Mobius: an Atomic State Sharding Design
for Account-Based Blockchains

Srisht Fateh Singh, Panagiotis Michalopoulos, Sidi Mohamed Beillahi, Andreas Veneris, Fan Long
University of Toronto
srishtfateh.singh @mail.utoronto.ca, p.michalopoulos @mail.utoronto.ca, sm.beillahi @utoronto.ca,
veneris @eecg.toronto.edu, fanl@cs.toronto.edu

Abstract—This paper presents Mobius, the first cost-efficient
state sharding design that remains consensus mechanism ag-
nostic and guarantees atomicity for cross-shard smart contract
transactions. In particular, to address the challenges posed by
the growing blockchain state, Mobius enables its participants
to verify all transactions while only storing a partial state.
Unlike previous state sharding systems, the proposed protocol
uses a novel vector commitment data structure to reduce the
network bandwidth overhead via proof aggregation. Further,
it utilizes a novel epoch-based multi-phase commitment tech-
nique for guaranteeing atomicity in cross-shard transactions.
Experiments presented here show that Mobius reduces the disk
requirement of each participant linearly with respect to the
number of shards. Further, it presents a 4.7-7.3 x lower network
bandwidth overhead when compared to existing state-of-the-art
state sharding systems. The outcomes also confirm that existing
smart contracts can operate on Mdobius in cross-shard scenarios
without modifications.

Index Terms—blockchain, sharding, blockchain state sharding,
smart contracts, cross-shard transactions, atomicity.

I. INTRODUCTION

Following the success of cryptocurrencies [?], [?],
blockchains have evolved into secure, decentralized, and con-
sistent transaction ledgers at Internet scale. New blockchains
like Ethereum [?] can encode customized transaction rules
as smart contracts, which greatly extend the capability of
blockchain ledgers beyond money transfers. These technolo-
gies now fuel innovation in real-world applications such as
finance, supply chain, and entertainment, among others [?].

The recent adoption of this technology has presented a
critical challenge in the ever growing size of the blockchain
state. For example, the full blockchain state size of Ethereum
currently exceeds 1TB [?]. Since the blockchain state is
designed to be persistent, its size keeps growing as the system
processes more transactions. Evidently, for systems that exhibit
a higher throughput, the state size grows even faster [?],
[?], [?]. Further, the recent popularity of Metaverse and non-
fungible token applications will further exacerbate this situa-
tion as these applications tend to store significantly more data
than conventional financial applications [?]. One undesirable
consequence of a large state is increased storage requirements
for each blockchain node resulting in a greater overall cost
of maintaining the network. A cascading corollary of this
effect is that higher hardware requirements may discourage
the number of active nodes and this can cause the system
to become more “centralized” and less robust than what was
originally envisioned.

To address these issues, the idea of state sharding has been
proposed to reduce the hardware requirements of storing the
growing blockchain state. Under that scheme, each network
node can store a part of the global state (i.e., a shard) while
still maintaining the capability of verifying all transactions.

979-8-3503-1019-1/23/$31.00 ©2023 IEEE

However, previous state sharding techniques suffer from two
drawbacks that limit their adoption. First, to enable nodes to
verify transactions from a different shard, each transaction
has to attach cryptographic proofs of all the state values
the transaction accesses. Since most blockchains use Merkle
Patricia Trees (MPT) to store their states, the proof of each
state value will have to contain data from up to O(logn)
nodes in MPT, where n is the size of the whole blockchain
state. This significantly increases the size of the transaction
and introduces a notable network bandwidth overhead for
transaction propagation.

The second drawback is that none of the existing techniques
appropriately support cross-shard smart contract transactions.
Specifically, a transaction is a cross-shard one if it accesses
state values from multiple shards. The standard approach to
handling cross-shard transactions is to relay and process such
a transaction for each accessed shard one by one. It can
guarantee eventual consistency but not transaction atomicity,
i.e., a cross-shard transaction should either succeed or abort
on all shards, and the intermediate state during the transaction
execution should not be visible to other transactions. Since
transaction atomicity is essential to the correctness of many
smart contracts, these techniques may therefore be impractical
without rewriting most of the existing smart contracts.
Mobius: This paper presents Mobius, the first cost-efficient
state sharding design that remains consensus mechanism ag-
nostic, and guarantees atomicity for cross-shard smart con-
tract transactions. To enable efficient state sharding, Mobius
stores its state as a vector commitment tree (VCT) using
Hyperproofs, a new cryptographic scheme that enables state
proof aggregation [?]. It organizes consecutive blocks into
epochs, where each epoch is referred to as a round. Instead
of appending a state value proof to each transaction, each
shard periodically attaches an aggregated proof for state values
accessed in all transactions in the blocks of the last epoch. This
mechanism amortizes the proof cost and significantly reduces
the bandwidth overhead caused by state sharding.

To guarantee transaction atomicity, Mobius operates with
a novel epoch-based multi-phase commitment. For a cross-
shard transaction whose execution requires data from multiple
shards, a node from the initiating shard will pack the trans-
action in a block as non-committed along with all accessed
state values from the initiating shard. Then a node from the
subsequent shard can pick up this transaction, and supply
additional state values from its shard. This process continues
until either all accessed values are available and the transaction
commits simultaneously on all shards, or the lifetime of the
non-committed transaction expires and the process aborts.
This enables Mdbius to support arbitrarily complicated smart
contract transactions that require data from multiple state
shards.

