, nlv), which returns the
first partition of Poollv out of nlv equally–sized partitions. nlv
is then decremented so that each pass at a given level will have
approximately the same size.

The connection between MULTI-PASS-DEBUG and
IMPLICATION-GUIDED-DEBUG is apparent in Figure 6,
which illustrates the flow of suspect processing in each
algorithm. Despite their apparent disparities when expressed
in pseudocode, both algorithms operate in a similar manner.
The key distinction is that IMPLICATION-GUIDED-DEBUG
accumulates all candidate suspects at each level and reorders
them before partitioning them into passes. This pooling
strategy offers two sources of improvement over the queuing
strategy of MULTI-PASS-DEBUG: it uses the most up-to-date
Sobs before committing to a suspect ranking, and it balances
the suspects more uniformly across passes within the same
level.

VII. EXPERIMENTAL RESULTS
In this section we evaluate the proposed methodolo-

gies using a large and diverse set of failures from sev-
eral benchmark designs. We begin with an evaluation of
SIG and suspect2vec for estimating suspect implications,
rankings, and set prediction. We then evaluate the pro-
posed IMPLICATION-GUIDED-DEBUG algorithm and compare
it against MULTI-PASS-DEBUG and a single-pass baseline.

A. Data Set
Our data set consists of eight benchmark designs obtained

from Opencores [26], Titan23 [27], and an industry partner.
The designs and their sizes are listed in Table I.

For each design, a number of bugs were injected by
randomly selecting and corrupting a fragment of the HDL
code. Four types of such bugs were created, as listed below.

1) Assignment bug: randomly replace a signal assign-
ment statement with an assignment to 0 or 1.

2) Incorrect condition bug: randomly replace a condi-
tional statement of the form if (<expression>)
with if (1).

3) Incorrect operator bug: randomly replace a binary
operator with a different (but semantically valid)

operator.
4) Missing port connection bug: remove a port connec-

tion in a module instantiation.
In addition, we manually created several bugs for each

design in order to improve the diversity and representativeness
of the data set. These bugs include missing pipeline stages,
incorrect state transitions, bad stimulus, and more complex
corruptions of logical and arithmetic expressions. The break-
down of bugs by type is also given in Table I. The relative
frequencies of bug types in the data set approximately reflects
the relative difficulty of generating bugs of each type.

Each buggy design was then simulated, and one or more
failures was identified for each bug. Failures under consid-
eration include assertion errors and incorrect values on the
primary output signals when compared to the golden design.
The resulting number of failures is given in Column 9 of
Table I. SAT–based debugging was performed at the RTL level
on each failure to obtain the complete suspect sets.

Each benchmark design is considered independently in all
experiments. In particular, training is performed separately
because data from one design is not helpful to understanding
suspect relationships in a different design.

B. Suspect Ranking and Set Prediction
In this section we evaluate the two proposed methods

for computing probabilistic suspect implications: SIG and
suspect2vec. Both methods are evaluated on the tasks
of suspect ranking and suspect set prediction. In essence,
suspect ranking considers the relative strengths of suspect
implications, whereas suspect set prediction considers the
absolute implication strengths (i.e., whether or not each suspect
is implied). Suspect ranking is of particular importance for the
IMPLICATION-GUIDED-DEBUG algorithm, while suspect set
prediction can be useful in itself for approximate debugging.

Letting Pred(Sobs) and S denote predicted and true suspect
sets, respectively, the prediction quality is characterized by
three key metrics: precision, recall, and F1 score. Precision is
defined as the fraction of predicted suspects which are correct:

Prec =
|Pred(Sobs) ∩ S|
|Pred(Sobs)|

Recall is defined as the fraction of correct suspects which are
predicted:

Rec =
|Pred(Sobs) ∩ S|

|S|

F1 score is defined as the harmonic mean of precision and
recall, and it provides a metric which balances the two:

