
1

On Public Crowdsource-based Mechanisms
for a Decentralized Blockchain Oracle

Keerthi Nelaturu, John Adler, Marco Merlini, Ryan Berryhill, Neil Veira, Zissis Poulos and Andreas Veneris

Abstract—Blockchain technology has created an excite-
ment that was last seen two decades ago when the internet
was entering the mainstream. An appealing feature of
blockchain technology is smart contracts. A smart contract
is an executable code. It runs on top of the blockchain
facilitating an agreement between untrusted parties. These
smart contracts have a major limitation, namely they
cannot operate on information external to the blockchain.
The inability to query such information has paved the
need for trusted entities called “oracles.” These oracles
attest to facts without the robust security guarantees that
blockchains generally provide. This can potentially harm
the integrity of the network and lead to centralized points-
of-failure. To address this concern, this paper proposes a
decentralized oracle which is based on a voting-based game
that decides the truth or falsity of queries. In the context
of this work, we are only interested in binary markets,
i.e., queries which can be True, False, or Unknown. When
requesting facts from an oracle, a user submits binary
queries. Reporters (or certifiers) respond to the queries by
placing monetary stake. A formal analysis of the system
parameters is presented, which shows that the proposed
platform incentivizes a Nash equilibrium for truthful re-
porting. An extension to the base protocol is also described
and profiled against the original framework. Lastly, we
discuss a prototype architecture, along with additional
features to be considered during implementation.

Index Terms - blockchain, decentralized oracle, crowdsourc-
ing, voting, permissioned, permissionless, Nash equilibrium

I. INTRODUCTION

Crowdsourcing, also known as the “wisdom of crowds,” is
a technique that can help break cost barriers by outsourcing
tasks to market places. In general, the process consists of a set
of requesters posting tasks that can be unrelated and require
varied expertise. A set of submitters take up these tasks and
submit solutions for a minimal reward. In this context, it is
important to note that the stakeholders of the system do not
need have mutual trust. A similar topology is observed in
blockchain networks.

A blockchain is a distributed database that defines an order of
its transactions. It is immutable, trustless and permissionless.
Even though the initial implementations of blockchain were
developed to create digital currency [1], the technology has
revolutionized a wide range of industries. These include a wide
range of industries, such as supply chains and logistics [2,
3], insurance [4], healthcare [5], and financial services [6],
among others. Smart contracts—software code executed on a
virtual machine—transform conventional contracts to digital
agreements. One well-known limitation with smart contracts
is that they can only access data that is stored in the virtual

machine’s memory. This makes the network disconnected from
any real world data [7, 8]. Trusted entities called oracles
are needed to attest to facts, in an effort to bring external
data into the blockchain’s state. These oracles obtain off-
chain information, by allowing members of the public to
provide answers to questions, using a concept similar to
crowdsourcing. Reward mechanisms incentivize members to
present truthful responses.

In this paper, we propose a novel decentralized oracle protocol
leveraging crowdsourced voting mechanisms, which are ag-
nostic to the core consensus in a blockchain network. At a high
level, a user querying an oracle would submit questions along
with a bond. These questions converge to Boolean responses
that consist of either a True or False value. Once a question is
posted, the oracle collects votes from the participants. If this
converges to a result then it will distribute the posted bond
to all the contributors who arrived at the winning outcome.
We introduce a general mathematical model of decentralized
oracles and present a base protocol along with an extension.
Using this model, we provide a thorough theoretical analysis
to prove that there exists an honest Nash equilibrium for these
binary markets.

The remainder of this paper is organized as follows. In Sec-
tion II, we identify a general mathematical model. Section III
follows with a description of the novel decentralized oracle
protocol and its analysis. Section IV provides a simplified
version of the protocol. In section V, a prototype architecture
is described with implementation details. Section VI examines
existing blockchain oracles and contrasts them to the proposed
mechanisms. In section VII we suggest additional features
that can be added during implementation. Section VIII high-
lights practical applications for decentralized oracles, while
section IX concludes this paper.

II. PRELIMINARIES

A. A Decentralized Oracle model

In this paper, we propose a model for a decentralized oracle
that decides the truth value of Boolean queries posted by sub-
mitters. The oracles presented in this work are permissionless,
for instance, users do not undergo any Know Your Customer
(KYC) process before joining the system. We assume each
query p has a response truth value t that is either True (T) or
False (F) or Unknown (φ). There are N players —reporters
and certifiers. For each query p and each randomly chosen
player i ∈ [1, N], let the private opinion of the player regarding
the truth value of p be POi(p) ∈ {T, F}. We assume that
POi(p) is fixed, and in an honest scenario it is unknown to
reporters other than i. Reporters who choose to collude and
share their private opinions are considered adversarial, which
is discussed in further detail in section IV-B. Each player i

2

has an accuracy qi ∈ [0, 1] i.e., the probability that player i is
correct about a given query. Formally:

POi(p) =

{
t with probability qi
¬t with probability (1− qi)

(1)

Each player’s beliefs are independent of all other players’
private opinions i.e., the value of POi(p) is independent of
POj(p) for all j 6= i. Further, POi(p) is independent of
POi(p

′) for all p 6= p′. That is, a player’s private opinion
in a proposition is independent of her beliefs in all other
propositions. Additionally, each reporter i has a voting strategy
σi(p) where

rip = σi(POi(p)) (2)

determines the response rip that reporter i actually submits
to the oracle. Based on this definition we identify three
kinds of reporters: an honest reporter has σi(POi(p)) =
POi(p), a lazy reporter who irrespective of POi(p) reports
σi(POi(p)) = T or σi(POi(p)) = F always (i.e., they
publish the same response all the time), and a deceptive
reporter is one who submits against their POi(p) always, i.e.,
σi(POi(p)) = � POi(p).

Lazy and deceptive reporters are the two types of adversaries
we consider in our system. Lazy reporting is a special case
of Verifier’s Dilemma[9]. The problem, simply stated, is the
existence of a degenerate Nash equilibrium where voters
always report the same answer on all questions regardless
of what they believe to be true, so as to secure economic
incentives/profits. A simple mechanism behind such an oracle
cannot guarantee that payoffs for truthful reporting are greater
than payoffs in a lazy Nash equilibrium, and therefore can-
not guarantee that voters will contribute correct information.
Specifically, in voting-based protocols, lazy voting can cause
degenerate coordination strategies. Deceptive reporters would
try to manipulate the oracle into generating an outcome of
their choice. The protocol analysis establishes honest Nash
equilibrium in the presence of these adversaries.

We define two random variables: Γ(p) ∈ {T, F}—the private
opinion of a reporter selected randomly on a query p, and
A(p) ∈ {T, F}—the answer reported by a reporter selected
randomly on query p.

For the proposed protocol to work, we assume the oracle
is deployed on an existing decentralized platform such as
Ethereum [10] or Hyperledger [11]. We refer to the platform as
the executor. The executor maintains a list of Boolean queries
as part of its state, which can be submitted by any user of the
system. Once added to the list, any reporter can communicate
their response. The voting stake, which is the total amount
deposited by all reporters, is denoted by Dr. As the protocol
converges to a conclusion on a query, the executor will move
it to a completed state, distribute rewards and cease to accept
new reports for the same query. At this stage, the completed
query can be replaced by another one.

Lastly, we define the correctness of an oracle. No oracle can
determine the actual fact of a question by itself [12]. Also,
users can submit subjective questions which do not have an
objective answer. Hence, we formalize the correctness with
following set of definitions:

Definition 1. Let us consider reporter i ∈ N . A randomly se-
lected reporter’s private opinion on query p is called Estimated

Private Opinion (EPO).

EPO(p) =

T P (Γ (p) = T) > 0.5

F P (Γ (p) = T) < 0.5

φ P (Γ (p) = T) = 0.5

(3)

We say oracle has concluded correctly with respect to the
query p if it arrives at an output equal to EPO(p).

Additionally, let βip denote the probability that a specific
reporter i ∈ N reports an answer to p which is equal to
EPO(p). Assuming that i does not know PO(p) for other
reporters, this is the same as the probability that i answers
EPO(p) on a PO(p) value selected randomly from N :

βip = P (σi(Γ (p)) = EPO(p)) (4)

We also let βp denote the probability that a reporter selected
randomly from N reports an answer equal to EPO(p):

βp = P (A(p) = EPO(p)) (5)

The key distinction between the definitions of βip and βp is
that βip pertains to a specific reporter i with a fixed strategy
σi(p), and thus may be different for reporters with different
strategies, whereas in βp the strategy also varies with the
random variable A(p).

For example, if all reporters in N adopt the honest reporting
strategy, then P (A(p) = T) = P (Γ (p) = T) and we have:

βp =

P (Γ (p) = T) EPO(p) > 0.5

P (Γ (p) = F) EPO(p) < 0.5

P (Γ (p) = φ) EPO(p) = 0.5

(6)

III. BASE PROTOCOL

This section introduces our voting-based oracle protocol. We
begin by expanding on the user roles and the underlying
process of the voting game. We conclude with a detailed
description of the gaming workflow.

A. Overview

Users of our protocol participate in one (or more) of the
following three roles: submitters, reporters, and certifiers. We
further discuss the behavior of these roles, also depicted in
Figure 1:

• Submitters post queries to the executor along with a
bounty to fund (in part) the further process of evaluating
the Boolean queries.