Experimental Results: We have implemented a prototype of
Mobius and evaluated it with three representative transaction

benchmark traces, i.e., simple transfers, ERC20 transfers, and
DeFi swap transactions. These results show 1) that Mdbius
effectively reduces the stored blockchain state size per node
proportionally as we increase the number of shards, 2) that
our solution has up to 7.3x less network bandwidth overhead
compared to previous techniques using MPT proofs, and 3)
that Mobius guarantees atomicity for even complicated DeFi
swap transactions that have more than 5 cross-shard hops.

Contributions: This paper makes the following contributions:

o Mobius: The first cost-efficient state sharding protocol
that is consensus mechanism agnostic, and guarantees
atomicity for cross-shard smart contract transactions.

« VCT with Hyperproofs: We introduce novel techniques
to store blockchain state to significantly reduce the band-
width overhead of state sharding.

e Multi-phase Commitment: A unique epoch-based
multi-phase commitment technique to guarantee atomic-
ity for arbitrarily complicated cross-shard smart contract
transactions.

The paper is organized as follows. Section ?? gives back-
ground on state sharding and a family of cryptographic
schemes known as vector commitment scheme. Section ??
gives a high-level overview of two important design aspects of
Mobius. Section ?? gives a detailed view of our state sharding
design. In Section ??, we present an implementation of our
sharding design on the Ethereum blockchain and evaluate its
performance in Section ??. Finally, we discuss the related
works in Section ?? and conclude the paper in Section ??.

II. BACKGROUND
A. Blockchain State Sharding

An account state-based blockchain like Ethereum [?] is
constituted of a state machine composed of a global state of
accounts. The global state of Ethereum is a mapping from
160-bit account addresses to account states. An account’s state
includes account information such as the native token balance
owned by the account, and the transaction counter or nonce.
Optionally, an account can host a Turing-complete program
called smart contract. Such an account has a persistent storage
state constituting the storage trie and is composed of the
contract’s state and bytecode.

In existing blockchain platforms such as Ethereum, each
full node participating in the network stores the entire global
state. However, as the number of accounts and smart contracts
increase, the state of the blockchain grows tremendously. For
instance, the size of Ethereum’s state at the time of this
writing exceeds 1 TB [?]. This may disenfranchise nodes
with “regular” machines from participating thus sacrificing the
egalitarian nature of the network. Blockchain state sharding
allows splitting the global state amongst miner/validator nodes
where each node stores a chunk or shard of the state to cope
with the increasing state size and hardware requirements.

B. Vector Commitment Schemes

A vector commitment scheme (VCS) [?], [?], consists of
a hash function that takes a vector z = [zg,...,2,—1] and
outputs a commitment C (also called a digest) such that
one can create a proof that C' is the commitment to some
vector where the value at the index i is 2. VCSs such
as Hyperproofs [?] uses homomorphic polynomial commit-
ments allowing participants to update the commitments using
only the delta i.e., changes in the data point. For instance,
C’' = U(C,4,i) is the computed new commitment value
when the value at the index i of the input vector changes

by 4. Here C' is the old value of the commitment and U is
the commitment update function. Hyperproofs are maintained
as a vector commitment tree (VCT) that can be updated
efficiently. Moreover, Hyperproofs provide a suitable solution
for aggregating individual proofs. In [?], it was shown that
Hyperproofs are 10x faster than the proof aggregation scheme
SNARKS [?] that aggregates Merkle proofs [?].

In a sharded blockchain setting, VCT allows nodes in the
network to exchange state data along with the authenticity
proofs for generated blocks. The receiving nodes can validate
the mined blocks by verifying the authenticity of proofs
against the vector commitment for the state that they maintain.

III. PROTOCOL OVERVIEW

In this paper, we propose the Mobius protocol to enable
a secure state sharded blockchain. Since the transmission of
individual proofs over the network will result in network
congestion, our protocol uses Hyperproofs to batch multi-
ple individual proofs into a single aggregated proof before
transmitting them. Hyperproofs delivers the fastest proof ag-
gregation method out of all maintainable proof schemes. We
use a multithreaded extension of Hyperproofs over the single-
threaded implementation in [?] that allows us to improve
the aggregation and verification times for 1024 proofs for a
vector of length 224 from 109 and 14 seconds to 6.10 and
0.722 seconds, respectively, on a 16-cores machine. However,
although the Hyperproofs implementation in our design can
achieve a much improved aggregation time over existing
approaches, in practice, the proof aggregation time is still a
bottleneck for block production. For instance, considering a
block containing 1024 simple payment transactions, the block
production time will be at least greater than the 6 seconds
(1024 proofs for the sender’s balance) necessary for proofs
aggregation. Thus, the proof aggregation time will significantly
impede the overall transaction throughput.

A. Optimistic Proof Aggregation

To address the issue of time-consuming proof aggregation
delay, we decouple proof aggregation from block mining by
modifying the mining process as follows. When mining a
block, a block producer (i.e., a miner node) along with each
transaction also includes the input data required to verify and
execute the transaction. For example, the input data for a
simple payment transaction is the sender’s balance to ensure
that the sender has enough balance in their account. At this
stage, the block producer does not provide the aggregated
proof. However, before a fixed deadline (expressed in the
number of blocks), at least one node from the same shard as
the miner node needs to provide an aggregated proof, which
proves the authenticity of the previously included input data.
The deadline is set long enough to provide sufficient time
to compute the aggregated proof in parallel with transaction
packing. When mining the next block, other nodes in the
network optimistically assume that the input data provided by
the previous miner node is correct and proceed with block
execution even though the proof is yet to be included.