F1 =
2

1
Prec + 1

Rec

=
2|Pred(Sobs) ∩ S|
|S|+ |Pred(Sobs)|

To characterize the quality of a suspect ranking, we mea-
sure the area under the precision versus recall curve (AUC-PR),
defined as follows. Let sr1 , ..., srn denote the suspect ranking.
Then,

AUC-PR =

n∑
i=1

Prec(i)× (Rec(i)− Rec(i− 1))

TABLE I. DATA SET CHARACTERISTICS

Design Gates Total bugs Assignment bugs Incorrect condition bugs Incorrect operator bugs Missing port Manual bugs Failuresconnection bugs
ethernet 82803 24 14 3 3 0 4 80
fdct 546878 32 20 2 5 0 5 35

mips789 55248 40 22 3 5 5 5 79
scam_core 1315446 19 8 1 3 0 7 69
smoac_core 879920 30 11 3 7 2 7 61
sudoku_check 649819 30 9 2 6 2 11 65

vga 44579 44 20 2 5 4 13 52
wb_dma 222302 29 9 3 6 2 9 39

where

Prec(i) =
|S ∩ {sr1 , ..., sri}|

|S|

Rec(i) =
|S ∩ {sr1 , ..., sri}|

i

Note that an optimal ranking, which places all solution sus-
pects before all non-solutions, has an AUC-PR of 1.0.

Both methods are compared against a baseline method
named “naive” which ranks suspects by non-increasing
count(si); that is, suspects are ranked higher when they occur
more frequently in the training data. To predict a set, the naive
method chooses the set size k to be the median of set sizes
in the historical data. This serves as a lower bound which any
useful method should outperform.

All experiments are performed using the leave-one-out
methodology. That is, for each suspect set Si ∈ SH , we use
SH \ {Si} as training data and Si as the test point. We then
take the mean or median over all i. To test on Si, we select
the observed subset Sobs,i ⊆ Si to be the first α|Si| suspects
found by the SAT search on failure Fi, where α (0 ≤ α ≤ 1)
is the sample size. This replicates that subset that would be
obtained in the IMPLICATION-GUIDED-DEBUG algorithm.

Hyperparameter choices for SIG include a prior variance
of 0.2 and a smoothing width of δ = |SU |

50 for the termination
point. For suspect2vec we use an embedding dimension-
ality of d = 20, a learning rate of η = 0.01, and e = 4000
training epochs. We choose a small dimensionality so as to
limit the representational capacity and avoid overfitting to the
small data sets under consideration here.

1) Detailed Results at 50% Sample: Table II gives the
results for each design with a sample size of α = 0.5. We com-
pare the SIG and suspect2vec (s2v) methods against the
baseline (naive) for the metrics of precision, recall, F1 score,
and AUC-PR. It is clear that both SIG and suspect2vec
perform significantly better than naive in all metrics and across
all designs. Suspect2vec performs best of all in most cases,
although SIG sometimes achieves greater precision.

To better understand these results, columns 14-16 report the
relative error in the estimated set size (k), defined as |k−|S|||S| .
We take the median over all S ∈ SH rather than the mean for
this metric due to the presence of some extreme outliers. The
results suggest that in SIG, poor estimation of k is the main
impediment to achieving a high F1 score. By doing away with
the termination point estimate and casting the problem in terms
of binary classification, suspect2vec is able to estimate k
much more accurately. This is also reflected in the AUC-PR
metric, which is agnostic to the set size estimate and only
measures the ranking quality. Here the performance of SIG is
much closer to that of suspect2vec in most cases.

(a) F1 score (b) AUC-PR

Fig. 7. F1 score and AUC-PR for different sample sizes. The mean is taken
over all designs.

2) Effect of Sample Size: We now investigate how suspect
prediction performs when given suspect subsets of different
sizes. Intuitively, we expect that performance should improve
with larger samples, as larger samples are more informative
and characterize the failure more precisely. Additionally, with
a sample size of α, α|S| suspects are given; in our experiments
the given suspects are always ranked first regardless of how
the prediction model would score them.