• Reporters play a low-risk/low-reward game. When a
reporter wants to participate in the voting process, a
certain amount of stake is to be deposited. A query
is uniformly chosen at random by the executor and is
assigned to a reporter. As depicted by steps 2, 4, 5 & 9 in
Figure 1. The outcome of the voting process is a function
of the sum of the votes weighted by the deposits. The
maximum voting deposit is a parameter of the system
and is discussed later in the paper. A reporter does not
know what query they will be assigned beforehand.

• Certifiers play a high-risk/high-reward game. Unlike
reporters, certifiers get to choose which query they would

3

Fig. 1: Submission & Voting Process

like to place a deposit on. The certifier voting outcome
is a function of the sum of certifications weighted by the
deposits. This process is illustrated through steps 3, 6, 7 &
9 in Figure 1. The intuition behind introducing ceritifiers
is to encourage them to place bets on queries for which
there is a high degree of confidence that they are True
or False.
As the system is permissionless, anyone can chose to be
a reporter, a certifier, or both. Not all queries will be
certified as they are selected by choice and there is no
mandate to do so. The minimum certification deposit size
is a system parameter and should be large enough that
certifying incurs a substantial cost, and therefore there
are substantial penalties in case of malfeasance.

Both reporters and certifiers submit their voting response as a
sealed vote. The major distinction between these two roles is
that certifiers get to choose the query and have a restriction
on the minimum stake. Contrarily, reporters get assigned a
random query with a constraint on the maximum amount of
stake. By splitting the roles and incentives between users we
protect the system from malicious attacks as demonstrated
through analysis in section III-F.

Choosing appropriate system parameters is highly important
for the validity of the voting process. In our game, we have
two such parameters: the maximum voting deposit and the
minimum certification deposit. The maximum voting deposit
size should be small relative to the total voting stake on each
query. If a single vote can account for 100% of a query’s
total voting stake, an adversary can have total control over the
outcome of a randomly drawn query. Conversely, if it is very
small, an adversary would somehow need to draw the same
query repeatedly to control its validity outcome.

On the other hand, the minimum certification deposit should
be large enough that certifiers incur sufficient risk. A large
deposit would avoid the possibility of certifiers abusing the
system by manipulating their voting response. At first sight,
it seems like individual certifiers have enormous influence on
the process for individual queries, and indeed this can be the
case. However, as described later in the paper, the certifiers
alone cannot force the oracle to produce an incorrect value
and they are encouraged to behave honestly by the incentive
structure; otherwise they face large penalties.

For each player, let sp and cp denote the amount of stake that
reporter and certifier have deposited to provide their EPO(p),
respectively. Let smax and cmin denote the maximum voting
stake and minimum certifying stake parameters, respectively.

B. The Query List

The query list is constructed by a smart contract in the executor
based on the requests from submitters. Also denoted by Q, the
query list will have a fixed size of |Q|. Each query p ∈ Q has
an unknown truth value t and is associated with bounty value
B. The voting game described later is executed by all players
(reporters and certifiers) simultaneously on all the queries in
Q. We assume there are two reward pools for certifiers: RT and
RF monetary units, to provide rewards for True and False
outcomes, respectively. This is specifically targeted to avoid
a lazy equilibrium scenario in which voters always have a
constant response True or False so as to maximize their
profits without putting any effort in considering a specific truth
value. We discuss the rationale behind this later in the paper.

As the space is restricted to |Q|, the list construction involves a
separate process which is not described here as it is outside the
scope of this work. As an example, one could run an auction
for the |Q| spaces, with the auction price becoming the bounty
for the query.

C. System Description

An overview of the protocol workflow is described in this
subsection. It basically consists of interactions of reporters and
certifiers with the queries list. Reporters must be engaged to
vote on random queries, while certifiers submit their voting
response for a query of their choosing.

1) Reporting: This process is initiated by a reporter i ∈ N
whenever they deposit a certain amount of stake (si,x) where
x is the yet to be assigned query. Once a stake is registered,
the reporter is prepared to vote for a query. The executor then
validates if the amount satisfies condition that si,x ≤ smax and
assigns a randomly-chosen query from the query list [1, |Q|].
So, a reporter may be voting on a query more than once.
Random number generation within smart contracts has been a
widely researched topic in recent years and several techniques
exist to do it securely [13, 14]. The final step of this process
is for the reporter to submit the ri,x which they derive from
their voting strategy and private opinion. A sealed vote can
be created using a commit-reveal scheme, which requires a
reporter to commit a hash of their vote concatenated with a
nonce, later revealing the vote and the nonce to unseal the
vote.

2) Certifying: A certifier participates in voting for a query
of their choice by placing a large deposit. The certifier simply
submits a monetary stake ci,p ≥ cmin and a sealed certification
in accordance with their voting strategy i.e., ri,p for a query
p.

3) Termination and Decision: Once a query p has accu-
mulated a sufficient amount of funds, it is available for
the final decision. The total amount of reporting stake ac-
cumulated is Dr. At this stage, the oracle computes four
values: sTOT,p,T, sTOT,p,F, cTOT,p,T and cTOT,p,F. The values
represented by these variables are disclosed in Table I. For

4

TABLE I: Decision variables

Variable Value represented by variable
sTOT,p,T Total stake collected for query p from reporters for truth value True

sTOT,p,F Total stake collected for query p from reporters for truth value False

cTOT,p,T Total stake collected for query p from certifiers for truth value True

cTOT,p,F Total stake collected for query p from certifiers for truth value False

TABLE II: Reporting outcomes

Outcome Condition
T sTOT,p,T > sTOT,p,F
F sTOT,p,F > sTOT,p,T
φ sTOT,p,T = sTOT,p,F

each b ∈ {T, F}, the above mentioned values are computed as
follows:

sTOT,p,b =

N∑
i=1

si,p,b cTOT,p,b =

N∑
i=1

ci,p,b

The outcomes for both reporting and certifying are computed
by a simple majority rule as shown in Tables II and III. In the
case of a tie, we assign the outcome to be φ. For simplicity,
we exclude a detailed description of this scenario as this does
not affect the design and analysis of the game.

In Table IV, we illustrate the game and oracle outcomes for
each of the nine possible combinations of certification and
reporting results. The headings in the top row correspond to
certification, while the labels in the first column correspond to
reporting. The game has three possible outcomes (T, F and φ)
each of which carries its own reward structure. Note that the
game outcome is only used to determine rewards and penalties,
and does not correspond to the oracle’s output. Indeed, anyone
observing the system is free to compute oracle outcomes as
they wish depending on the context of the query. For the
sake of this presentation a suggested mapping is presented
in Table IV-(B). The suggested oracle output follows the
reporting outcome if it matches the certification outcome or
the certification outcome is φ. The oracle is not restricted to
an output of {T,F, φ}, but could instead have an output in the
range [0, 1] indicating confidence in the truth or falsity of the
query.

TABLE III: Certifying outcomes

Outcome Condition
T cTOT,p,T > cTOT,p,F
F cTOT,p,F > cTOT,p,T
φ cTOT,p,T = cTOT,p,F

TABLE IV: Outcomes for (A) The Game and (B) The oracle

(A) Game

R
C

T F φ

T T φ φ
F φ F φ
φ φ φ φ

(B) Oracle

R
C

T F φ

T T φ T

F φ F F

φ φ φ φ

D. Rewards and Penalties

The principal rule is to reward players whose positions match
with either T and F outcomes. Players who took opposing
positions are penalized. In case of Unknown outcomes, certi-
fiers are penalized and reporters are left with no rewards or
penalties. As argued in this paper, this scheme incentivizes the
participants to behave honestly.

For the rest of this subsection, we fix a player i ∈ [1, N] and
query p ∈ Q so as to enumerate the rewards and penalties
for each of the three possible game outcomes. Reporter and
certifier rewards are presented separately although, as noted
earlier, nothing prohibits a player from being both a reporter
and a certifier.

Rewards and penalties are distilled into a single value rewr for
reporting and rewc for certification. A negative value indicates
a penalty, while a positive value indicates a reward. The results
are summarized in Table V.

1) True and False Outcomes: In the case of a True out-
come, the reporting reward is as follows.

rewr =

(
si,p,T

sTOT,p,T

)
×B − si,j,F (7)

The player’s reporting reward is their share of the T-reporting
stake times the query’s bounty amount. Their penalty is equal
to their F-reporting stake. The certifier reward is shown in Eq.
8 below.

rewc =

(
ci,p,T

cTOT,p,T

)
×
(
RT ×

1

τ

)
− ci,p,F (8)

A certifier’s reward is equal to her share of the T-certifying
stake times the true certifier reward pool amount RT times
the reciprocal of the certification target τ . The True reward
pool is a reward pool used to reward certifiers who correctly
certify articles as True. The certification target can be seen as
the number of certifications that the pool should have enough
funds to pay for. For instance, if RT = 1000 and τ = 10, then
100 monetary units will be distributed to the certifiers. The
next proposition will have RT = 900, and therefore 90 units
will be distributed.

In the case of a False outcome, the rewards and penalties are
similar.