To ensure that malicious nodes do not exploit this trust, the
protocol requires a stake deposit for every node in the network.
Any dishonest behaviors (inferred through the authenticated
proofs) are penalized by slashing the stakes of the malicious
nodes. In Section ??, we detail the incentive mechanisms used
in Mobius to discourage dishonest behaviors.

Submits a Txn Packs an incomplete

-

Txnin B
User Shard 0

Packs the final

Txn in B+2 Shard 2 Shard 1
Packs an incomplete Txn
in B+1

Shard 0 Shard 0 Shard 1 Shard 2 Shard 0
B-1 B B+1 B+2 B+3

Figure 1. An execution of a successful cross-shard transaction.

B. Atomic Execution of Cross-Shard Transactions

A crucial challenge in any state-sharded blockchain is the
handling of transactions that need access to state data from
different shards. These are known as cross-shard transactions.
Mobius ensures the correctness of such transactions by guar-
anteeing their atomicity and thus preventing interference with
other transactions.

Motivational Example: We use the example in Fig. ?? to
explain the mechanism used in Mobius that ensures transaction
atomicity. The example consists of a cross-shard transaction
Txn that first requires data from shard 0, then from shard
1, and finally from shard 2. Txn is executed in three phases
where each sub-transaction, denoted by Txn;, is executed
as follows. First, a miner serving shard 0 does preliminary
execution of TxNng i.e., no state changes are applied, rather,
any modifications in state data are stored temporarily. When
the preliminary execution halts due to the requirement of state
data outside of shard 0, shard 1 in this case, the miner attaches
the input data it consumed from shard 0 to Txng and includes
it in block B as an incomplete transaction. Afterward, the
incomplete transaction is resumed as a new sub-transaction
Txn; by a miner serving shard 1 when producing block B+1.
The preliminary execution of Txn; will be an extension of
Txng’s since the miner now has the data from both shard
0 (from Txng) and shard 1. When the above preliminary
execution halts and requires state data from the next shard,
shard 2, then Txn; along with the consumed input data from
shard 1 is packed as incomplete in block B + 1.

Finally, a miner from shard 2 handles Txns when mining
block B + 2. It preliminary executes Txny by accessing the
state data from shards O and 1 included in the previous
incomplete transactions, and data from its own shard. Since all
the required data is available this time, an atomic execution
is performed i.e., all state changes in the miner’s shard are
permanently registered. Txny is then packed in block B + 2
as a complete transaction and all nodes in the network register
state changes in their respective shards.

In the above example, we assumed that the included data
from shards 0 and 1 is not modified by any other transaction
until Txn, is successfully mined. This assumption, however,
might not always be valid. Section ?? describes how Mobius
is robust to such in-process state modifications.

IV. MOBIUS: A DETAILED VIEW

The protocol is designed to extend existing account-based
blockchain platforms, such as Ethereum, where every miner/-
validator node in the blockchain mines/validates all the blocks
and there is no execution sharding.

A. States Sharding

In Mobius, the blockchain state is divided into k& shards
shg,...,shi_1. The shard of an account ac with address
adr(ac) is given by the following relation:

sh(ac) = adr(ac) (mod k) (1)

The shard of the state data of ac including the balance and
smart contract state in the storage trie is defined to be sh(ac).
The state of a shard sh; is organized as a vector of constant size
Sz and their proofs are maintained as a VCT of size Sz with
a vector commitment C(sh;). The vector and VCT’s index for
an account ac is derived from its address adr(ac) as follows:

idge = adr(ac) (mod sz) (2)

For a smart contract associated with an account ac and a
variable 94 stored at a slot index iy, of the contract, a hash
key kg, is generated by applying the KECCAK256 hashing
function on the concatenation of both the contract address and
the slot index as follows:

kg,. = hash(adr(ac) || ig,,) (3)

The input state for ac is represented as a key-value pair. For
ac and its balance, the key refers to adr(ac) whereas for V5,
the key refers to Ky, . Similar to above, we use the key Ky, to
generate the VCT index idy,, associated with ¥5c as follows:

idy,, = Kyg,, (mod sz) ()]

Since the shard of ¥4 is the same as that of ac, all the smart
contract variables reside on the same shard. This reduces cross-
shard communication. Moreover, to ensure that all nodes can
validate any transaction, the protocol requires every shard to
maintain a smart contract’s code.

Every mining node is associated with at least one shard,
say shard sh;, making it a proof serving node for shard sh; or
psngp,. To enroll as a psn, a node deposits a fixed stake sk
per shard which is in addition to any other existing stake.
As such, psng, maintains the corresponding shard’s state,
i.e., executing transactions that update the shard’s assigned
accounts, stores the shard’s commitment C(sh;) and the Hyper-
proofs VCT that is used to generate commitments and proofs.
Lastly, every node participating in the network maintains the
commitment C(sh;) for every shard sh;.

B. Transactions in Mobius

The shard of a fresh transaction is the shard of the trans-
action sender’s account. A transaction with a shard sh; is
first handled by psng,. We distinguish two types of trans-
actions: single-shard and cross-shard transactions. A single-
shard transaction is a transaction whose end-to-end execution
requires data from one shard that corresponds to the shard of
the transaction’s sender account. On the other hand, a cross-
shard transaction is a transaction whose end-to-end execution
requires data from more than one shard. Thus, the execution
of this transaction involves data exchanges between nodes
serving different shards. Of course, it is always possible that
the different shards involved in a cross-shard transaction are
served by the same node.