Figure 7 plots the F1 score and the AUC-PR for each
method against α, ranging from 0.1 to 0.9 in increments of
0.1. The trend with increasing α matches our expectation. The
naive method also improves with increasing α, even though it
does not make use of the sample to guide its output, simply
because more suspects are given with larger α. Both SIG and
suspect2vec significantly outperform naive at all sample
sizes. We also observe that for very small α, the gap between
SIG and suspect2vec widens in F1 score, while it narrows
in AUC-PR. This further confirms that the two methods are
comparable for the suspect ranking task, but SIG struggles to
estimate the size of the suspect set.

3) Effect of Training Set Size: We aim to determine how
much training data each of the proposed suspect prediction
methods requires. Let SH denote the complete data set for
a design, and let T denote the size of the training set used.
In this experiment, for each Si ∈ SH , we build the training
set by choosing min(T, |SH \Si|) items randomly from SH \
Si. Figure 8 plots the F1 scores and AUC-PR values with T
varying from 5 to 50 in increments of 5. A sample size of
α = 0.5 is used. Again, the mean is taken over all failures and
all designs.

Unsurprisingly, the average performance consistently im-
proves with more training data, with a greater rate of increase
seen at small T . Both methods begin to reach very good
performance at approximately 20-30 training instances. If only
a small amount of data is available, then it is important to note
that the performance gap between SIG and suspect2vec
narrows to essentially zero at very small T . This is consistent
with well–established literature on neural networks, which has

TABLE II. SUSPECT SET PREDICTION RESULTS AT α = 0.5 FOR NAIVE, SIG, AND SUSPECT2VEC (S2V)

Design Mean precision Mean recall Mean F1 score Mean AUC-PR Median set cardinality error
naive SIG s2v naive SIG s2v naive SIG s2v naive SIG s2v naive SIG s2v

ethernet 0.625 0.832 0.930 0.582 0.864 0.924 0.521 0.827 0.917 0.765 0.951 0.966 0.476 0.207 0.038
fdct 0.733 0.823 0.972 0.725 0.879 0.863 0.651 0.842 0.909 0.891 0.932 0.937 0.606 0.105 0.135

mips789 0.704 0.904 0.890 0.651 0.731 0.797 0.623 0.803 0.827 0.821 0.907 0.927 0.369 0.220 0.173
scam_core 0.713 0.953 0.914 0.774 0.713 0.921 0.704 0.808 0.910 0.874 0.948 0.963 0.223 0.284 0.051
smoac_core 0.597 0.824 0.887 0.596 0.832 0.848 0.529 0.814 0.859 0.729 0.901 0.916 0.458 0.146 0.080

sudoku_check 0.702 0.763 0.946 0.552 0.857 0.876 0.553 0.787 0.901 0.772 0.931 0.942 0.468 0.269 0.071
vga 0.659 0.822 0.846 0.585 0.781 0.840 0.538 0.788 0.827 0.758 0.890 0.914 0.569 0.206 0.180

wb_dma 0.671 0.830 0.799 0.665 0.737 0.844 0.566 0.771 0.797 0.811 0.867 0.903 0.682 0.168 0.131
mean 0.676 0.844 0.898 0.641 0.799 0.864 0.586 0.805 0.868 0.803 0.916 0.934 0.481 0.201 0.107

(a) F1 score (b) AUC-PR

Fig. 8. F1 score and AUC-PR for amounts of training data. The mean is
taken over all designs.

shown that they generally require large amounts of data in
order to outperform statistical methods.

4) Discussion: Our results show that both SIG and
suspect2vec are effective methods for computing proba-
bilistic suspect implications and predicting suspect locations.
For predicting suspect sets, suspect2vec consistently out-
performs SIG on average due to its superior ability to estimate
the set size. However, on a case-by-case basis results are much
more varied, and in many cases SIG performs better than
suspect2vec.