2) Unknown Outcome: For an Unknown outcome, reporters are
neither rewarded nor penalized (rewr = 0), while certifiers are
penalized as follows.

rewc = − (ci,p,F + ci,p,T) (9)

That is, certifiers forfeit all of their stake, regardless of agree-
ment with reporters. The rationale for penalizing certifiers and
not reporters is that certifiers chose to vote for a query p.
Reporters received a query at random.

E. Monetary Flows

Note that reporters are not rewarded for Unknown outcomes.
Therefore sometimes bounties are not claimed. Thus far, the
distribution of penalties and unclaimed bounties has not been
discussed. The funding of reward pools and bounty amounts
has only been briefly mentioned.

5

TABLE V: Summary of rewards and penalties

Reward Penalty
Outcome Reporters Certifiers Reporters Certifiers

T
(

si,p,T
sTOT,p,T

)
×B

(
ci,p,T

cTOT,p,T

)
×
(
RT × 1

τ

)
si,p,F ci,p,F

F
(

si,p,F
sTOT,p,F

)
×B

(
ci,p,T

cTOT,p,T

)
×
(
RF × 1

τ

)
si,p,T ci,p,T

φ 0 0 0 ci,p,F + ci,p,T

Submitter fees are used to fund bounties, while the certifier
reward pools are initially left empty. Certifier reward pools are
funded by unclaimed bounties and penalties. In the absence
of reward pools, certification will be rare, which will lead to
most bounties being unclaimed. This method will approach
equilibrium where reward pools and bounties are balanced to
provide reasonable incentives.

An additional consideration is the draining of reward pools.
Each time a query is decided with voting outcome T, an
amount RT

τ is deducted from RT. If the certification outcome is
also T, the funds are used to pay out certifier rewards. Other-
wise, the funds are added to RF. A symmetric case applies for
False outcomes. Intuition lies in the fact that it ensures that
the reward pools encourage certifiers to certify equal number
of True and False queries. Thereby, discouraging reporters
from voting with constant T or F values in order to maximize
profit without considering the actual queries.

F. Base Protocol Analysis

To analyze the base protocol, we first analyze the probability
of the voting procedure producing incorrect results (i.e., where
the outcome for query p with truth value t is ¬t). Next, we
examine the minimum accuracy needed by reporters so that
they remain profitable. Subsequently, we prove that a Nash
equilibrium exists under a honest majority assumption. Finally,
we argue that the certifier reward structure avoids a situation
where players profitably report and certify everything with a
constant T or F.

1) Voting Outcomes and Manipulation: This subsection de-
termines the probability of a correct reporting outcome as
a function of accuracy with the analysis of an adversary’s
probability to force incorrect outcomes. For simplicity, we
assume all non-adversarial players are honest, have the same
accuracy q, and always vote with smax monetary units of
stake. We can therefore treat the reporting process on a single
query as a sequence of Dr

smax
Bernoulli trials with probability

q of success. The probability that the reporting outcome is
correct is therefore:

P

[
B

(
Dr

smax
, q

)
>

Dr

2 · smax

]
where B(n, p) denotes a binomial random variable. For ex-
ample, if Dr = 20, smax = 1, and q = 0.8, the probability of
obtaining a correct reporting outcome is roughly 99.7%.

Now let us assume an adversary has n monetary units and
seeks to force an incorrect outcome on a specific query. For
simplicity, we assume n is a multiple of smax and that the
query list does not change during the attack. Each query can
once again be modeled as a sequence of Dr

smax
Bernoulli trials.

Each trial is successful with probability:

p+ (1− p)(1− q) = 1− q + p · q

where p is the probability that the vote belongs to the adver-
sary.

If the adversary uses all n tokens to report, then n
smax

votes
belong to the adversary across all |Q| queries. Once all queries
are decided, the probability that an arbitrarily chosen report
belongs to the adversary is:

n

smax
× smax
|Q|

=
n

|Q| ·Dr

So the probability that an arbitrary vote to be incorrect is:

1− q +
n · q
|Q| ·Dr

(10)

Note, both | Q | and Dr appear in the denominator demonstrat-
ing that increasing these parameters renders system manipula-
tion more difficult. The probability of an adversary changing
the outcome of the query is shown below:

P

[
B

(
Dr

smax
, 1− q +

n · q
| Q | ·Dr

)
>

Dr

2 · smax

]
It can be seen that if the quantity in Eq. 10 is less than 0.5,
there are parameter values that make it arbitrarily difficult for
the adversary to force an incorrect result. Further analysis
showed that, if reporters are 95% accurate and Dr = 100 ·
smax, then manipulation is effectively impossible, even by a
powerful adversary controlling 25% of the reports.
2) Minimum Voting Accuracy: Accuracy of honest voters is
crucial to the security of the base protocol. This subsection
quantifies the minimum accuracy (i.e., the probability that the
player’s private opinion βp matches the truth value t of the
query p) players need to achieve profitability. Since difficulty
to earn a profit is expected to lower participation, it is critical
to set the parameters carefully. This will benefit in achieving
a reasonable trade-off between accuracy and participation.

For simplicity, we assume the parameters are set such that
the probability of incorrect decisions is negligible. Consider
player i and accuracy qi. A report with stake of smax on query
p yields a profit at decision time for:[

qi · smax
max(sTOT,p,T , sTOT,p,F)

]
B > (1− qi) · smax (11)

In other words, the expected share of the reporting rewards
is greater than the expected penalties. Note that, there is
no need to account for Unknown outcomes since reporters
receive neither rewards nor penalties. At decision time, the
denominator is clearly at least half of Dr, and at most Dr.
Therefore:

1

2
·Dr ≤ max(sTOT,p,T , sTOT,p,F) ≤ Dr (12)

It is clear from Eq.11 that the reporter is profitable for
sufficiently high values of B. Towards the goal of computing
an upper bound, we over-approximate the range in which a
reporter is profitable using Eq.12 as follows.(

qi · smax
Dr

)
B > (1− qi) · smax

Re-arranging yields the following upper bound on B:

B ≤ (1− qi) ·Dr

qi
(13)

6

By capping the bounty according to Eq.13, it is possible to
enforce a minimum accuracy such that, below that threshold
reporting becomes unprofitable. For instance, if 80% accuracy
is desired and Dr = 1000, the bounty must be capped at 250
monetary units. If instead, 50% accuracy is desired the bounty
must be capped at 1000. Of course, this analysis only lower-
bounds the threshold; it neglects the voter’s costs in terms
of time to evaluate queries, computing power, and blockchain
transaction fees.

3) Desirable Nash Equilibrium: This subsection demonstrates
the existence of a desirable Nash equilibrium in which all
players are honest. Any situation in which reporters and
certifiers are in concert is a Nash equilibrium, as a player who
votes against all the others will only stand to lose. However,
we seek to show that such an equilibrium exists under the
assumption that the quantity in Eq. 10 is less than 0.5. This
assumes that honest reporters are sufficiently accurate and in
such plurality a majority of votes are correct. From the analysis
in Section III-F2, this assumption is sufficient to show that
there exists an assignment to the parameters such that all
queries have the correct voting outcome with overwhelming
probability.

Playing honestly is a Nash equilibrium when every voting out-
come is correct with only feasible strategies being considered.
Rewards are only paid to players who agree with the voting
outcome. Since every query p has the voting outcome t, if
player i reports or certifies βp (i.e., honestly), she agrees with
the voting outcome with probability qi. Naturally, an honest
player could perform better by switching to a “perfect” strat-
egy in which they always vote correctly rather than honestly.
Such a strategy is not feasible, since players do not know the
underlying truth values. All private opinions are independent
by assumption. A player i cannot develop complex strategies
to report correctly with probability better than qi. Even an
adversary with perfect accuracy, who controls 100% of the
certifying stake, is incentivized to play honestly (or not play
at all, e.g., in the case where RT = 0 and every query is True).
Indeed, any other strategy results in the adversary losing all
of their stake.

4) Query Bias and Reward Pools: The previous subsection
demonstrates that playing honestly is an equilibrium under
the assumption that an adversary does not control reporting.
This may not hold if a dishonest strategy is easier and still
profitable. In this subsection, we identify a candidate for such
a strategy and argue that the reward structure combats it.

Imagine True queries are more common than False ones.
Consider a lazy reporter—one who always reports T. Let
p = P (t = T) denote the probability that a random query
is True. Assume that all reporting outcomes are correct. So,
the lazy reporter agrees with the reporting outcome on every
True query and disagrees on every False query. Intuitively,
this lazy strategy seems viable. But, it is also necessary to
consider certifier behavior since without certification rewards
are not paid out. Certifier incentives are tied to the certifier
reward pools, and their values fluctuate over time.

When a True query is decided, the RT pool will shrink by
RT

τ . Over time the RT pool will drain much faster than the RF

pool when p > 0.5. Indeed, the RF pool may actually grow
in this case. Informally, this process incentivizes certifiers to
vote for queries that they believe are False, since the potential
rewards are greater. At equilibrium, roughly equal amounts of

True and False queries should carry certifications. Hence
the lazy strategy will not be profitable. Note that certifiers are
never incentivized to certify a True proposition as False in
an attempt to acquire the RF reward. In that case the certifier
will disagree with reporters and be penalized.