In Algorithm ??, we show the function mine to mine
a transaction tx. A miner serving the transaction’s shard
begins preliminary execution of ¢z using the sub-procedure
execute Prelim. During the execution, the miner performs
validation checks, attaches input state (key-value pairs) to
tx from its shard and no state changes are applied. If tz is
successfully executed, the miner applies the state changes to

its shard and packs tz in the block. This corresponds to the
case for a single-shard transaction if the miner received tx
directly from its sender. On the other hand, if the miner cannot
complete executing ¢tz due to the lack of data from some shard
Shj, it marks tx as incomplete, then it attaches the gas used,
it sets the next shard of ¢x to shj, and finally it includes tx in
the block.

An incomplete transaction flag instructs the node verifying
blocks to not apply changes to the state. If a miner serving
shard sh; executes the above block containing incomplete ¢z,
as shown in the function execute, and decides to continue
executing tx, it adds tx to the pool of incomplete transactions.
When this miner produces a future block, it creates a new
transaction ¢z’ that points to tx and then preliminary executes
ta’. If successful, it marks ¢z’ as complete, appends gas
information, and applies state changes. If unsuccessful, it sets
the next shard for ¢x’, appends gas, and adds it to the block
for further execution. This process can go on until the first
transaction (in the very first phase of execution) reaches its
lifetime.

Thus, nodes executing a block only apply changes to the
state if a transaction is complete. For a cross-shard transaction,
state changes are applied after the last complete transaction is
successfully executed. Incomplete transactions are therefore
used to collect data from different shards before their final
execution. This allows the protocol to implement an atomic
execution of cross-shard transactions.

Algorithm 1: Transaction mining and execution.

1 Function mine(tx):

2 (done,nextShard, gas) = execute Prelim(tz);
3 if done then

4 state.applyChange();

5 tz.setComplete(gas);

6 else

7 | tw.setIncomplete(nextShard, gas);

8 Function execute(tx):

9 execute Prelim(tx);

10 if tx.isComplete() then
11 | state.applyChange();

12 else
13 | incompletePool.add(tx);

C. Authenticated Proofs in Mobius

Transaction blocks are generated and clustered in rounds.
The k™ block in the canonical chain belongs to the round L%J
where R is the number of blocks in one round. The updates to
a shard’s proof and commitment occur at the beginning of each
round and they remain unchanged throughout the round. In the
round r + 1, the psns serving a shard sh; submit authenticity
proofs for all input data from this shard that were included in
transactions packed in round r. The submitted proofs certify
the authenticity and correctness of the transactions that were
packed in round .

A block producer always attaches the input state from its
served shard to a transaction in the form of key-value pairs.
This input data is sufficient to execute the transaction and
update all the shard’s commitments whose data is modified
after the transaction’s execution. For instance, if a data point
¥ac in shard sh; is set to a new value during transaction
execution, the block producer includes the previous value for

Round r+1

Round r

sh-—shoo—sh1o—sh — sh_ |— sh, ~— sh, —~ sh

Figure 2. An instance of a successful round r as the psns provide timely
aggregated proof before the end of round r + 1. sh represents the shard of
the block producer.

the key Ky, in the transaction so that all nodes can update
C(sh;) and VCT (if any). If a transaction Txn is included
in the block b in round r, the value in the data tuple that it
contains should correspond to the beginning of the round r.
Because each node executes every block, it is able to fetch
the latest value for a key even if the value has changed
since the beginning of the round. Thus, the protocol implicitly
requires nodes to maintain a temporary state to fetch latest
values. An implementation of this for Ethereum is presented
in Section ??.

In Fig. ??, we show an instance of Mdbius network that has

3 shards and a round consists of 3 blocks. In round r, the psns
associated with shards shg, shy, and shs generate one block
each. In round r + 1, the aggregated proofs for the updates to
shards shg, shs, and sh; in round r are posted in the first,
second, and third blocks respectively.
Delayed aggregated proofs: To disjoint the proof aggrega-
tion delay from block production time, we ensure that the
delay provided by a round to produce R blocks is suffi-
cient for a node to aggregate n individual proofs from a
previous round. In particular, let Dgp, ; = [dsh, 0, dsh;,1--dsh, j]
represents all the key-value pairs from shard sh; that are
attached to the transactions packed in blocks of round r.
Then, all the psns serving sh; collectively generate a batch
of aggregated proofs mgp, r, propagate them into the network
by wrapping them as a proof transaction that are appended
to the blockchain before the end of the round r + 1. The
batch 7gp, , can consists of several aggregated proofs mgp, k,
each representing n individual proofs for a fixed number n.
For instance, for N = 1024, mgy, k contains proofs for the
data [ds, 1024k, dsh;,1024k+1--dsh;, 1024k+1023) - Since every node
updates the commitments for each shard at the beginning of a
round, then an aggregated proof batch gy, from shard sh; is
verified using the commitment from the previous round C(sh;),
i.e., Verify(msn, C(sh))).

Let 77 denote the time to aggregate n proofs and let T
denote the time to produce R blocks which is also the length
of a round. Mobius ensures that T, < Tg. Note that a
block containing input values is not confirmed until a valid
aggregated proof is included in the chain. This period can be
as long as 2 x T when a block is produced at the beginning
of some round and the aggregated proof for the block’s input
data is provided at the end of the next round.

