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Abstract—As the popularity of distributed ledger technology
and smart contracts continues to grow, so does the number
of decentralized applications and their potential exposure to
expensive exploits. The need for strong vulnerability detection
tools is critical. Move is a recently developed smart contract
language with safety and security at the core of its design
containing formal verification tools embedded into the language.
Currently, these tools can only verify local properties within
a single Move function. They cannot verify global properties
that result from multiple function executions. In this paper,
we introduce VeriMove, an extension of the VeriSolid correct-
by-design model checking framework that supports the Move
language. We show that model checking is a feasible method to
formally verify global properties in Move smart contracts.

Index Terms—Smart Contract; Verification; Solidity; Move

I. INTRODUCTION

Blockchain technology is at the heart of decentralization and
trustless transactions, enabling the development of cryptocur-
rencies such as Bitcoin [1] and Ethereum [2]. Smart contracts
are self-executing programs that operate on the blockchain
to carry out pre-defined, publicly supervised procedures. It
is possible to use smart contracts for both basic payment
transactions and more involved business logic. Inevitably,
complexity introduces vulnerabilities; the DAO assault, which
exploited the re-entrancy vulnerability, resulted in a $747 mil-
lion financial loss and harmed the blockchain’s confidence [3].

Due to the immutability of the blockchain, it is imperative
to identify and prevent vulnerabilities in smart contracts prior
to deployment. One method for mitigating vulnerabilities is
to use the many coding practices [4] accessible in traditional
programming languages. Current smart contract coding prac-
tices include the following: (i) carefully understanding the
semantics of the language specification [5], (ii) using safe
coding practices highlighted by teams like Open Zeppelin [6],
and (iii) mandatory source code auditing by qualified service
providers [7]. While these practices can prevent common vul-
nerabilities, they offer no guarantees, and other vulnerabilities
may still be present.

An alternative approach for mitigating vulnerabilities is to
use formal verification. Formal verification tools are based
on formal operational semantics and offer robust verifica-
tion guarantees. They enable the formal specification and
verification of attributes and can discover both typical and
atypical vulnerabilities that could lead to a security property
violation. Among the existing verification tools there are three
common categories of techniques: theorem proving, symbolic

execution, and model checking [8], [9]. Theorem proving tools
encode the model and requirements in formal mathematical
semantics and use a theorem prover to determine whether
or not the requirements hold in the model (i.e., [10]-[14]).
Symbolic execution represents program variables as symbols
to compute all feasible execution paths, which are checked for
the vulnerabilities or desired program properties (i.e. [15]-
[22]). Finally, model checking represents the smart contract
as a finite-state transition model and represents properties
as propositions about the model. A combination of state-
space search and satisfiability solvers are used to verify the
requirements (i.e., [23]-[26]).

Solidity [27] is a popular programming language for writing
smart contracts. Its success is mostly due to the thriving
Ethereum ecosystem and its familiar JavaScript-based syntax,
which made it approachable for a large number of developers.
However, the language also includes new constructs, such
as delegatecall and fallback functions, to support
blockchain transactions. Due to the lack of developer aware-
ness of the semantics behind these constructs, numerous ex-
ploits have emerged [28]. These vulnerabilities pose a critical
problem as they can result in significant financial loss. Even
with existing verification tools, smart contracts still often
contain known and preventable vulnerabilities. As a result,
some research effort is focused on tackling this problem at
its root by creating new smart contract languages that prevent
these common vulnerabilities by design.

Move [29] is a smart contract language developed by Diem
(formerly known as Libra) [30], [31] designed to ensure
security and verifiability while retaining code flexibility. It
introduces the novel resource type with the goal of addressing
the scarcity and access control issues inherent in representing
digital assets on a blockchain. Additionally, Move incorporates
a bytecode verifier [32] for static analysis to catch common
vulnerabilities, as well as a theorem proving formal verifi-
cation tool called the move-prover [33] for more complex
vulnerabilities. The verification specification is expressed in
the same style as the coding logic, allowing for state checks
before and after each function is executed. Diem, OL [34],
Starcoin [35], Sui [36], and Aptos [37] blockchains are now
officially supported by Move.