IV. SIMPLIFIED REPORTER ORIENTED PROTOCOL

Section III introduced one version of our decentralized oracle
protocol. A major aspect is the role of certifiers. Including
certifiers ensures a high confidence in the voting response for a
submitter. It imposes truthful outcomes from reporters as well.
As a high risk seeker, a certifier benefits from the amplified
rewards. Although the protocol provides the required security
guarantees for blockchain, it comes with inherent complexities
during implementation. It is vital to ensure certifiers are
incentivized to participate in the system. The reward pools
for certifiers are dependent on the unclaimed bounties and
penalties, lacking which may make certifiers lose interest in
staking. Further, stringent penalties on certifiers might cause
hesitation to join the voting process. In other words, from a
submitter’s point of view, they need to ensure a balance in
the reward pools by posting equal number of True and False
queries in order for the system to operate efficiently.

In this section, we suggest a simplified version of the original
protocol with modifications in the gaming structure. This
protocol convinces voters that truthful reporting is their best
course of action without relying on certifiers.

A. Description

We present an abstract flow of the protocol in the Figure
2. This protocol is similar to the base protocol, wherein
submitters post queries with binary responses along with a
bond to the oracle. The reporters will respond based on their
private opinion. For each submission, a submitter needs to post
two queries that are antithetic (i.e., queries that are assured to
arrive at contradicting responses). For example consider the
submission: It is sunny and It is not sunny as in
Figure 3. The submitter can evaluate the correctness of the
oracle response by observing opposing outcomes for these two
queries. In this way, we induce high confidence in the voting
process by avoiding the role of certifiers. Another consequence
is the reduction in the complexity of the user interface for
reporters and truthful reporters receive larger expected payoffs.

1) Submitting queries: To add to the list of active queries, in
a single transaction a submitter provides:

• A bond
• Two queries, called p and p′
• A bounty
• A duration

The bond is returned if the answers to p and p′ converge
to different True/False outcomes after reporting process is
done. Thus, the queries have to be designed to have opposite
answers: this is easily done if the submitter constructs p′ to be
the converse of p (e.g., “X won the elections this term” and “X
did not win the elections this term”). Leaving the construction
of the questions to the oracle will be an expensive and possibly
error-prone operation, as we assume queries to be in natural
language; it is a fair assumption that it will be done by the

7

Fig. 2: Extension protocol submission & reporting process

Fig. 3: Example of Extension protocol

submitter who would otherwise risk losing their bond. The
bounty posted is used to reward the reporters, and the duration
is to restrict the amount of time p and p′ are available on the
query list.

2) Submitting reports: A player i ∈ N can report POi(p) by
engaging in a dialogue with the oracle:

1) The reporter posts a bond
2) The oracle selects a query uniformly at random and

passes it to the reporter
3) The reporter returns a sealed vote to the oracle
4) Once the query closes after the duration time to submit

votes has elapsed as set by the submitter, the reporter
reveals their vote

At step 3, the reporter computes their ri,p based on their
voting strategy σi(p). Sealed voting is to prevent undesirable
strategies or attack vectors.

After a predefined duration, a query is said to be closed.
At this point the oracle tallies all the votes posted for that
specific query. It will also compare and check if both the
questions have converged to different answers. If the majority
of reports converged to the same answers for both queries,
then the submitter loses their entire bond and reporters would

Fig. 4: Probability of correctness as a function of n and w

neither get a reward nor will they get penalized (i.e., their
bond is returned to them in full). If the reports converge to
different responses, reporters are rewarded when they are in
agreement or penalized for disagreement, and the submitter’s
bond is returned.

B. Modified Protocol Analysis

1) Correctness: Applications expect strict correctness as to
the responses delivered by the oracle (in the context of
Definition 1). Consider a query p with n honest reporters and
where w is the probability that a randomly selected reporter
agrees with EPO(p). PCorr, the probability that the oracle
produces a correct output, is simply the probability that a
majority of reporters agree with EPO(p):

PCorr =M(n,EPO(p)) (14)

We use M(n, z) to denote the probability that a majority out
of n reporters vote z to the oracle. In the case of honest
reporters,

M(n,EPO(p)) = 1−B(bn
2
c, n, w)

where B(k, n, p) denotes the cumulative binomial density
function. M(n,EPO(p)) is calculated differently depending
on the configuration of reporters and voting strategies.

We evaluate the correctness of the oracle by comparing
the probability of correctness with the number of reporters
depicted in Figure 4. Assuming all reporters are honest, if a
low number of reporters is expected then only queries with
widely accepted answers are likely to be decided correctly.
However, even if a query is highly contentious (with w near
but not equal to 0.5), the oracle will eventually converge on
the EPO(p) with high probability provided there are enough
reporters.

2) Expected Rewards for Honest Voting: As mentioned ear-
lier, a reporter is rewarded only when they are part of the
majority. They are penalized if they are in the minority. In
cases of a tie, neither rewards nor penalties are applied.

8

TABLE VI: Summary of β values for pure strategies in
response to honest reporting

Name Strategy Function β

Honesty σi(POi) = POi > 0.5, Lemma 2
Lying σi(POi) = ¬POi < 0.5, Lemma 2

Always True σi(POi) = True 0.5, Lemma 3
Always False σi(POi) = False 0.5, Lemma 3

Suppose that reporter i with strategy σi is one of n reporters
on p, and that p and p′ are the antithetic questions (i.e., they
were submitted together). The probability that reporter i is in
the majority on p, denoted by PMaj , is equal to the probability
that at least bn−12 c other reporters agree with them:

PMaj = (βip)M(n−1, EPO(p))+(1−βip)M(n−1,¬EPO(p))
(15)

PTie, the probability that a tie occurred, is the probability
that exactly n

2 reporters voted according to the EPO(p) and
is calculated differently depending on the configuration of
reporters. Finally, PMin, the probability that reporter i is in
the minority, is simply that probability that they were not in
the majority and that there was no tie:

PMin = 1− PMaj − PTie (16)

For a voter to be rewarded or penalized, the oracle outputs
denoted by u and u′ for a query with questions p and p′

should converge to different answers.

P(u6= u′) =M(n, True)M(n′, False) +M(n, False)M(n′, True)
(17)

Combining both equations 15 and 17, we can compute the
probability that i receives a reward/penalty:

PRew = PMaj · P (u 6= u′)

Similarly,
PPen = PMin · P (u 6= u′)

Finally, if the reward size is g and the penalty size is h, then
a reporter’s expected payoffs are gPRew − hPPen.

3) Expected Rewards for Lazy Reporting: The previous sec-
tion shows that honest reporting provides for positive expected
payoffs. The main challenge for any oracle protocol is to
disincentivize lazy reporting. In the lazy case, it is clear to
see P (u 6= u′) ≈ 0. This forces expected payoffs to also
be zero, which causes lazy reporting to be less efficient than
honest reporting.

4) Honest Nash Equilibrium: Now we show that honest
reporting is a Nash equilibrium. First, we enumerate the pure
strategies available to a reporter, and consider the βp values for
each one (summarized in Table VI). Assuming that POi is the
only input signal to the strategy function σi, then all strategies
can be expressed as a mixture of these pure strategies. We then
argue that the pure honest strategy has a strictly higher βp,
which implies strictly higher expected rewards. Thus, since
the pure honest strategy is a best response to pure honest
strategies, honesty is a Nash equilibrium.

Lemma 2. In a scenario where all other users are honest,
honest reporting has an expected βp > 0.5 for an arbitrary

reporter i with no information about the PO of other re-
porters. Additionally, lying has an expected βp < 0.5 for such
a reporter.

Proof. First, note that by definition of EPO(p), it must
always be the case that P (Γ = EPO(p)) ≥ 0.5 when all
reporters are honest. The only circumstance in which P (Γ =
EPO(p)) = 0.5 is an extreme case where P (Γ = T) = 0.5
(i.e., the EPO is unknown). Assuming most submitters ask
questions which have an answer, it is reasonable to conclude
that P (Γ = EPO(p)) > 0.5. This means that from the
perspective of a specific reporter i with incomplete information
about the PO of other reporters, P (POi = EPO(p)) > 0.5,
and so βp > 0.5 if i reports honestly. Additionally, if an
honest reporter has probability z of reporting the EPO(p),
then a lying reporter has a probability 1 − z of reporting the
EPO(p) and thus βp < 0.5.

Lemma 3. In a scenario where all other users are honest, lazy
reporting has an expected βp of 0.5 for an arbitrary reporter
i with incomplete information.

Proof. If submitters act honestly, then we can conclude they
are creating an equal number of True and False queries, im-
plying P (EPO(p) = T) = 0.5. Thus, on any particular query,
a reporter always votes True (or False) has a probability of
0.5 of reporting the EPO(p), which implies βp = 0.5.

Theorem 4. Honest reporting is a Nash equilibrium.

Proof. By Lemmas 2 and 3, the pure strategy of honest
reporting has a strictly better expected βp than the pure
strategies of lying and lazy reporting. This means that no
mixed strategy can achieve a greater expected βp than honest
reporting. Since expected payoffs increase monotonically with
increasing βp, honest reporting is a strictly best response in a
scenario where all other users are honest.