D. A Multi-layered Vector Commitment Scheme

A VCS such as Hyperproofs uses pre-computed proving
keys that are used to generate proofs. The size of these proving
keys is proportional to the size of the underlying vector and
becomes as large as 96 GiB for a vector of size 30 bits. On
the other hand, keys derived in (??) are usually of size 256
bits. This induces a possibility of collision when mapping an
address or smart contract key to a VCT index. Increasing
the VCT any further requires more storage and defeats the
original goal of state sharding. Therefore, we propose multi-
layered Hyperproofs to prevent collision amongst addresses

Lol | o [l]l] - [

Figure 3. Multi-layering of a vector commitment scheme.

\
n

\

while each level Hyperproof is less than 30 bits. As shown
in Fig. ??, when the index ko of address adr; collides with
the index of address adry, a new VCT is generated and the
digest of the newly generated VCT is stored as the value of the
index Ko. Given that the original VCT has a length of 2+ and
the subsequent layers have length 2!2, the effective VCT has
the length of 2/11%2 since each slot can now host a 2'2—sized
VCT. This scheme does not require an overhead with regard
to Hyperproofs proving key since the same keys can be reused
for the subsequent layer as long as I < I3 < 30. If there is
a collision in indices in both layers, a third subsequent layer
can be generated similarly.

E. Reward and Fee Upgrades

The reward mechanism is designed to prevent imbalanced
state sharding. The protocol allows shards to have different
gas prices to prevent the concentration of smart contracts
accounts in certain shards thus leading to imbalances. Besides
the ordinary block reward and transaction fee, transactions that
include aggregated proofs get rewards as well. In particular,
let sk be the proof sender’s stake in the shard sh; where SKgp,
is the total deposited stake. Then, the associated reward for the

aggregated proof transaction, 7, is reward, sh, = % x Rw
Shy

where Rw is some constant reward.

Note that a shard with a large transaction volume requires
a proportionally large number of aggregated proofs since each
aggregated proof contains a fixed number n of key-value pairs.
Thus, the above reward structure incentivizes the psSns to
enroll in shards with either very few psns or with a very large
transaction volume. For cross-shard transactions, the gas fee
is distributed amongst miners who participate in the execution
of the transaction and include data from their shards. The fee
is distributed after the complete transaction is executed.

F. Failure to Provide Proof

The protocol is designed with an incentive mechanism to
discourage nodes in the network from misbehaving. If the psns
serving a shard sh; fail to include the proof of any data point
that was included in a round r before the end of the next round
r+ 1 (shown in Fig. ??), portions of their stake deposits are
slashed. The slashed amounts are distributed to honest psns
from other shards who produced correct blocks and provided
on-time aggregated proofs as incentives. Another case corre-
sponds to the scenario where a block producer serving shard
sh; includes an incorrect input value in a transaction packed in
a round r (shown in Fig. ??). To detect this malicious behavior,
a fraud-proof, i.e., the fraud-detected key and the correct value,
must be generated by another psn serving the same shard
certifying that the block producer generated incorrect values.
Mobius in this case slashes the deposit of the malicious block
producer to distribute it to the rest of the honest participants
in the rounds r and r + 1.

In both cases, the states of all the shards revert to their
states at the beginning of round r and all the blocks included
in round r and r + 1 are considered invalid. In the second

Forks

Sy sh, .S1 r— sh, ,Sz‘_ sh, vsa~— shy ,84‘_ sh, ,Ss‘_ sh, ,Se‘_ sh, .S7

} S6=S,

(a) psns fail to aggregate proof for round r before round r 4+ 1 ends

D Honest Malicious Empty
block block block
r r+1 r+2

S

shy Sy shy S, shy S, sh, S;i— sh; S, — sh, S, sh, Sg

S;=S,

(b) A malicious block is spotted

Figure 4. Examples of state reverts for two cases. sh represents shard of the
block miner and S represents the state.

case, any further blocks subsequent to the malicious block
until the conclusion of round r+1 remain empty. Therefore, the
reversions only affect the state while the underlying consensus
protocol and fork rules remain unaffected.

V. IMPLEMENTATION

In this section, we describe an implementation of the
proposed sharding protocol on OpenEthereum [?], one of
the fastest Ethereum clients written in the Rust programming
language. The consensus mechanism of the blockchain uses
the Proof-of-Authority engine consisting of permissioned au-
thority nodes generating blocks in a round-robin fashion. The
number of blocks R in a round equals to the number of au-
thority nodes. For proof aggregation, we use the Hyperproofs
library written in the Golang programming language that we
subsequently connect to OpenEthereum. In Figure ??, we show
the modules of OpenEthereum that were modified and their
interactions with each other and with the Hyperproofs library.

Imports txns
Txn pool Aggregates proof
Signs Miner (separate thread)
i engine txn
HES:
Imports Enacts L e Verifies
a block i block roof
Client Block 2 Hyperproofs
Appends 2
verified block Executes 2%
to chain EVM o|5 8
S|gc
I Ny L
| Blockchain ‘ | EVM H State ‘
State

riw

Figure 5. Mobius client architecture. The portion in red is implemented in
Rust while the portion in blue is implemented in Golang.

A. OpenEthereum

We describe here the modifications to OpenEthereum to
implement the transaction handling mechanisms of Mobius.
Transaction: A regular Ethereum’s transaction consists of
fields such as the addresses of the sender and receiver. We
extend such a transaction to include the following additional
fields:

o aggregated Hyperproof serialized to a string (optional);

keys corresponding to the proof (optional);
key-value tuples for the transaction’s input data;
gas consumed so far;

current and next shard,;

a flag for complete and incomplete transaction;
e block number of the transaction from sender;

The key used here is 160 bit uninterpreted hash type and the
value is a 256 bit unsigned integer.