Currently, the bytecode verifier and move-prover can only
verify local properties that are contained within a single
Move function. However, some properties are global in nature,
and occur as the result of many function executions. This



demonstrates a need for additional verification tools. Notably,
VeriSolid’s correct-by-design model checking framework has
shown success in prior work [23], [38] for verifying global
properties in Solidity.

In this paper, we present a comparative analysis of the
Solidity and Move smart contract languages and introduce
VeriMove, a model checking framework for Move built on top
of VeriSolid. The contributions of this research are as follows:

o We summarize the features of the Move language.

e We do a comparative analysis of Move and Solidity,
focusing on the safety features (and lack thereof) found in
both languages and the trade-offs associated with utilizing
one over the other.

o We introduce VeriMove, a model checking framework
that leverages VeriSolid to verify and generate Move
smart contracts automatically based on the specifications
provided.

o As part of the model checking framework, we define the
operational semantics for the new Move constructs.

o« We discuss the workflow of the VeriMove prototype
implementation in-depth.

e We compare VeriMove with VeriSolid by presenting
the outcomes of our experiments with three types of
smart contracts, showing that VeriMove can verify global
properties in Move with reasonable performance.

The remainder of the paper is structured as follows. Sec-
tion II provides context for Move and VeriSolid. The works
that are relevant to this research are covered in Section III. Sec-
tion IV compares both Solidity and Move in detail, examining
their features, vulnerabilities, and trade-offs. In Section V, we
examine the VeriMove model checking framework’s workflow
and introduce its components. In Section VI, we describe the
operational semantics introduced for the Move language. In
Section VII, we describe the prototype’s implementation in de-
tail and examine the experimental results. Finally, Section VIII
concludes this work.

II. BACKGROUND
A. The Move Language

Move is an executable bytecode language for writing smart
contracts and custom transaction logic [39]. Smart contracts
in Move are written as modules, which contain custom types
called structs and module functions called procedures. Move
programs are published under an account address and executed
on a blockchain. To interact with the blockchain program,
a user writes a Move transaction script, which can import
modules and call their corresponding procedures.

Move was designed to easily and securely manage digital
assets [29]. This is accomplished through two properties:

e access control: the owner of an asset should have full
control over who can access the asset.

e scarcity: duplicating the asset should be prohibited (to
prevent double spending) and the creation of a new asset
should be a privileged operation.

These properties are implemented in the Move language
through the Rust-like ownership system and the resource type.

To manage memory, Move implements a Rust-like system
of ownership where each variable “owns” their stored value
and each stored value can only have one owner. A stored value
can be copied to another variable (if allowed by the type) in
which case the stored value is duplicated and assigned to the
new variable as its sole owner. The original variable retains its
stored value. Alternatively, ownership of a stored value can be
transferred to another variable in which case the new variable
owns the stored value and the original variable is no longer
valid to use. Once the end of a local scope is reached, all local
variables are dropped and their allocated memory is freed. The
borrow checker is the compiler component that ensures the
program follows these ownership rules.

The resource type in Move is implemented as a struct that
cannot be created nor destroyed by code outside its declaring
module and can never be copied nor dropped. When a resource
is initialized, it must be stored globally under an account
address. Like all variables in Move, resources are subject to the
Rust-like ownership rules. Thus, the storing account address
is the resource’s sole owner. Resources may be transferred
between account addresses. However, since resources cannot
be duplicated, the original account address loses access to the
resource as the receiving account address becomes the sole
owner. While resources may seem restrictive, they allow pro-
grammers to encode safe, yet customizable digital assets that
are controlled only by their owner and cannot be accidentally
(or intentionally) copied nor destroyed by code outside the
declaring module.

A unique feature of Move is its built-in verification tools.
Before any Move program can be published, it must pass
the bytecode verifier, which statically verifies basic, light-
weight safety properties. These checks fall into three cate-
gories: structural checks to make sure statements are well-
formed; semantic checks such as incorrect procedure argu-
ments, dangling references, and duplicating a resource; and
authorization checks [29]. Additionally, Move has an offline
verifier called the move-prover [33], which is a theorem-
proving formal verification tool written in Rust. The prover
takes as input Move source code annotated with specifications
and determines whether the code meets those specifications.
Supported specifications include Floyd-Hoare pre-conditions,
post-conditions, and function aborts.