C. Discussion

In this subsection, we discuss the trade-offs with both versions
of the protocol. In the base protocol, submitters do not need
any prior knowledge of the responses for queries as there is
no requirement for the questions to be antithetic. The only re-
striction is to provide questions related to binary markets. This
constraint also becomes a significant factor when considering
the rate at which queries get posted to the oracle. There is
only a limited number of queries a submitter can handle at a
time. Also, in the future, with the simplified query structure,
the submitter role can be automated using natural language
processing or artificial intelligence tools.

On the other hand, the simplified version of the protocol
induces inherent balance in the queries without which there is
a possibility that one of the certifier reward pools (either RT

or RF) can get disproportionately large, possibly incentivizing
certifiers to vote dishonestly on future queries. Removing the
role of certifiers makes it a simple interface for reporters
to participate in the process. The proposed protocol is most
effective for scenarios in which voters are able to answer
any proposition, and sufficiently many voters are available to
answer. As indicated by Figure 4, the ideal scenario would
have at least 10-20 reporters per proposition in order to achieve
strong incentives for voter honesty and a high probability

9

of correctness, depending on the level of agreement among
the reporters. It is also important to note that our oracle
model involves several idealizations in order to lend itself
to a more tractable analysis. In particular, by assuming that
a voter’s strategy σi depends only on POi, we implicitly
disregard strategies that make use of information contained
in the proposition itself. For instance, a voter may try to
guess which of the queries p and p′ is the positive statement
and which is the negation, and always vote True on the
positive and False on the negation. If voters are able to guess
correctly with high probability then this strategy can be a Nash
equilibrium with large payoffs. However, in many scenarios it
is possible to construct proposition statements in such a way
that guessing accurately is extremely difficult.

V. DESIGN AND IMPLEMENTATION

This section outlines a prototype design of the proposed proto-
col. We selected Ethereum [10] as the underlying blockchain
for our prototype. By building on top of Ethereum, inte-
grating key decentralized technologies, the application be-
comes a user-friendly ecosystem that increases the adoption
of blockchain technology as a whole. The main reasons for
selecting the Ethereum as a code base are its flexibility, its
open-source nature and the overall availability of client API
implementations.

A. High-level Architecture

We present the basic components for the prototype in Figure
5. Our design introduces three main components: a web-based
user interface through which users like submitters/reporters
interact with the oracle, a middleware consisting of an off-
chain database, load balancer and back-end API, and an
Ethereum client. These components have been executed on
servers, combining to create a coherent distributed system.
Any provider back-end and user interface implementation can
participate in the system through our smart contracts.

1) Web-based user interface: Frictionless user interaction was
a big focus for our development efforts. The user interface
portal facilitates the submission of queries and viewing the
oracle outcome. In addition, a notification service broadcasts
events to appropriate users. The notification service is used to
alert submitters after their query moves to a completed state
and reporters are notified once the oracle is ready to distribute
rewards.

2) Middleware: We constructed multiple utilities, bundled as
a middleware, to facilitate the system’s operation. Middleware
abstracts the communications with the blockchain and exports
a function-call API. The user interfaces can thus avoid the
hurdles of working directly with the blockchain. One such
hurdle is verifying that each sent transaction is accepted with
high confidence by the network. The middleware handles
uncertainties of when transactions are mined and deals with
cases when they are discarded. Middleware interacts with an
Ethereum client to excercise low-level formatting and parsing
of the Ethereum protocol.

Fig. 5: High-level Architecture

3) Ethereum Client: This component implements the full
functionality of joining and participating in the Ethereum
blockchain network. This handles a broad set of tasks, such
as connecting to the peer-to-peer network, encoding and
sending transactions and keeping a verified local copy of the
blockchain. For our prototype implementation we use Geth
and Web3 client.

We implement a service to locate all of the relevant contracts
using address lookup. This service runs continuously within
the client to monitor real-time changes to the smart contracts.
In the event of an update, the service signals the middleware
to issue a user notification and, if necessary, sync the local
database.

B. Data-flow and Smart Contract Structure

Indicated in Figure 6 is the direction of data flow in our system
architecture. Data is entered into the blockchain starting from
User Interface (UI) on the left. As shown in the diagram, data
is also shared back to the users from blockchain. Middleware
which includes the back-end library and the off-chain database
supports in persisting the data transfer to and from blockchain.

To implement all the functionalities of our protocol, the
system is structured on the blockchain by implementing four
contracts. In Figure 6 we illustrate the contract structures
and relationships. We coded our smart contracts in Solidity
using Remix, a website that has a compiler to test contract
functionality.

10

Fig. 6: Data-flow and Smart Contract structure

1) Membership Contract (MC): This contract maps the partic-
ipant identification strings to their Ethereum address identity
(equivalent to a public key). We intentionally use strings rather
than the cryptographic public key identities directly, allowing
the use of an already-existing form of ID. Instructions coded
into the contract can regulate registering new identities or
changing the mapping of existing ones. MC also identifies
users by two types: submitters and reporters.

2) Submissions Contract (SC): This contract holds a list of
references to the submissions, representing all the queries
posted by a particular submitter. It also persists information
regarding the bounty and duration for a query. SC implements
functionality to enable user notifications. Each submission
stores a status variable, indicating whether the submission
is pending or completed. SC refers to MC for submitter
identification.

3) Ballot Contract (BC): BC is one of the crucial contracts
in our prototype. It holds the functionality required to arrive
at an outcome. Based on the voting and staking information
available, this contract sets the status of a query in SC.
Reporters submit their response via BC. BC interacts with

MC in order to obtain voters and submitter information.

4) Rewards Contract (RC): We isolated rewards and penalty
functions into a separate contract to enable easy upgrades or
fixing of any future issues. As soon as BC updates the status
of a submission, methods in RC are used to distribute rewards
based on the outcome of the voting. RC maintains the Reward
Pool which is the total amount of stake collected from the
reporters.

C. Discussion

An implementation of the detailed architecture can be executed
on a local PC or even a mobile phone. The local databases of
these hardware tools can be one of many lightweight database
implementations. The databases can function merely as cache
storage of the user data. Missing data can be retrieved from the
network at any time by following the Submissions Contract.

The prototype discussed in this section was built on a local PC
environment. The user interface was made using the React
framework and Sass styling, while we used Sketch for

11

Fig. 7: Tools used in Prototype Implementation

creating the wireframes. The whole middleware component
of our architecture was implemented using NodeJs. As to
the Ethereum interactions, we used the Truffle tool suite
extensively. Smart contracts were coded using RemixIDE and
we used built-in verification enabled in the same tool for
unit testing. Further, Ganache and Heroku were utilized
to deploy the application. Lastly, for project management and
source control we used Asana and github. A summary of
tools used can be found in Figure 7.

VI. COMPARISON WITH PRIOR ART

Now, we discuss existing oracle solutions to analogize the
requirement for our decentralized oracle. Oraclize [15]
retrieves data from any data source and publishes it to a
blockchain smart contract along with a verifiable crypto-
graphic proof. But the data is provided to the blockchain
by a centralized server that handles requests for off-chain
information. TLSnotary [16] and TownCrier [17] attest to
facts on websites accessed using Hyper Text Transfer
Protocol Secure (HTTPS) protocol cryptographically.
The assumption here is that any information exchanged over
TLS (Transport Layer Security) is checkable, and it doesn’t
guarantee that all users will see the same information at all
times. Further, they both use the Intel SGX (Secure Guard
Extensions) [18] hardware in order to protect the attestations
against malicious actors, e.g., against malware running on the
attesting system. This system is highly effective, so long as
users trust that the underlying hardware does not contain back-
doors or exploits [19, 20]. ChainLink [21] aims to provide

a cross-chain portal to internet-available information, i.e., data
available on websites, through their centralized system. All
three protocols, Oraclize, TownCrier and ChainLink
violate the permissionless property of a decentralized oracle
that is a desired property to which the proposed system
described here adheres.

Augur [22], a crowdsourced prediction market place, allows
internal token holders to predict or dispute the outcomes in
a multi-phase procedure. Users of this platform are required
to use native platform tokens in order to report predictions
to the oracle. Members do not have the flexibility of moving
in and out of the markets at their will, which would restrict
the usability of the ecosystem. For example, a user chosen
as a Designated Reporter cannot drop out of voting on their
choice, upon which they will be penalized. Also, in case of
a fork, the burden rests with users to make decisions as to
which branch of Augur they would prefer to move all of their
earned currency to. Both of these issues hinder the usability
of their decentralized oracle.

An important feature of our proposed extension protocol is a
re-balancing of incentives. A submitter receives a penalty for
creating an imbalance of EPO(p) = T and EPO(p) = F
queries. Additionally, we are able to reduce the size of penal-
ties without sacrificing incentive compatibility. The simplicity
of the new protocol is also advantageous. It is not enough
that a protocol guarantees optimal rewards for honesty; its
users must be convinced of this fact. Otherwise, they may act
according to an incorrect belief that a dishonest strategy is
optimal. Furthermore, a simpler protocol exhibits a simpler
formal analysis. While making fewer assumptions, stronger
guarantees are proven, and extensions or critical adjustments
to system parameters are easily evaluated.