Miner: This module packs transactions collected in the trans-
action pool and produces a block. With our protocol, the miner
only includes transactions that belong to the client’s shard. The
miner also creates and signs transactions, using the Engine
module, to include aggregated proofs from the previous round.
If the Client module receives an incomplete transaction with
the client’s shard as its next shard, it passes the transaction to
the Miner, which in turn creates and signs a new transaction
pointing to the previously received transaction.

Additional temporary state: The client maintains a map
tInput, which consists of the input key-value tuples (cor-
responding to the beginning of the round) collected for a
transaction. Also, the client maintains the latest value of the
keys that are modified for all the shards in mLatest . The
client periodically flushes all the keys in mLatest that have
been stored for L rounds. This serves as a temporary global
state with a predetermined lifetime allowing the client to fetch
the latest value of the keys included in a transaction. With this,
L - R becomes the lifetime of a transaction where R is the
number of blocks in a round. In addition to this, whenever the
value of a key in the client’s shard is modified, it stores the
value corresponding to the beginning of the round in m Round.
This storage is renewed at the start of every round. Lastly, the
client maintains a top-level cache mFExec to store the value
of the keys that are modified during transaction execution.

When the client wants to fetch the latest value v; for a
key k, when calling SLOAD opcode or balance method, it
uses the function fetchLatest given in Fig ??. It first looks
in mFEzec and if not found, looks in tInput. If £ does not
belong to the client’s shard (returned by matchShard), then
tInput must contain k otherwise the transaction is marked as
incomplete and mFExec is cleared. If k£ matches client’s shard
and not found in tInput, it is fetched from the state. Otherwise
if found in ¢tInput, the client chooses the latest value between
tInput and mLatest. Note, every time a key is fetched from
the state, its value at the beginning of the round is inserted in
the transaction and tInput.

The client executes store when it wants to store k& with
value v for opcode SSTORE, and methods balanceAdd,
and balanceSub. The key is first stored in mFExec. Then, it
fetches the previous value v, using fetchLatest. Afterwards,
it dummy-inserts (denoted by dInsert) k,v to mLatest
and if the key belongs to the client’s shard, dummy-inserts
k,v in the state and dummy-inserts k,v, in mRound. v,
is also important because the client needs to know v;—v, to
update Hyperproof tree and commitments. If the transaction is
fully executed, every dummy-insert becomes permanent, else,
dummy-inserts are ignored.

Transaction verification and execution: The Block module
performs the transaction verification either when the Miner
packs transactions or when the Client enacts an externally
imported block. The verification includes checking the validity
of the transaction nonce and sufficient balance for value
transfer and gas fee. If verified, the transaction is then executed
using the EVM module. We modified the EVM module of
the client for only those opcodes that either read from or
write to the state shard. This includes SLOAD, SSTORE,

fn fetchLatest (k) -> <value,
if mExec.contains (k)
v_1l = mExec.get (k)
else if tInput.contains (k)
if mLatest.contains (k)
v_1l = mLatest.get (k)
else v_1 = tInput.get (k)
else
if k.matchShard()
v_1l = State.get (k)
else
mExec.clear ()
return <none,
return <v_1, true>
}
fn store(k,v) —-> status{
mExec.insert (k,v)
<v_p, status> = fetchLatest (k)
if status
mLatest.dInsert (k,v)
if k.matchShard/()
State.dInsert (k,v)
if !mRound.contains (k)
mRound.dInsert (k,v_p)
return status

}

status> {

false>

Figure 6. Variable fetch and store algorithms.

BALANCE and SELFBALANCE. If during smart contract
execution, the EVM module is not able to fetch the required
data, the execution is stopped and the incomplete flag and the
next-shard flags are set.

B. Hyperproofs

We glued Hyperproof with OpenEthereum using the Foreign
Function Interface (FFI). The Hyperproofs library creates and
maintains an instance of the Hyperproofs VCT for the client’s
shard. It also maintains and updates commitments for every
other shard. When shard state changes occur, the client shares
the VCT index, the delta in the value, and the shard id with
the Hyperproofs module. At the beginning of every round,
the Hyperproofs library updates the commitments and the
tree using the accumulated data and the update keys' and
stores the previous round’s commitment. When the Miner
finishes producing a block, it shares the transaction input
key-value tuples with the Hyperproofs module, which then
starts aggregating the proofs in a parallel thread. Threads
communicate via asynchronous channels and the Miner fetches
proofs from the channel before its turn in the next round.
Lastly, during transaction execution, if the client discovers
an aggregated proof, it calls the Hyperproof module for its
verification.

C. A Theoretical Throughput Upperbound

Assume an aggregated Hyperproof has 2048 proofs. In
the above implementation, each authority node runs proof
aggregation in parallel to the execution of imported blocks.
During a round with R blocks, an authority node computes
one aggregation, R —1 proof verifications (1 for each imported
block) and transaction executions. Therefore, the theoretical
limit for throughput at maximum load is given by tZ,Z p where:
tiotal = tex + tagg + (}% - 1) “tyer (5)

Here n;, is the total number of transactions executed in R
blocks, t.; is the time to execute ny, transactions, t,44 is the

"Hyperproofs require a trusted setup to generate O(n)-sized public param-
eters for the update keys where n is the size of the vector. Hyperproofs [?]
highlights this issue and proposes to implement the trusted setup using multi-
party computation protocols that are shown to be viable for n < 227. Since
Mébiug;mploys multi-layered VCS, we can use smaller vector sizes with
n < 24,