This is shown in Figure 9, which plots the distributions
of the relative performance of the two methods. Specifically,
for each failure in the data set we compute the ratio of the
suspect2vec F1 score to the SIG F1 score. We then plot
these points in a histogram. We do the same with the AUC-PR
metric. Note that the figure includes all designs in aggregate.

Figures 9 (a), (b), and (c) show the distributions for α =
0.25, 0.5, and 0.75, respectively, while Figure 9 (d) shows the
distribution for a small training set (T = 10). For each of
these experiments, Table III gives the number of test instances
in which each method performs better. While suspect2vec
performs better in the majority of cases, there are still many
instances in which SIG performs better, especially with small
amounts of training data. We also observe that the distribution
is much more narrow for AUC-PR, indicating that performance
is very similar in this metric.

These experiments conclusively show that suspect2vec
offers superior performance over SIG for set prediction when
a large data set is available, but relatively little advantage
in other scenarios. Moreover, SIG may be easier to use due
to its simplicity and intuitiveness, whereas the operation of
suspect2vec is generally not interpretable by humans.

SIG is also much less sensitive to hyperparameter settings
than suspect2vec. SIG requires only the prior variance σ2,
and — for set prediction only — the smoothing width δ, nei-
ther of which have a dramatic impact on overall performance.
In contrast, during our experimentation with suspect2vec

(a) α = 0.25 (b) α = 0.5

(c) α = 0.75 (d) T = 10 (α = 0.5)

Fig. 9. Distribution of relative F1 scores and AUC-PRs of suspect2vec
versus SIG

TABLE III. COMPARISON OF SIG AND SUSPECT2VEC BY NUMBER OF
FAILURES WITH BETTER PERFORMANCE (WINS).

Experiment F1 score AUC-PR
SIG wins s2v wins SIG wins s2v wins

α = 0.25 118 362 217 263
α = 0.5 128 352 151 329
α = 0.75 84 396 141 339

T = 10 (α = 0.5) 193 287 211 269

we observed that results can vary considerably with different
values of the hyperparameters d, e, and η, and it is only with
careful tuning that it is able to outperform SIG. Finally, the
training procedure for SIG is generally more computationally
efficient than that of suspect2vec, although training time
depends on multiple factors including design size, training
data size, and hyperparameter settings. To produce the results
presented in this section, training of both methods required
less than one minute in all cases.

C. Suspect Search Algorithm
In this section we evaluate the proposed bug search al-

gorithm IMPLICATION-GUIDED-DEBUG, which uses suspect
implications to prioritize suspect candidates that are most
likely to be solutions. We compare the algorithm against the
baseline SAT–based debugging algorithm as described in [2].
We also compare against the MULTI-PASS-DEBUG algorithm
in order to isolate the effects of dividing the SAT search
into multiple passes and of guiding the search using suspect

Fig. 10. Recall–time curves for two algorithms on a failure from the wb_dma
design.

implications. All debugging algorithms use MiniSat [28] as the
backend SAT solver.

We focus only on difficult debug instances, so all experi-
ments in this section include only instances with a runtime of
at least 15 minutes. The resulting number of failures is given
in column 2 of Table IV. However, for training the suspect
prediction models, all failures (other than the test failure)
are included in the training data. Each failure and debugging
algorithm is run with a time limit of 3 hours. All experiments
are run on a i5-3570K 3.4 GHz machine with 16 GB of RAM.

1) Evaluation Methodology: Unlike prior work on SAT–
based debugging, our primary objective is not necessarily
to reduce the overall runtime, but to improve the anytime
behaviour of the algorithm by returning more solutions in the
early stages of the search. This would allow for tasks such
as detailed suspect analysis, triage, or design rewiring, which
require many bug suspects, to begin sooner. To quantify this
property of an algorithm, we introduce the metric of average
suspect recall, denoted by R.

Consider the suspect recall (fraction of solutions found)
at each point in time over the execution of the search. A
plot of this value is shown in Figure 10 for two different
algorithms on a failure from the wb_dma design. The time
axis is normalized to range from 0 to 1. Intuitively, the more
desirable algorithm has a recall–time curve that approaches
1.0 as early as possible. This is captured by the area under the
curve, or equivalently, the average value of the curve (because
the time axis is normalized).