The proposed protocols are most effective for scenarios in
which voters are able to answer any query, and sufficiently
many voters are available to answer. As indicated by Figure
4, the ideal scenario would have at least 10-20 voters per query
in order to achieve strong incentives for reporter honesty and
a high probability of correctness, depending on the level of
agreement among the reporters. It is also important to note
that our oracle model involves several idealizations in order
to lend itself to a more tractable analysis. In particular, by
assuming that a reporter’s strategy i depends only on POi,
we implicitly disregard strategies that make use of information
contained in the query itself. For instance, a reporter may
try to guess which of the queries p and p′ is the positive
statement and which is the negation, and always vote True
on the positive and False on the negation. If voters are able
to guess correctly with high probability then this strategy can
be a Nash equilibrium with large payoffs. However, in many
scenarios it is possible to construct query statements in such
a way that guessing accurately is extremely difficult.

VII. ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide some additional improvements that
could be included in an implementation of the decentralized
oracle.

A. Voting Pools and Threshold Signatures

Both protocols proposed require a large number of reporters
to submit their votes in order to achieve correctness up to

12

95% as shown in Figure 4. This would in turn mean that
there will be huge increase in the number of transactions
to submit votes. In general, most of the public blockchain
platforms have associated transaction fees [23]. Submitters
would have to consider this additional cost when posting the
bounty amount and make sure it is large enough to offset the
fees a reporter must pay. Below, we describe a method to
reduce costly transactions while not significantly lowering the
oracle’s correctness.

A voting pool is like a community consisting of a leader and
a number of subscribers. The subscribers can answer queries
posted by the leader, who is the one directly communicating
with the decentralized oracle. Once answers are submitted, the
leader has the control on which answers are to be used and
can decide how to disburse the rewards obtained.

1) Perks of being a Leader: A leader can instill several tech-
niques that could help evaluate and improve the correctness
of their pool. For example, a leader could perform some
initial tests on their subscribers with known queries to level
their expertise on the topic or could send the same query to
a subscriber multiple times to judge their consistency. With
these kinds of mechanisms in place, the leader could increase
the overall correctness of their pool which would grow their
rewards and yield higher expected payoffs to its subscribers.

2) Subscriber Advantages: As an individual user on a public
blockchain, the responsibility of securely maintaining an ac-
count rests on the users themselves. Instead, subscribing to a
pool service would present a user with a simplified interface.
This will also alleviate the requirement for the reporter to post
a bond and removes the need to pay transaction fees. Similar
to a mining pool [24], participating through a voting pool can
lower the risk of high volatility in rewards. In some cases, an
honest reporter can lose several rounds at a stretch and if they
run out of funds, that would no longer enable them to post the
necessary bond in order to continue participating.

3) Threshold signatures: In the above mentioned “basic”
voting pool mechanism, there are two specific problems that
needs to be highlighted. First, as mentioned above the leader
has complete control on which answer they can propose to
the blockchain. This would mean that subscribers are to place
unconditional trust on the leader and expect positive payoffs.
Whereas, the leader can even utilize the staked deposits for
their own benefits and show negative returns to avoid payoffs
to the subscribers. Second, each query will receive a single
vote from the voting pool irrespective of the number of
subscribers that are submitting their votes. Other than using
the stake amount there should be a way to prove the count of
voters on the blockchain without increasing the transactions
that are to be committed.

One way to secure the voting pools process is by using
distributed Schnorr Signatures as this scheme has been proved
secure and unforgeable in [25]. Using this scheme, a secret
key is shared between all of the subscribers. To produce a valid
signature for the transaction at least t subscribers need to sign
using the shared secret key. This also secures the system from
an attack by t − 1 subscribers and the leader by themselves
cannot sign the transaction as well. On-chain, the signature
can be verified to attest for the count of subscribers who have
voted for the query. In [26], a similar Schnorr-like signature
scheme is used with reduced gas cost around 15k, including

the input parameters, which is feasible to verify in Ethereum
and its programming language Solidity.

4) Advantages for the Decentralized Oracle: First, the number
of transactions is significantly reduced, which in turn lowers
the cost to submitters. Second, though fewer participants are
interacting directly with the oracle, each of them potentially
has a much higher βip parameter. As shown in Figure 4 the
oracle needs only a small number of reporters provided β is
large enough.

B. Reputation and Adjudication systems

In our present model, we do not consider any feedback from
the submitters on how satisfied they are and also, currently
there is no way for the submitters to dispute the outcome of the
voting process. Voters on the other hand are not incentivized to
participate in such a feedback/dispute process once the payoffs
have been distributed. Introducing a reputation score for all
the participants in the system i.e., both voters and submitters
would definitely add value to the decentralized voting process.

1) Bootstrapping Calculation of Reputation Score: Over the
past years, research in reputation mechanisms has identified
various models [27] that can be re-used for our decentralized
oracle. We could employ a scoring where in any new user
in the system starts with an initial score for reputation and as
they participate in multiple instances of voting their reputation
would increase or decrease based on the voting outcomes.
Also, we can do Bayesian update on the prior reputation
score to calculate a new score after each round of voting is
completed. Additional incentives in terms of payoffs could be
provided to voters depending on their reputation score.

2) Dispute Resolution: In a case where a submitter is not
satisfied with the response from the oracle or he is able to
provide with some proof that the outcome received may not
be correct, the submitter can request for a re-evaluation of the
voting process. This can be done in multiple rounds until a
concrete resolution has been arrived which is agreed upon by
both submitters and voters. A similar methodology has been
implemented in Augur [22].

We do not cover the detailed analysis on reputation mechanism
as it is out of scope of this paper and can be explored as future
work for the proposed decentralized oracle.

C. Sealed Votes

To ensure the security of the oracle it is necessary for votes
to remain secret until propositions are closed. One reason
is to prevent voters from simply tallying existing votes and
choosing to agree with the current majority (instead of hon-
estly reporting their private beliefs). One popular method for
sealed voting is a cryptographic commitment scheme [28].
When placing a vote, a reporter sends Hash(v, r) where v
is their vote and r is a privately chosen random number.
Once a proposition is closed, the reporter reveals v and r,
allowing the oracle (and any other participants) to verify that
the reporter committed to this vote. Unmodified, this scheme
is not enough for the set purposes. An attacker could replay a
vote, a reporter could choose to never reveal their vote, or a
reporter could publicly announce their vote before the query
closes. We propose the following techniques for dealing with
these issues:

13

1) Replay Attacks: This is easily prevented by extending the
committed information. When a reporter places a vote, they
should send Hash(v, p, r) to show that they answered v on
query p. Additionally, when tallying votes on a particular
query, commitments with identical r values should be ignored.
This removes the possibility of a sealed vote being valid in
more than one context.

2) Voter Never Reveals: This scenario could take place when
a reporter is trying to avoid receiving penalties. For example,
they could place a number of both True and False votes on
a query and selectively reveal only the votes which will earn
rewards. In order to prevent this, we should require reporters
to post a bond which is larger than the maximum penalty. If a
reporter disagrees with the majority, they will still regain some
fraction of their original bond; if they do not reveal their vote,
they forfeit their entire bond. This ensures that revealing votes
is incentivized.

3) Premature Revealing: Finally, a reporter may reveal their
vote before a proposition is closed. Recall that sealed votes
were desired in order to prevent new reporters from simply
copying the majority of existing votes. One way to disincen-
tivize this behavior is to allow users to report one another for
doing so. For instance, if a user can prove that they know
a vote placed by reporter i (by producing the correct v, p,
and r parameters) then they can be rewarded with a large
fraction of the original bond posted by i. A portion of the
bond should also be discarded in order to disincentivize users
from reporting themselves at zero cost (effectively canceling
their vote).

D. Random Numbers

Introducing randomization for reporters when selecting the
queries has the effect of evenly distributing the reports over
all queries, and makes it more costly for a reporter (or group
of reporters) to collude and force the output for a single query.

Substantial study has been done on randomization in decen-
tralized blockchain platforms, as all users must agree on the
exact same random number (implying that its selection must
be deterministic) and yet they must not be able to predict
or manipulate it. A popular method for accomplishing this
uses a RANDAO [13]. This technique is executed in two non-
overlapping phases: the committing phase and the revealing
phase. In the committing phase, users send hashes of privately-
generated random numbers. In the revealing phase, the users
reveal their private numbers, which are combined into a final
result. This ensures that users cannot predict the output during
the commit phase (though they can influence it) and that they
cannot influence the output during the reveal phase (though
they can predict it).

Although this technique guarantees that no user can predict or
predictably influence the output, it does not guarantee liveness
(e.g., users could choose to never reveal their commitments).
Pragmatically, a RANDAO can choose to end the reveal phase
once a certain quorum is met, at the cost of reduced security.

Note that an oracle could efficiently use both sealed votes
and a RANDAO by combining the two techniques. The rew
values used for sealed votes can be re-purposed as the basis
for random number generation.

VIII. APPLICATIONS

Imparting the ability to confirm external facts with the use of
a decentralized oracle into smart contracts will give rise to a
considerable increase in practical applications for blockchain
systems. This section gives an overview of candidate use cases
based on the proposed protocols.