Table T
COMPARISON OF TRANSACTION SIZE

Aggregated Proof w/o

Key-val Legacy Single Merkle

Name “5ois (B) Shard (B) Hyp(elgl;m‘)f Aggr(%)a‘ion Proof (B)
Payment 1 107 153 36.9 1609 173.20
ERC20 3 201 306 110.7 4827 75138
Swap 12 363 724 4429 19308 322752

time to aggregate 2048 proofs, and t,, is the time to verify
an aggregated proof. n;, can be a maximum of 2048 R since
a block has 2048 key-value slots (same as the size of batch of
proofs). Neglecting t.,, we get a theoretical upper bound of:

2048 - R
tagg + (R - 1) tyer

for throughput of transactions utilizing 1 key-value slot. Thus,
this value is also equal to the state access throughput. In the
above example, the values of t,4q, tyer are 12.11s, 1.45s
respectively. Therefore, for R > 9, the denominator in (??)
is dominated by %,,. In other words, for a round size greater
than 9 blocks, proof verification becomes the throughput
bottleneck.

(6)

VI. EVALUATION

In this section, we evaluate the performance of the Mobius
upgrade implemented on OpenEthereum. Our experiments
answer the following questions: 1) How does the state of a
node vary with increasing shards? 2) What is the reduction in
bandwidth requirement in Mobius compared to conventional
methods? 3) How close does our implementation stand to the
theoretical state access throughput? 4) How well does Mobius
atomically execute complicated cross-shard smart contract
transactions? 5) What happens when a node provides false
data in a transaction?

A. Methodology

The following experiments are performed on 16 authority
nodes with equal nodes per shard on AWS EC2 c6a.8xlarge
with 32vCPU, 64GB memory, and 1TB SSD storage. Each
block contains a maximum of 2048 slots for key-value pairs
that can be used by the transactions.

For the evaluation of performance metrics such as trans-
action throughput, we use a transaction benchmark trace of
size 16k. This size of trace saturates the throughput for each
subsequent experiment thus giving a fair comparison between
them. We consider three types of transactions:

o Simple value transfer: this transaction involves a sender
transferring the blockchain native currency (for example
Ether for Ethereum) to a recipient.

o ERC20 token transfer: this transaction calls an ERC20
smart contract transferring the contract token by debiting
sender’s balance and crediting the receiver’s. For cross-
shard trace, we deployed four distinct contracts, one
on each shard. The call to the contracts is distributed
uniformly.

o Token swap: this transaction calls Uniswap-v2 which
is a decentralized exchange smart contract that swaps
ERC20 tokens. A user can specify the minimum amount
of token B that they expect for a given input of
Token A (SwapExactTokensForTokens) or SETFT, or
specify a maximum amount of input T'oken A for a given
amount of output T'oken B (SwapTokensForExactTokens)
or STFET. For cross-shard trace, we deploy two Uniswap
smart contracts and two ERC20 token smart contracts on

four distinct shards. The transaction trace uniformly calls
STFET and SETFT methods.

We quantify the complexity of a cross-shard transaction
using the hops metric. Hops is the number of blocks in which
a transaction is included, either as incomplete or complete,
until successful execution. As we will see in the subsequent
sections, a complex swap transaction can take as many as 6
hops before successful execution.

B. Result summary

1) State size vs shards: Fig. ?? shows the size of the state
of the client averaged over all the participant nodes. Our
results show that given a uniformly distributed load over
the shards, state size reduces proportionally with the
number of shards. This highlights that Md&bius solves
the problem of the overwhelmed disk utilization by
blockchain state.

2) Bandwidth comparison: Table ?? shows the size of
transactions and authenticated proofs for different types
of transactions. The second column represents the num-
ber of input values required for execution and included
in the modified transaction. The third and fourth column
represents the size of Ethereum transaction and Mobius
transaction in a single shard setup respectively. The
fifth and sixth column shows the amortized size of
Hyperproofs with and without aggregation respectively.
The last column represents the corresponding Merkle
proof size. Aggregation is effective as it compresses
Hyperproofs by 43.6x. This reduces the bandwidth
requirement in Mdobius by 4.7-7.3x compared to con-
temporary designs utilizing Merkle proofs. To achieve
this reduction, we pay a cost of 43-99.4% overhead in
transaction size, which is small when compared to proof
reduction benefits.

3) Theoretical throughput: We accelerate the Hyperproof
aggregation and verification by more than 10x and
taggs tve for a batch of 2048 proofs equals 12.11s, 1.45s
respectively. According to (??), the theoretical limit for
state access throughput turns out to be 967.7/s. Our
implementation of MGobius achieves a throughput of
766.9,744.2, and 732.8 in payment, ERC20, and swap
transactions respectively for a single shard setup. This
accounts for 20.8-24.3% deviation from the theoretical
upperbound. This shows that as a result of efficient pack-
ing of Hyperproofs in Md&bius, throughput is primarily
bottlenecked by proof verification delay-.

4) Cross-shard accounting: Table ?? shows the through-
put and gas consumption for an extreme case of cross-
shard smart contract transactions where all the contracts
reside on four different shards. The second column
shows the average hops taken by the transaction. The
third and fifth columns show the transaction throughput
and gas consumption while the fourth and sixth columns
show the throughput penalty and gas overhead relative
to their single shard counterparts. Our results highlight
that Mobius maintains atomicity even while executing
a cross-shard smart contract transaction requiring 5.75
average hops. This comes at a cost of throughput
penalty (between 23.2-38.2%) and gas overhead (be-
tween 35.4-92.4%) since each miner executes the smart
contract from the beginning during each hop.