B. VeriSolid

VeriSolid [23] is an open-source, web-based, model check-
ing, formal verification framework built on top of We-
bGME [40] and FSolidM [41], [42]. It allows developers to
specify their program functionality using an abstract, graphical
representation in the form of a transition system. The desired
system properties are encoded using various natural language
templates, which can verify safety, liveness, and deadlock
freedom properties. In order to verify a smart contract, the
transition system is converted into a Behavior-Interaction-
Priority (BIP) model [43], which is then translated into an
NuSMV model [44]. The templated properties are used to



generate Computational Tree Logic (CTL) specifications [45].
State space exploration in BIP can verify deadlock freedom
properties and the NuSMV model can verify safety and live-
ness properties using the nuXmv model checker [46]. Once the
developer is satisfied with the model and properties, VeriSolid
generates the equivalent Solidity source code.

III. RELATED WORK

Due to the immutability of the blockchain, it is best to detect
vulnerabilities in a smart contract before it is deployed. This
can be achieved through the method of formal verification,
which proves or disproves whether certain properties hold
for a given smart contract. Most verification tools can be
classified as either theorem proving, symbolic execution, or
model checking [8], [9].

Proof-based methods involve modeling the program and the
desires properties in a formal mathematical language. A theo-
rem prover for that language then uses well-known logical ax-
ioms and simple inference rules to prove (or disprove) that the
desires properties hold in the smart contract. Tools of this type
that are compatible with Ethereum Virtual Machine (EVM)
bytecode include the K framework, Lem, and F*. K [47] is a
general purpose framework that uses the formal semantics of
a language to generate a variety of tools. Using their semantic
definition of the EVM bytecode, the K framework created
a deductive verifier called KEVM. This uses Reachability
Logic reasoning to evaluate program specifications expressed
as reachability claims. Lem [48] is a general language of
types, higher-order functions, and inductive relation definitions
design to be scaleable for a wide variety of applications. Lem
definitions can be translated to interactive-proof tools such as
Coq, HOL4, and Isabelle/HOL. Finally, Bhargavan et al. [49]
designed a framework that converts Solidity source code and
EVM bytecode into the existing language F* where it can
be verified for correctness and saftey properties. The only
theorem proving tool currently implemented for the Move
language is the move-prover discussed in Section II-A.

Symbolic execution is a form of static analysis that re-
places program variables with symbolic expressions such
that subsequent variables are expressed in terms of previous
variables. The execution paths with respect to all feasible
inputs are generated and searched for vulnerabilities. Tools
such as Oyente [17], Gasper [18], and Osiris [19] construct a
control flow graph to represent the state-space and use an SMT
solver to detect vulnerabilities. Other tools such as Slither [15]
and SmartCheck [20] utilize a semantic tree along with an
intermediate representation to detect vulnerabilities. Currently,
there are no symbolic execution tools implemented for the
Move language.

Given a finite-state model of the program and a formal
specification of the desired properties, model checking verifies
that the model behavior conforms to the specifications. This is
often achieved through state space exploration or satisfiability
solvers. Well-known model checking tools include Zeus and
Verisolid. Zeus [14] is a symbolic model checking tool that
takes as input Solidity source code along with XACML policy

specification. It converts these inputs to a low-level inter-
mediate representation (LLVM bitcode) and leverages Sea-
Horn [50] to preform the symbolic model checking. VeriSolid
was discussed in detail in Section II-B. Due to its graphical
representation of the transition system and natural language
templates for property specification, it is more user-friendly
than Zeus. VeriMove, the tool introduced by this paper, is the
first model checking tool implemented for the Move language.

IV. COMPARISON OF MOVE AND SOLIDITY

Solidity is a smart contract language designed to run on the
EVM. To date, it is one of the most popular and widely-used
languages for smart contract development. Move is a recently
developed smart contract language designed for the Diem
blockchain. The Move language continues to gain support by
different blockchain networks due to its unique safety features.
In this section we compare of the main differences between
Move and Solidity and the trade-offs associated with each.