Formally, let ti be the time at which the ith solution is
found for a failure with suspect set S, and let T denote the
total runtime. Then the average suspect recall is defined as:

R =

|S|−1∑
i=1

i

|S|
ti+1 − ti

T
+
T − tn
T

(11)

Figure 10 shows the area under the recall–time curves and the
values of R. In this example, the second algorithm is better
by a factor of R2

R1
= 2.65.

We compute this metric for each algorithm and take the
ratio versus the baseline algorithm to obtain the relative
improvement in R. We then take the geometric mean over all
debug instances in a design. In our experiments with MULTI-
PASS-DEBUG and IMPLICATION-GUIDED-DEBUG we use a

TABLE IV. GEOMETRIC MEAN RELATIVE IMPROVEMENT IN AVERAGE
SUSPECT RECALL FOR DEBUGGING ALGORITHMS

Design Num Base MPD IGD IGD IGD
failures + SIG + s2v + opt

ethernet 5 1.0 1.16 2.06 1.91 1.36
fdct 7 1.0 1.89 2.81 2.99 2.33

mips789 11 1.0 1.46 1.61 1.65 1.76
scam_core 11 1.0 0.40 0.97 1.02 0.72
smoac_core 31 1.0 1.27 2.25 2.16 1.83
sudoku_check 7 1.0 0.93 0.84 1.01 0.85

vga 11 1.0 0.98 1.15 1.13 1.13
wb_dma 23 1.0 3.08 4.47 5.36 4.79
geomean — 1.0 1.21 1.75 1.83 1.55

pass time limit (TL in Algorithms 3 and 4) of 300 seconds and
split factor = 10. To compute suspect implications, training
is performed in a leave-one-out manner, with SH \Si used as
the training data for failure Fi.

2) MULTI-PASS-DEBUG Results: Table IV gives the results
for several algorithms: the baseline as described in [2], which
has a relative R of 1.0 by definition (column 3), MULTI-PASS-
DEBUG (MPD, column 4), IMPLICATION-GUIDED-DEBUG
with implications computed by SIG (IGD + SIG, column
5), and IMPLICATION-GUIDED-DEBUG with implications com-
puted by suspect2vec (IGD + s2v, column 6).

In most cases, MULTI-PASS-DEBUG outperforms the base-
line, although there exist cases in which it does not, such as
the scam_core and sudoku_check designs. As discussed
in Section VI-B, setting TL too low can cause wasted effort
during the SAT search, and estimating the optimal TL on a
case-by-case basis is not feasible. Nonetheless, MULTI-PASS-
DEBUG does not hinder performance on the average case,
allowing for greater improvements using suspect implications.

A notable exception is the scam_core design, for which
MULTI-PASS-DEBUG impairs performance by more than 2x.
The reason for this result is that, because this design is so
large, the error traces had to be truncated considerably in
order to satisfy memory constraints. Most of the resulting
debug instances could then be solved very quickly. This is
exacerbated by the fact that solutions are highly abundant for
this design and therefore easy to find. Thus, these test cases
exhibit highly unfavorable conditions for multi-pass debugging
with pass time limit of 300 seconds, which is best suited for
longer–running debug instances with difficult-to-find solutions.
Had the memory constraints allowed for longer error traces,
we expect that the results would have greatly improved.

3) IMPLICATION-GUIDED-DEBUG Results: IMPLICATION-
GUIDED-DEBUG shows consistent performance gains over both
MULTI-PASS-DEBUG and the baseline when implemented with
both SIG and suspect2vec. In particular, in scam_core
the incorporation of guidance from suspect implications im-
proves performance by more than 2x, which compensates for
the loss caused by MULTI-PASS-DEBUG.