A. Machine Learning and Data Annotation

Traditional prediction marketplaces survive on annotation and
labeling of huge amounts of data [29]. Various incentive
structures exist for current crowd-sourcing platforms, which
expend efforts from individuals to perform human intelligence
tasks [30, 31]. Lack of reliable compensation mechanisms has
affected the quality of labeling in this industry [32]. There
is no way to determine the correctness of the information
provided by these platforms. A decentralized oracle that can
incentivize honest workers and enrich trusted, reliable data
labeling will potentially reduce the costs and improve quality
of these existing solutions.

B. Data Availability

A core issue for decentralized applications using off-chain
resources [33] is the data availability problem [34]. Chances
of intermittent downtime of these systems (e.g., an off-chain
platform is unavailable) affect the essence of decentralization.
Our proposed protocol can also be used as a data availability
oracle for all such applications.

C. Adjudication Mechanisms

Negotiations between parties that require an adjudication
mechanism can instead use a decentralized oracle. In this case,
the oracle will essentially serve as a public jury. Decentralized
applications that deal with real-world resources, such as legal
agreements, transfers of assets, griefing behavior in on-line
games, token-curated registries, etc., can make use of this
system.

IX. CONCLUSION

This work proposes two novel crowdsourced protocols for a
decentralized oracle. Depending on the version of the protocol,
submitters post queries (antithetic queries if the simplified
protocol is used) into the system, while reporters (or certifiers)
answer the queries by placing a certain amount of monetary
stake. Depending on the reporting outcomes calculated by the
oracle, rewards and penalties for all users are assessed. We
analyze the game theoretical structure, oracle correctness, and
reporter payoffs in an honest voting scenario and show the
existence of an honest Nash equilibrium for both versions
of protocol. The base protocol introduces a high confidence
voting process which involves both reporters and certifiers,
while the other version provides a simplified version of the
base protocol in order to avoid the complexities involved in
implementing certifiers. Both protocols provide the same level
of security guarantees required by blockchains. We suggest
that the choice of the protocol should be made based on the
required complexity and also the number of participants in

REFERENCES 14

the system. In case of large pool of voters, the simplified
protocol would be efficient. The base protocol could be used
when there are enough risk-seeking participants. We present a
detailed architecture that could be implemented on Ethereum
blockchain. Additionally, we specify a number of features
which can increase the cost to force an outcome, reduce
transaction costs and provide pseudo-random number gener-
ation, and allow for secret voting on a public decentralized
blockchain platform. In the future, we plan to test the prototype
in a real-world environment. This would allow for empirical
analysis of performance and costs so to confirm the theoretical
analysis presented in this paper. Additionally, we plan to adapt
the architecture so that varied blockchain networks can use
the application. We further plan to extend the smart contracts
to include a factory design pattern in order to incorporate
upgradability.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2008. [Online]. Available: https://bitcoin.org/
bitcoin.pdf.

[2] S. Malik, S. S. Kanhere, and R. Jurdak, “Productchain:
Scalable blockchain framework to support provenance
in supply chains,” in 2018 IEEE 17th International
Symposium on Network Computing and Applications
(NCA), Nov. 2018, pp. 1–10. DOI: 10.1109/NCA.2018.
8548322.

[3] A. E. C. Mondragon, C. E. C. Mondragon, and E. S.
Coronado, “Exploring the applicability of blockchain
technology to enhance manufacturing supply chains
in the composite materials industry,” in 2018 IEEE
International Conference on Applied System Invention
(ICASI), Apr. 2018, pp. 1300–1303. DOI: 10 . 1109 /
ICASI.2018.8394531.

[4] M. Raikwar, S. Mazumdar, S. Ruj, S. S. Gupta, A.
Chattopadhyay, and K. Lam, “A blockchain framework
for insurance processes,” in 2018 9th IFIP International
Conference on New Technologies, Mobility and Security
(NTMS), Feb. 2018, pp. 1–4. DOI: 10.1109/NTMS.2018.
8328731.

[5] M. Z. A. Bhuiyan, A. Zaman, T. Wang, G. Wang,
H. Tao, and M. M. Hassan, “Blockchain and big data
to transform the healthcare,” in Proceedings of the
International Conference on Data Processing and Ap-
plications, ser. ICDPA 2018, Guangdong, China: ACM,
2018, pp. 62–68, ISBN: 978-1-4503-6418-8. DOI: 10 .
1145/3224207.3224220. [Online]. Available: http://doi.
acm.org.myaccess.library.utoronto.ca/10.1145/3224207.
3224220.

[6] I. Eyal, “Blockchain technology: Transforming liber-
tarian cryptocurrency dreams to finance and banking
realities,” Computer, vol. 50, no. 9, pp. 38–49, 2017,
ISSN: 0018-9162. DOI: 10.1109/MC.2017.3571042.

[7] “Blockchains: How they work and why they’ll change
the world,” 2017. [Online]. Available: https://spectrum.
ieee.org/computing/networks/blockchains- how- they-
work-and-why-theyll-change-the-world.

[8] “Why many smart contract use cases are simply impos-
sible,” 2016. [Online]. Available: https://www.coindesk.
com/three-smart-contract-misconceptions.

[9] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “De-
mystifying incentives in the consensus computer,” in
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS â15,
Denver, Colorado, USA: Association for Computing
Machinery, 2015, 706â719, ISBN: 9781450338325. DOI:
10.1145/2810103.2813659. [Online]. Available: https:
//doi.org/10.1145/2810103.2813659.

[10] V. Buterin, Ethereum: A next-generation smart contract
and decentralized application platform, 2014. [Online].
Available: https : / / github . com / ethereum / wiki / wiki /
White-Paper.

[11] C. Cachin, “Architecture of the hyperledger blockchain
fabric,” in Workshop on Distributed Cryptocurrencies
and Consensus Ledgers, vol. 310, 2016.

[12] R. Kraut, “Plato,” in The Stanford Encyclopedia of
Philosophy, E. N. Zalta, Ed., Fall 2017, Metaphysics
Research Lab, Stanford University, 2017. [Online].
Available: https : / / plato . stanford . edu / entries / plato /
#PlaCenDoc.

[13] Randao, https://github.com/randao/randao, 2016.
[14] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random

functions,” in Symposium on Foundations of Computer
Science, 1999, pp. 120–130.

[15] Oraclize.it, http://www.oraclize.it, Accessed: 2018-02-
01.

[16] TLSnotary – a mechanism for independently audited
https sessions, https : / / tlsnotary . org / TLSNotary. pdf,
2014.

[17] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E.
Shi, Town crier: An authenticated data feed for smart
contracts, Cryptology ePrint Archive, Report 2016/168,
https://eprint.iacr.org/2016/168, 2016.

[18] V. Costan and S. Devadas, “Intel sgx explained.,” IACR
Cryptology ePrint Archive, vol. 2016, no. 086, pp. 1–
118, 2016.

[19] Intel, Intel active management technology, intel small
business technology, and intel standard manageability
escalation of privilege, https://security-center.intel.com/
advisory.aspx?intelid=INTEL-SA-00075&languageid=
en-fr, Accessed: 2018-02-01, 2017.

[20] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B.
Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx, “Foreshadow: Extracting the
keys to the intel sgx kingdom with transient out-of-order
execution,” in Proceedings of the 27th USENIX Confer-
ence on Security Symposium, ser. SEC’18, Baltimore,
MD, USA: USENIX Association, 2018, pp. 991–1008,
ISBN: 978-1-931971-46-1. [Online]. Available: http: / /
dl.acm.org/citation.cfm?id=3277203.3277277.

[21] S. Ellis, A. Juels, and S. Nazarov, Chainlink a decen-
tralized oracle network, https://link.smartcontract.com/
whitepaper, 2017.

[22] J. Peterson, J. Krug, M. Zoltu, A. K. Williams, and
S. Alexander, Augur: A decentralized oracle and predic-
tion market platform, http://www.augur.net/whitepaper.
pdf, 2018.

[23] A. Hertig. (2017). Bought your first bitcoin or ether?
brace for the fees, [Online]. Available: https : / /www.
coindesk.com/bought- first- bitcoin- ether- now- brace-
fees.