A. Global Storage and Local Memory Management

During the execution of a smart contract, the compiler
needs to manage three things: 1) the source code of the smart
contract, 2) the local variables used during execution, and 3)
global variables that remain persistent after execution.

In Solidity, each contract is given its own address space on
the blockchain, where its source code (functions) and global
variables (state variables) are stored. Since state variables
are stored on the blockchain, their values are persistent after
execution. Similarly, each contract in Move is given its own
account address on the blockchain. However, the source code
(modules) and global variables (resources) are stored sepa-
rately. Thus, a declared resource is not necessarily stored under
the same account address as its defining module; instead, it is
stored under the account address of its owner. This decoupling
of data from the control flow logic is not only more secure,
but also makes Move a more expressive and flexible language
compared to Solidity.

For local variables in Solidity, once the execution of the
function completes, the temporary memory pointers move
to the next available memory slot. From the developer’s
perspective it looks like their temporary memory has been
wiped. However, Solidity does not guarantee that this memory
has been “zeroed out”, and does not provide any method
for developers to manually free their memory [51]. While
Solidity claims this may change in the future, as it stands
Solidity is incredibly susceptible to memory leaks. By contrast
as discussed in Section II-A, Move implements a Rust-like
memory management system where each value has exactly
one owner. This makes all Move variables (both local and
global) memory safe and guarantees no memory leaks.

B. Transfers

In order to preform a transfer from one contract address
to another in Solidity, the sender contract must use either
send (), transfer (), or call (), each of which behave



differently and are intended for different applications. When
one of these functions is called, the EVM exits the sender
contract and enters the fallback () function of the receiver
contract. The fallback function completes the transfer, but may
also execute other code unbeknownst to the sender contract.
Once the end of the fallback function is reached, the EVM
returns to the sender contract and continues on the next line.
Many of the vulnerabilities in Solidity can be attributed to un-
expected behavior of and manipulating the interaction between
these functions, such as re-entrancy, mishandled exceptions,
unchecked call return value, delegate call to untrusted callee,
and DoS from unexpected revert [28].

In Move, resources were developed to be implemented as
digital assets. Recall from Section II-A that resources must
follow the strict, Rust-like ownership rules and resources
cannot be copied nor dropped. Thus, transferring a resource is
simply a matter of transferring its ownership between account
addresses, which can only be done by the resource’s sole
owner. This is the biggest advantage of Move; its design
and implementation is centered around making the transfer
of resources safe and secure. This immediately mitigates all
aforementioned vulnerabilities, including re-entrancy, from the
Move language.

C. Trade-Offs

Move is a more restricted language compared to Solidity.
Based on the results from Section VII, Move requires 80
additional lines of code on average for the same smart contract.
This gives Move a larger learning curve and makes it generally
more difficult to use in practice, which can result in more bugs
and unintentional vulnerabilities.

However, these restrictions are present by design and have
an important purpose. A Move smart contract that passes the
bytecode verifier is completely memory safe and void of com-
mon vulnerabilities, such as integer overflow/underflow and re-
entrancy. Moreover, the Move language and the resource type
were designed for safe and secure transactions. While future
vulnerabilities may be discovered that are unique to Move,
currently no vulnerability has been discovered that is present
in Move but not present in Solidity. Hence, Move is a strictly
safer language.

V. VERIMOVE: DESIGN AND VERIFICATION WORKFLOW

VeriMove is a an open-source, web-based, model checking
tool built on top of VeriSolid designed for collaborative devel-
opment of Move smart contracts with build-in version control
enabling branching, merging, and history viewing. VeriMove
includes two major additions/modifications to VeriSolid: the
language parser and the finite state machine (FSM) generator.

A. Language Parser

Much of the functionality in VeriSolid and VeriMove re-
quires complex statements to be broken up into a series
of single expressions. In VeriSolid, this process was done
largely manually for Solidity statements, which makes it
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difficult to extend VeriSolid to other languages, such as Move.
Thus, VeriMove extracted this functionality into a modular
component called the language parser. Given the grammar
definition of a language, the language parser automatically
generates a parsing tree, which is used to obtain the simplified
expressions. This feature makes VeriMove much more flexible
than VeriSolid, as only the grammar definition needs to be
changed in order to support other languages.