Figure 11 (a) shows the distributions of R for each algo-
rithm relative to the baseline. The majority of instances see
relatively modest improvements between 1.0 and 1.5, while
some instances see improvements greater than 5x. There are
also some instances which perform worse than the baseline,
primarily due to the splitting of the search into multiple passes.
This is evidenced by the distribution for MULTI-PASS-DEBUG
(MPD), which has a significant number of instances below
1.0. Nonetheless, all designs see an overall positive mean
improvement with IMPLICATION-GUIDED-DEBUG.

To better understand the behaviour of IMPLICATION-
GUIDED-DEBUG, we also run it with suspect implications

(a) Relative to baseline (b) Relative to IGD + opt

Fig. 11. Distribution of average suspect recall

computed optimally; that is, with solution suspects always
ranked ahead of non-solution suspects. While this algorithm is
not realizable in practice, it serves as a useful reference point
as it allows us to assess the impact of incorrect predictions by
SIG and suspect2vec on overall performance. The results
are given in column 7 of Table IV (IGD + opt).

Interestingly, in many cases IGD + opt performs worse than
IGD + SIG or IGD + s2v. Thus, better prediction does not
necessarily correspond to better average suspect recall. This is
more apparent in Figure 11 (b), which plots the distribution
of R for IGD + s2v and IGD + SIG relative to IGD + opt.
While most of the results lie between 0.5 and 1.0, a significant
amount are above 1.0.

Upon closer examination of the operation of each algo-
rithm, we found that this apparent anomaly is caused by
differences in ranking of the correct (solution) suspects. In
some cases, IGD + opt builds passes containing suspects whose
solutions are very difficult to find, causing the SAT solver
to lose time on these passes early in the search. In other
cases, IGD + opt performs better than IGD + SIG and IGD
+ s2v for the opposite reason. There does not appear to be
any relationship between the strength of a suspect implication
and the difficulty of finding the SAT solution. Because we
rank suspects by the former rather than the latter, results vary
between different ranking methods.

The final row of Table IV gives the geometric mean across
all designs. Despite the variability, MULTI-PASS-DEBUG im-
proves over the baseline by 20%, while IMPLICATION-
GUIDED-DEBUG can improve by as much as 83%, depending
on which prediction method is used.

4) Runtimes: Table V compares the debugging algorithms
in terms of total runtime rather than R. Columns 2-5 give
the number of instances completed within the time limit of 3
hours for each design. Columns 6-8 give the geometric mean
runtimes relative to the runtime of the baseline algorithm,
including only the instances which finished within the time
limit. In many cases, MULTI-PASS-DEBUG and IMPLICATION-
GUIDED-DEBUG complete significantly more instances than
the baseline. Furthermore, IMPLICATION-GUIDED-DEBUG has
a lower mean runtime than MULTI-PASS-DEBUG on all bench-
marks. This appears to be a result of building passes dynami-
cally from a suspect pool rather than maintaining a pass queue,
because the former balances the number of suspects per pass
more evenly. Note that because this only includes instances that
were completed by the baseline and the new algorithms, for
many designs the actual relative runtime is likely significantly
lower than the numbers shown here.

Considering the overall debugging process – including both
the training of the prediction models and the SAT search – the

TABLE V. NUMBER OF DEBUG INSTANCES COMPLETED AND MEAN
RELATIVE RUNTIMES

Design
Instances completed Relative runtime

Base MPD
IGD IGD

MPD
IGD IGD

+ SIG + s2v + SIG + s2v
ethernet 5 5 4 5 1.36 0.56 0.84

fdct 5 7 7 7 0.71 0.53 0.41
mips789 5 11 9 11 0.93 0.63 0.71

scam_core 11 11 11 11 1.66 1.13 1.17
smoac_core 24 30 31 31 0.72 0.47 0.47
sudoku_check 7 7 6 6 1.54 1.24 1.10

vga 5 8 10 9 1.16 0.68 0.74
wb_dma 6 23 23 23 0.48 0.34 0.31

runtime is vastly dominated by the SAT search. Because the
training scales polynomially with the size of the design while
the SAT search is exponential in the worst case, the additional
cost of incorporating suspect prediction is very small.