[24] B. Wiki. (2018). Pooled mining, [Online]. Available:
https://en.bitcoin.it/wiki/Pooled_mining.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/NCA.2018.8548322
https://doi.org/10.1109/NCA.2018.8548322
https://doi.org/10.1109/ICASI.2018.8394531
https://doi.org/10.1109/ICASI.2018.8394531
https://doi.org/10.1109/NTMS.2018.8328731
https://doi.org/10.1109/NTMS.2018.8328731
https://doi.org/10.1145/3224207.3224220
https://doi.org/10.1145/3224207.3224220
http://doi.acm.org.myaccess.library.utoronto.ca/10.1145/3224207.3224220
http://doi.acm.org.myaccess.library.utoronto.ca/10.1145/3224207.3224220
http://doi.acm.org.myaccess.library.utoronto.ca/10.1145/3224207.3224220
https://doi.org/10.1109/MC.2017.3571042
https://spectrum.ieee.org/computing/networks/blockchains-how-they-work-and-why-theyll-change-the-world
https://spectrum.ieee.org/computing/networks/blockchains-how-they-work-and-why-theyll-change-the-world
https://spectrum.ieee.org/computing/networks/blockchains-how-they-work-and-why-theyll-change-the-world
https://www.coindesk.com/three-smart-contract-misconceptions
https://www.coindesk.com/three-smart-contract-misconceptions
https://doi.org/10.1145/2810103.2813659
https://doi.org/10.1145/2810103.2813659
https://doi.org/10.1145/2810103.2813659
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://plato.stanford.edu/entries/plato/#PlaCenDoc
https://plato.stanford.edu/entries/plato/#PlaCenDoc
https://github.com/randao/randao
http://www.oraclize.it
https://tlsnotary.org/TLSNotary.pdf
https://eprint.iacr.org/2016/168
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00075&languageid=en-fr
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00075&languageid=en-fr
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00075&languageid=en-fr
http://dl.acm.org/citation.cfm?id=3277203.3277277
http://dl.acm.org/citation.cfm?id=3277203.3277277
https://link.smartcontract.com/whitepaper
https://link.smartcontract.com/whitepaper
http://www.augur.net/whitepaper.pdf
http://www.augur.net/whitepaper.pdf
https://www.coindesk.com/bought-first-bitcoin-ether-now-brace-fees
https://www.coindesk.com/bought-first-bitcoin-ether-now-brace-fees
https://www.coindesk.com/bought-first-bitcoin-ether-now-brace-fees
https://en.bitcoin.it/wiki/Pooled_mining

15

[25] D. R. Stinson and R. Strobl, “Provably secure dis-
tributed schnorr signatures and a (t, n) threshold scheme
for implicit certificates,” in Proceedings of the 6th
Australasian Conference on Information Security and
Privacy, ser. ACISP ’01, London, UK, UK: Springer-
Verlag, 2001, pp. 417–434, ISBN: 3-540-42300-1. [On-
line]. Available: http : / / dl . acm .org .myaccess . library.
utoronto.ca/citation.cfm?id=646038.678297.

[26] Chainlink. (2019). Threshold signatures in chainlink,
[Online]. Available: https://blog.chain.link/threshold-
signatures-in-chainlink/.

[27] L. M. B. Cabral. (2005). The economics of trust and
reputation: A primer, [Online]. Available: http://pages.
stern.nyu.edu/~lcabral/reputation/Reputation_June05.
pdf.

[28] O. Goldreich, Foundations of Cryptography: Volume
1. New York, NY, USA: Cambridge University Press,
2006, ISBN: 0521035368.

[29] K. Burke, Humans help train their robot replacements,
http://www.autonews.com/article/20170827/OEM06/
170829822 / data - annotation - self - driving, Accessed:
2018-02-01, 2017.

[30] Crowdflower, https://www.crowdflower.com.
[31] Amazon mechanical turk, https://www.mturk.com.
[32] F. A. Schmidt, “The good, the bad and the ugly:

Why crowdsourcing needs ethics,” in Cloud and Green
Computing, 2013, pp. 531–535. DOI: 10 .1109 /CGC.
2013.89.

[33] J. Teutsch and C. Reitwießner, A scalable verification
solution for blockchains, https://people.cs.uchicago.edu/
~teutsch/papers/truebit.pdf, 2017.

[34] V. Buterin, A note on data availability and erasure
coding, https : / / github. com / ethereum / research / wiki /
A - note - on - data - availability - and - erasure - coding,
Accessed: 2018-02-01, 2017.

Keerthi Nelaturu received a B.E. in with a spe-
cialization in Computer Science Engineering from
the Osmania University in 2008. She then received
a M.Sc. in Computer Science Engineering from
the University of Ottawa in 2015. She is currently
pursuing the Ph.D. degree with the Department of
Electrical and Computer Engineering. Her research
interests include decentralized blockchain oracles
and smart contract verification/synthesis.

John Adler received a B.A.Sc. in Engineering Sci-
ence with a specialization in Electrical and Com-
puter Engineering from the University of Toronto
in 2013. He then received a M.A.Sc. in Electrical
and Computer Engineering from the University of
Toronto in 2017. His research interests include de-
centralized blockchain oracles and blockchain scal-
ability. He is currently with LazyLedger and Fuel
Labs.

Marco Merlini received a B.Sc. in Electrical Engi-
neering from the University of New Brunswick in
2018. He is currently pursuing an M.A.Sc. degree at
the University of Toronto. His research focus is on
debugging distributed FPGA applications.

Ryan Berryhill received the B.A.Sc. degree in
computer engineering from the University of Wa-
terloo, Waterloo, ON, Canada, in 2014, and the
M.A.Sc. degree in computer engineering from the
University of Toronto, Toronto, ON, USA, in 2016,
where he is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering. His current research interests include
inductive formal verification and automated formal
debugging of digital systems.

Neil Veira received a B.A.Sc. degree in Engineering
Science with a major in Electrical and Computer
Engineering from the University of Toronto in 2017.
He then received a M.A.Sc. in Electrical and Com-
puter Engineering from the University of Toronto in
2019. His research focus has been on applications
of machine learning and data science techniques
to hardware verification algorithms. He is currently
with SoundHound Inc. He is a member of IEEE.

Zissis Poulos received a Diploma in Electrical and
Computer Engineering from the National Technical
University of Athens in 2011, an M.A.Sc degree
in Electrical and Computer Engineering from the
University of Toronto in 2014, and a Ph.D. degree
in Electrical and Computer Engineering from the
University of Toronto in 2018. He is currently a
Postdoctoral Fellow at Rotman School of Manage-
ment at the University of Toronto. His research
interests include applied machine learning in finance,
deep learning acceleration, statistical diagnosis and
debugging of VLSI systems, modeling and optimiza-

tion of information/influence diffusion in social graphs, and distributed ledger
technologies. He is a member of IEEE and ACM.

Andreas Veneris received a Diploma in Computer
Engineering and Informatics from the University of
Patras in 1991, an M.S. degree in Computer Science
from the University of Southern California, Los
Angeles in 1992 and a Ph.D. degree in Computer
Science from the University of Illinois at Urbana-
Champaign in 1998. In 1998 he was a visiting
faculty at the University of Illinois until 1999 when
he joined the Department of Electrical and Computer
Engineering and the Department of Computer Sci-
ence at the University of Toronto where today he is
a Professor. Since 2018 he is a Connaught Scholar

for his contributions to blockchain technology. His research interests include
CAD for debugging, verification, synthesis and test of digital circuits/systems,
crypto-economics, decentralized blockchain technology, and combinatorics.
He has received several teaching awards, a best paper award and a Ten Year
Best Paper Retrospective Award. He is the author of one book and he holds
several patents. He is a member of IEEE, ACM, AMS, AAAS, Technical
Chamber of Greece, Professionals Engineers of Ontario and The Planetary
Society

http://dl.acm.org.myaccess.library.utoronto.ca/citation.cfm?id=646038.678297
http://dl.acm.org.myaccess.library.utoronto.ca/citation.cfm?id=646038.678297
https://blog.chain.link/threshold-signatures-in-chainlink/
https://blog.chain.link/threshold-signatures-in-chainlink/
http://pages.stern.nyu.edu/~lcabral/reputation/Reputation_June05.pdf
http://pages.stern.nyu.edu/~lcabral/reputation/Reputation_June05.pdf
http://pages.stern.nyu.edu/~lcabral/reputation/Reputation_June05.pdf
http://www.autonews.com/article/20170827/OEM06/170829822/data-annotation-self-driving
http://www.autonews.com/article/20170827/OEM06/170829822/data-annotation-self-driving
https://www.crowdflower.com
https://www.mturk.com
https://doi.org/10.1109/CGC.2013.89
https://doi.org/10.1109/CGC.2013.89
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding
https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding

	Introduction
	Preliminaries
	A Decentralized Oracle model

	Base protocol
	Overview
	The Query List
	System Description
	Reporting
	Certifying
	Termination and Decision

	Rewards and Penalties
	True and False Outcomes
	Unknown Outcome

	Monetary Flows
	Base Protocol Analysis
	Voting Outcomes and Manipulation
	Minimum Voting Accuracy
	Desirable Nash Equilibrium
	Query Bias and Reward Pools

	Simplified Reporter Oriented Protocol
	Description
	Submitting queries
	Submitting reports

	Modified Protocol Analysis
	Correctness
	Expected Rewards for Honest Voting
	Expected Rewards for Lazy Reporting
	Honest Nash Equilibrium

	Discussion

	Design and Implementation
	High-level Architecture
	Web-based user interface
	Middleware
	Ethereum Client

	Data-flow and Smart Contract Structure
	Membership Contract (MC)
	Submissions Contract (SC)
	Ballot Contract (BC)
	Rewards Contract (RC)

	Discussion

	Comparison with Prior Art
	Additional Implementation Details
	Voting Pools and Threshold Signatures
	Perks of being a Leader
	Subscriber Advantages
	Threshold signatures
	Advantages for the Decentralized Oracle

	Reputation and Adjudication systems
	Bootstrapping Calculation of Reputation Score
	Dispute Resolution

	Sealed Votes
	Replay Attacks
	Voter Never Reveals
	Premature Revealing

	Random Numbers

	Applications
	Machine Learning and Data Annotation
	Data Availability
	Adjudication Mechanisms

	Conclusion
	References
	Biographies
	Keerthi Nelaturu
	John Adler
	Marco Merlini
	Ryan Berryhill
	Neil Veira
	Zissis Poulos
	Andreas Veneris