B. Finite State Machine Generator

VeriSolid requires the developer to write a smart contract
in a very structured way. This can be a tedious process that
takes a lot of time. Thus, VeriMove implements the ability to
automatically create the transition system from Move source
code. To accomplish this, the FSM generator creates an initial
state and a core state. A transition from the initial state to
the core state initializes the smart contract. All functions in
the smart contract are represented as self-looping transitions
in the core state. This generates a preliminary transition
model that can be easily modified by the developer for their
application. Due to the language parser, this functionality is
easily extendable to other languages.

C. VeriMove Workflow

Figure 1 shows the steps of the VeriMove design flow.
The components of VeriMove that were added to VeriSolid
are highlighted in yellow. Mandatory steps are represented
by solid arrows, while optional steps are represented by
dashed arrows. In step 1), the developer input is given. Like
VeriSolid, VeriMove utilizes a graphical user interface (GUI),
which allows the user to create and edit the transition system



representation of the smart contract. If the developer already
has Move source code, then they can use the FSM generator to
automatically create the transition system and use the GUI to
further refine the model. In step 2), if code input is provided,
the FSM generator will convert the code into a transition
system. Step 3) begins the verification loop. The language
parser simplifies the Move statements in each transition into a
series of simple Move expressions. Steps 4-8) are identical to
the workflow in VeriSolid [23]. Here, the transition system is
converted to a BIP model. The model properties are given by
the user in natural language templates, which are converted
into CTL properties. The BIP model and CTL properties
are given to an NuSMV solver which verifies the model
with respect to the properties. Finally, Once the developer
is satisfied with the verified model, step 9) generates the
equivalent Move source code.

VI. OPERATIONAL SEMANTICS FOR MOVE

This section outlines the operational semantics necessary for
the Move language. We define the subset of the Move language
that VeriMove supports. The following are the custom types
that are supported. Note that there is no (event) type in Move.
Events are specified using resources.

(resource) ::= resource struct Qidentifier {
(Qidentifier: Qtype, )*}

VeriMove supports the following types of Move statements.

(statement) :=
| (declaration) ;
| Qexpression ;
| return (Qpure)? ;
| if (Qexpression) (statement)
(else (statement))?
| while (Qexpression) (statement) ;
| {({statement))  }

(declaration) ::= let Qidentifier (: Qtype)?
(= Qexpression)?

The operational semantics of the transition system for
VeriMove are identical to that of VeriSolid [23]. Likewise,
the operational semantics of the supported Move statements
are identical to that of Solidity except for the FOR transition,
which should be removed since Move does not support for-
loops. The following are statement transitions that need to be
modified.

Decl(o, Type, Name) — ((o’, ))
((o, N),let Name: Type;) — ((o’, z), -)

VARIABLE

Eval(c, Exp) — ((¢’,z),v)
((e,N), let Name: Type = Exp;) —
(o', x), {let Name: Type; Name=v;})

VARIABLE-ASG

VII. EMPIRICAL EVALUATION
A. Implementation

Similar to VeriSolid, VeriMove was implemented as a web-
based application utilizing WebGME [40] and FSolidM [41],
[42] as its GUI for specifying the transition system with an
NuSMV solver for model verification. The following are the
differences between the implementation of VeriSolid [23] and
our implementation of VeriMove: 1) VeriSolid is a NodedJs
application whereas VeriMove is a React application, 2) Ver-
iMove separated the language parser as a modular component,
and 3) VeriMove adapted the FSM generator algorithm to be
compatible with the Move language.