VIII. CONCLUSION
This paper studies the novel concept of probabilistic sus-

pect implications and their application to suspect set predic-
tion and SAT–based debugging. Two methods are proposed
to compute probabilistic suspect implications from historical
debug data. The first method, named SIG, uses belief prop-
agation on a probabilistic graph to score candidate suspects
by their likelihood of being solutions. The second method,
named suspect2vec, instead classifies candidate suspects
as solutions or non-solutions with a single-hidden-layer neural
network. This allows it to outperform SIG on average, partic-
ularly in the set prediction task, at the expense of larger data
requirements and hyperparameter tuning. We then propose a
new SAT–based debugging algorithm that can be guided to
prioritize areas of the search space that are more likely to
contain solutions. When guided by SIG or suspect2vec,
this algorithm is able to find most suspects earlier in the
search, allowing further tasks such as detailed suspect analysis
or failure triage to begin sooner and accelerating the overall
debugging process.

As future work, it would be interesting to analyze the
connection between the probabilistic suspect implications stud-
ied here and implications by structural dominance as studied
in [14]. In particular, both techniques can enhance the search
procedure in different and complementary ways, so a hybrid
algorithm that incorporates both may perform better than either
individually.

REFERENCES

[1] H. D. Foster, “Trends in functional verification: A 2014 industry study,”
in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2015, pp. 1–6.

[2] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using Boolean satisfiability,” tcad, vol. 24, no. 10, pp.
1606–1621, 2005.

[3] K.-h. Chang, I. Wagner, V. Bertacco, and I. L. Markov, “Automatic
error diagnosis and correction for RTL designs,” in High Level Design
Validation and Test Workshop, 2007. HLVDT 2007. IEEE International.
IEEE, 2007, pp. 65–72.

[4] S. Safarpour and A. Veneris, “Automated design debugging with
abstraction and refinement,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1597–
1608, 2009.

[5] B. Keng, S. Safarpour, and A. Veneris, “Bounded model debugging,”
tcad, vol. 29, no. 11, pp. 1790–1803, 2010.

[6] A. Suelflow, G. Fey, R. Bloem, and R. Drechsler, “Using unsatisfiable
cores to debug multiple design errors,” in Proceedings of the 18th ACM
Great Lakes symposium on VLSI. ACM, 2008, pp. 77–82.

[7] Y. Chen, S. Safarpour, J. Marques-Silva, and A. Veneris, “Automated
design debugging with maximum satisfiability,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 29,
no. 11, pp. 1804–1817, 2010.

[8] H. Mangassarian, A. Veneris, and M. Benedetti, “Robust QBF encod-
ings for sequential circuits with applications to verification, debug, and
test,” IEEE Transactions on Computers, vol. 59, no. 7, pp. 981–994,
2010.

[9] A. Sulflow, G. Fey, C. Braunstein, U. Kuhne, and R. Drechsler,
“Increasing the accuracy of SAT-based debugging,” in 2009 Design,
Automation & Test in Europe Conference & Exhibition. IEEE, 2009,
pp. 1326–1331.

[10] T.-Y. Jiang, C.-N. J. Liu, and J.-Y. Jou, “Accurate rank ordering of error
candidates for efficient HDL design debugging,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 2, pp. 272–284, 2009.

[11] A. Veneris and M. S. Abadir, “Design rewiring using ATPG,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 21, no. 12, pp. 1469–1479, 2002.

[12] Z. Poulos and A. Veneris, “Failure triage in RTL regression verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 9, pp. 1893–1906, 2018.

[13] R. Berryhill and A. Veneris, “Methodologies for diagnosis of unreach-
able states via property directed reachability,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 6, pp. 1298–1311, 2018.

[14] H. Mangassarian, B. Le, and A. Veneris, “Debugging RTL using
structural dominance,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 33, no. 1, pp. 153–166, 2014.