2Note that the proof aggregation and verification benchmarks do not include
the time to read the setup (public parameters). Since the setup is read once
in the beginning and maintained in memory, this accounts for a fixed cost.

50000 48070 ™M 1 Shard
2 Shards
[71 4 Shards
40000
[]
N
¥ 30000
3 24059
]
ﬁ 20000
16000 16044
12054
10000 8000 8044
4000 4048
. \ \
Payment ERC-20 Swap

Transaction type
Figure 7. Reduction in average state of a node with increasing shards.

Table 1T
COMPARISON OF CROSS-SHARD TRANSACTIONS

Name Average Transaction Throughput Average gas Gas
hops throughput penalty (%) (Kgas) overhead (%)
Payment 1 766.87 0 20.99 0
ERC-20 1.75 190.48 23.2 71.14 354
Swap 5.75 37.74 38.2 305.25 92.4
1601 --- malicious block detected

round concluded
--- susequent round confirmed
1201 —— confirmed blocks

block number
—— state index

Block number
o]
o

0 100 200 300 40 500

Timestamp(s)
Figure 8. Block evolution when a block providing malicious data is detected.

A trace of real-world ethereum transactions was ana-
lyzed in [?] showing that cross-shard transactions ac-
count for less than 20% of total load for 10 shards.
Therefore, the cross-shard overhead in practical scenar-
ios reduces further in expectation.

5) Malicious behaviour: Fig. ?? shows an instant of attack
where a miner includes false data for a transaction in the
4th round. The proof for correct value was provided in
the 5 round in block number 91 and the state reverted
to the last confirmed block number 63 (beginning of
round 4). Then, empty blocks are generated until block
number 95 and a new round (round 6) began afterwards.
After conclusion of two rounds marked by block number
127, round 6 is marked confirmed. This shows that
Mobius quickly recovers from incorrect state data attack.

VII. RELATED WORK

Full Sharding: This scheme partitions the network of miners
into shards to scale blockchains with parallel execution at
the cost of reduced security. The earlier attempts including
Elastico [?], and Omniledger [?] implement full sharding
on a UTXO-based blockchain. However, the global state is
maintained by all the miners. Designs like Rapidchain [?]
implement full sharding while allowing all nodes to maintain a
fraction of the state whereas designs like SSChain [?] require
certain nodes to maintain the global state and handle cross-
shard transactions.

Subsequent to these, several full sharding designs have been
proposed for account-based blockchains. Zilliga [?] imple-

ments this with all nodes maintaining the global state. Pyramid
[?] uses the help of b-nodes that serve as a bridge for a cross-
shard transaction. Other works such as Monoxide [?] handle
cross-shard transactions by splitting their execution based on
the shard of the input state. Similar ideas of partial execution
of cross-shard transactions have been implemented in Elrond
[?], Nightshade [?], and Aeolus [?]. Unlike the above designs,
Mobius does not sacrifice the security of miner’s network as
each block is executed by all miner nodes.

State Sharding: Blockchain state sharding is an active area
of research [?], [?], [?]. Vault [?], primarily focused on fast
bootstrapping, implements state sharding for account-based
blockchains. It introduces adaptive sharding of the Merkle tree
to reduce the size of a Merkle proof. Although this works
well for payment transactions, Vault’s design cannot handle
cross-shard smart contract transactions. A more recent system,
RainBlock [?] shards the Merkle tree into subtrees such that
each subtree is kept in a storage node and proposes I/O-helpers
nodes that pre-fetch transaction execution state from storage
nodes for the miners. This decouples I/O from the critical
path of transaction processing resulting in a higher transaction
throughput.

Layer-2 and Rollups: Rollups [?], [?], [?], [?] extend the
state of the main chain by moving data and computation off-
chain. Compared to sharding, rollups allow to scale both the
state and throughput of a blockchain without significantly
compromising security (especially when using zero knowl-
edge (ZK) [?] based rollups instead of optimistic rollups).
However, rollups have certain limitations in functionalities:
Unlike sharding, two rollup states are independent of each
other and cannot communicate without a bridge. For instance,
one cannot simply swap two ERC20 tokens with addresses that
are stored on two different rollups. On the other hand, a state
sharding protocol like Mobius with a cross-shard capability
allows to scale blockchain state without compromising security
and maintaining the functionality of cross-shard interactions.
This however comes with certain throughput costs for cross-
shard transactions.

Proofs and commitments: M&bius uses authenticated proofs
allowing nodes with partial or no state to validate blocks.
Authenticated proofs including vector commitment schemes
have been studied for stateless clients [?], [?], [?], [?], [?].
EDRAX [?] was one of the earliest works on stateless clients
for payment-only cryptocurrencies using VCS. Pointproofs [?]
extends the above idea by including the functionality of smart
contract execution. Finally, Hyperproofs [?] uses homomor-
phic commitments that are efficient to maintain, and fast to
aggregate, thus extending the functionality of proof serving
nodes.

VIII. CONCLUSION AND FUTURE WORK

Our theoretical & experimental results for Mobius demon-
strate that state sharding is a practical solution to the ever-
growing blockchain state size bottleneck. With its novel VCT
structure and multi-phase commitment techniques, Mobius sig-
nificantly reduces the network overhead of state sharding and
preserves transaction atomicity for cross-shard smart contract
transactions.

In the future we might extend Mdbius along a few dimen-
sions. First, we might extend Md&bius to be both an execution
and state-sharding protocol. Second, we might investigate
borrowing the idea of I/O-helpers nodes from RainBlock [?] to
speed-up the execution of cross-shard transactions in Mobius.