B. Experimental Setup

We will compare the performance of VeriSolid and Veri-
Move on the same set of smart contracts: ERC20, ERC721,
and BlindAuction. The contracts ERC20 and ERC721 are
implementations of the ERC20 Token Standard and ERC721
Non-Fungible Token Standard, respectively [52], [53]. The
contract BlindAuction is an implementation of the blind
auction example from the Solidity documentation [54]. In
a blind auction, participants submit bids without knowing
the bid amount of the other participants. To accomplish this
one a blockchain platform where all transactions are public,
participants submit the hash of their bids along with a deposit.
After the bidding period is over, each bid is revealed. A bid
is valid if the deposit is larger than the bid; the winner is
the highest valid bid. These contracts were implemented in
both VeriSolid and VeriMove. Each contract was given a series
of verification properties and once verified the smart contract
code was generated. The generated contracts and verification
output can be found on the GitHub repository ! along with
the implementation.

C. Results

Both VeriSolid and VeriMove were able to successfully
verify the contract properties. Tables I and II show the prefor-
mance results of the verification of VeriSolid and VeriMove
on these smart contracts. The meaning of the columns in the
Tables are as follows. “Contract Length” refers to the number
of lines of code in the generated contract. Recall that in both
VeriSolid and VeriMove the user-defined transition model is
converted into a BIP model and then into an NuSMV model.
“Total States” refers to the total number of states in the final
NuSMV model. “Reachable States” refers to the number of
states in the final NuSMV model that are reachable given the
smart contract control flow logic. Finally, “System Diameter”
is the depth of the state-space search during verification.

D. Discussion and Limitations

As discussed in Section I, the current verification tools for
Move, the bytecode verifier and the move-prover, can only
verify properties within a single function. Model checking

Uhttps://github.com/ekeilty 1 7/move-smart-contracts



TABLE I
VERIFICATION PERFORMANCE OF VERISOLID
Smart Contract System Reachable | Total
Contract Length Diameter States States
ERC20 132 7 23 231
ERC721 155 7 23 232
BlindAuction 149 11 41 251
TABLE II
VERIFICATION PERFORMANCE OF VERIMOVE
Smart Contract System Reachable | Total
Contract Length Diameter States States
ERC20 213 19 52 263
ERC721 249 18 59 270
BlindAuction 215 17 51 262

allows for the verification of global properties that occur
across functions. By successfully generating all contracts and
verifying all contract properties, VeriMove has shown that
model checking is a feasible approach for verifying global
properties.

In terms of performance, Tables I and II show that in every
contract VeriMove contains more total states, more reachable
states, and requires a larger system diameter to verify the
contracts compared to VeriSolid. This is due to the fact that
Move generally requires more statements to preform the same
functionality compared to Solidity; thus, it requires more
states. This is shown by the length of each contract in Move
and Solidity. On average, Move required 80 more lines than
Solidity for the same contract. This could be an issue in
large contracts as model checking is susceptible to state-space
explosion. As discussed in Section II-A, Move was designed to
be easily verified by the bytecode verifier and the move-prover;
a static analyzer and theorem prover, respectively. Therefore,
it is not optimized for model checking verification, which is
reflected in its results. However, these numbers are not large
enough to render model checking an infeasible approach to
formal verification in Move.

VIII. CONCLUSION

In this work we modified and extended VeriSolid to support
the formal verification of Move smart contracts. First, we gave
a detailed comparison of the Move and Solidity, discussing
the main differences between the design of the languages and
their trade-offs. Next, we outlined the design and workflow
of VeriMove. This included the introduction of the language
parser component that allows the VeriSolid framework to be
easily extended to other languages, and an FSM generator to
make the model checking process more efficient. Additionally,
we list the operational semantics introduced for the verification
of a Move smart contract. Finally, we implement standard,
widely used smart contracts in both VeriSolid and VeriMove,
and compare their performance. The results showed that model
checking is a feasible approach for verifying global properties
in Move.

The experiments presented in this paper are limited due
to the recency of Move’s development. We expect that the
Move language will soon gain popularity due to its unique
safety features. With more examples of deployed Move smart
contracts, a more in-depth comparison of Move/VeriMove
and Solidity/VeriSolid can be done. Future work includes
probing Move for vulnerabilities inherent to the language,
comparing Move and Solidity against known vulnerabilities
in more detail, determining what vulnerabilities are common
to deployed Move contracts, and which of these vulnerabilities
can be discovered and prevented by VeriMove.
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