[15] N. Veira, Z. Poulos, and A. Veneris, “Suspect set prediction in RTL
bug hunting,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2018. IEEE, 2018, pp. 1544–1549.

[16] ——, “Suspect2vec: a suspect prediction model for directed RTL
debugging,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference. ACM, 2019, pp. 681–686.

[17] N. K. Jha and S. Gupta, Testing of digital systems. Cambridge
University Press, 2003.

[18] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup, “Dominators in
linear time,” SIAM Journal on Computing, vol. 28, no. 6, pp. 2117–
2132, 1999.

[19] T. Kirkland and M. R. Mercer, “A topological search algorithm for
ATPG,” in Proceedings of the 24th ACM/IEEE Design Automation
Conference. ACM, 1987, pp. 502–508.

[20] T. Niermann and J. H. Patel, “Hitec: A test generation package for
sequential circuits,” in Proceedings of the conference on European
design automation. IEEE Computer Society Press, 1991, pp. 214–
218.

[21] K. Murphy, Machine Learning: a probabilistic perspective. MIT Press,
2012.

[22] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2003, pp. 137–146.

[23] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[24] M. Sahlgren, “The distributional hypothesis,” Italian Journal of Dis-
ability Studies, vol. 20, pp. 33–53, 2008.

[25] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International Conference on Machine Learning, 2014,
pp. 1188–1196.

[26] OpenCores.org, “http://www.opencores.org,” 2006.

[27] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Titan: Enabling
large and complex benchmarks in academic CAD,” in 2013 23rd Inter-
national Conference on Field programmable Logic and Applications.
IEEE, 2013, pp. 1–8.

[28] N. Eén and N. Sörensson, “An extensible SAT-solver,” in International

conference on theory and applications of satisfiability testing. Springer,
2003, pp. 502–518.

Neil Veira (S’17) received a B.A.Sc.
degree in Engineering Science with a
major in Electrical and Computer Engi-
neering from the University of Toronto
in 2017. He then received a M.A.Sc.
in Electrical and Computer Engineering
from the University of Toronto in 2019.
His research focus has been on applica-

tions of machine learning and data science techniques to hard-
ware verification algorithms. He is currently with SoundHound
Inc.

Zissis Poulos (S13-M’18) received
a Diploma in Electrical and Computer
Engineering from the National Techni-
cal University of Athens in 2011, an
M.A.Sc degree in Electrical and Com-
puter Engineering from the University
of Toronto in 2014, and a Ph.D. degree
in Electrical and Computer Engineering
from the University of Toronto in 2018.
He is currently a Postdoctoral Fellow at
Rotman School of Management at the

University of Toronto. His research interests include applied
machine learning in finance, deep learning acceleration, sta-
tistical diagnosis and debugging of VLSI systems, modeling
and optimization of information/influence diffusion in social
graphs, and distributed ledger technologies. He is a member
of IEEE and ACM.

Andreas Veneris (S’96-M’99-
SM’05) received a Diploma in Computer
Engineering and Informatics from the
University of Patras in 1991, an M.S.
degree in Computer Science from the
University of Southern California, Los
Angeles in 1992 and a Ph.D. degree in
Computer Science from the University
of Illinois at Urbana-Champaign in

1998. In 1998 he was a visiting faculty at the University
of Illinois until 1999 when he joined the Department of
Electrical and Computer Engineering and the Department of
Computer Science at the University of Toronto where today he
is a Professor. Since 2018 he is a Connaught Scholar for his
contributions to blockchain technology. His research interests
include CAD for debugging, verification, synthesis and test
of digital circuits/systems, crypto-economics, decentralized
blockchain technology, and combinatorics. He has received
several teaching awards, a best paper award and a Ten Year
Best Paper Retrospective Award. He is the author of one book
and he holds several patents. He is a member of IEEE, ACM,
AMS, AAAS, Technical Chamber of Greece, Professionals
Engineers of Ontario and The Planetary Society.

