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Abstract—The emergence of blockchain technology has re-
shaped the financial sector, leading to the introduction of new
financial products and services. In parallel, central banks world-
wide are investigating the possibility of issuing central bank
digital currency (CBDC) and the potential use of blockchain
as a foundational technology. Of particular interest is offline
functionality, where transactions can be completed even if nei-
ther party is connected to the ledger at the time of trans-
action. Such offline functionality carries unique opportunities
for countries and policy makers, but also comes with a new
set of risks. Proposed herein is an assessment framework as a
critical modeling tool towards risk evaluation. The framework
is broadly applicable to blockchain-based solutions that support
multiple off-chain transactions prior to synchronization. Urban
and rural environments were modeled to demonstrate the model’s
fidelity and flexibility. A test offline digital currency solution
was evaluated via threat level experiments to ascertain the
prototype’s resilience to varying levels of malicious activity.
Results illustrate how various parameter configurations affect
resilience to malicious activity and information propagation,
demonstrating the effectiveness of the framework in providing
valuable insights for the design of offline currency systems.

Index Terms—digital currency, blockchain, offline, CBDC,
simulation, agent-based, evaluation framework

I. INTRODUCTION

The advent of blockchain technology has sparked the emer-
gence of a vast ecosystem of digital currencies with over
$113B in total assets invested in this space [1]. The technology
has fundamentally transformed our understanding of, and
relationship to, money. This revolution has transcended its
origins within Decentralized Finance and speculative trading
communities, initiating significant innovation within tradi-
tional financial institutions as evidenced by the introduction
of cryptocurrency Exchange-Traded Funds (ETFs) [2], insti-
tutional custody solutions, and most notably, the development
of Central Bank Digital Currencies (CBDCs). These national
currencies are driven by the requirements of end-users, namely
consumers and merchants. As part of their investigation, cen-
tral banks are exploring the potential uses of blockchain and
distributed ledger technologies as the settlement layer for their
own versions of digital currencies [3]-[5]. Such blockchain-
backed CBDCs would share many common characteristics
with other cryptocurrencies, including those existing in de-
centralized finance and stablecoins.

Past experiments in this space confirm that CBDCs have the
potential to provide benefits in jurisdictions where access to
digital money or the digital infrastructure may be inadequate.
One pivotal aspect is their ability to function in the absence of

network connectivity, referred to as offline mode. In this offline
mode, users can transact with each other without requiring a
connection to the online ledger of the bank [6]. Such a mode
would increase access in remote populations, areas with unre-
liable connectivity, and during infrastructure failures [6], [7].
If offered as a stand-alone product without requiring a bank
account, it could improve access for the unbanked, tourists
and children. While offline use carries multiple benefits, it
also introduces novel challenges and comes with security risks.
Understanding which risks are relevant among the gamut of
potential options, and how scope and scale can change the
impact, are key steps in making informed policy decisions
around CBDC.

To that end, this paper presents an assessment framework
as a modeling tool for assessing risk. An institution may use it
to evaluate an offline CBDC system under different operating
conditions and when exposed to key failure modes such
as double-spending attacks and fraudulent transactions. Such
a framework informs important questions on offline digital
currency designs, such as the length of time funds can stay
disconnected from a central ledger, impact of various attacks
on overall system health, and the effectiveness of strategies to
detect and neutralize bad actors.

The framework can be adjusted to emulate a wide range of
use cases from urban settings with dense transaction activity
to rural settings characterized by sparse connectivity. Nodes in
this network represent geographic economic zones containing
one or more agents (e.g., users, merchants) that transact with
each other, with agents being capable of moving between
zones. The Briolette project [8], a token-based payment sys-
tem, was used as the test system due to its open source nature
and built-in support for offline transactions. The suitability of
the proposed framework is demonstrated through experimental
evaluations and the resulting insights.

The remainder of this paper is organized as follows: Sec-
tion II introduces the necessary background regarding CBDCs
and related work. Section III presents the proposed assessment
framework, its parameters and overall architecture. Section IV
presents Briolette and its evaluation using the framework, and
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A central bank digital currency (CBDC) is a digital form of
money issued by the central bank [9]. Once issued, CBDCs
become a direct liability of the central bank, distinguished



from physical banknotes and deposits of commercial banks
held by the central bank. The difference lies in being recorded
separately in purely digital form [10], [11]. CBDCs are
generally categorized into two types: wholesale and retail.
Wholesale CBDCs are designed for large-value transactions
between financial institutions, while retail CBDCs are made
available directly to individuals and businesses for everyday
payments, functioning as a digital analogue of cash. In this
work, we focus specifically on retail CBDCs with support for
offline functionality.

CBDCs can also be divided into token-based and account-
based structures [12], [13] based on how users access the
currency. Token-based systems rely on the exchange of crypto-
graphic tokens with a pre-assigned value, while account-based
ones rely on balances and some form of identity verification.
However, certain proposals [14] have emerged that challenge
this dichotomy by incorporating elements of both paradigms,
thus blurring the distinction between token-based and account-
based CBDC models.

Offline CBDCs are a special case as they operate without
network connectivity or access to an online ledger [6]. Several
design choice arise with regard to transaction settlement and
the duration that a wallet can remain offline. The funds
representation could be account-based or token-based, each
with its own set of risks. If settlement occurs offline, then users
can re-spend received funds in subsequent offline transactions
without needing online synchronization. Similarly, the length
of time a CBDC wallet can remain offline must be balanced
with the need for periodic synchronizations to the ledger. The
Bank of International Settlements distinguishes between the
offline CBDC types [6] with the most practical being inter-
mittently offline, where funds can be re-spent consecutively but
a synchronization period is required.

The high stakes associated with the CBDC deployment
have contributed to a cautious stance among central banks
with regard to issuing a CBDC [15]. Ergo, despite significant
interest and proposed designs for offline CBDCs [16], [17],
real-world implementations remain scarce [18]. This lack of
practical implementations poses a challenge, as it limits the
ability to test designs in the field, identify potential weak-
nesses, and iteratively improve upon them. Simulations are
an attractive alternative to an in-field evaluation. They can
yield insights on security, privacy and performance under
various operating conditions, consumer behaviours and socio-
economic factors. Furthermore, certain failure modes can be
emulated to understand/assess their impact in a controlled
environment without risking substantial financial harm [19]-
[22].

Multiple works have simulated CBDC designs, primarily fo-
cusing on how they augment the existing financial system [20],
[23] and on user adoption [21]. However, these studies either
briefly touch upon the offline functionality or omit it entirely.
The authors in [22] simulated an offline CBDC system in
the context of its native region of Norway. The authors use
the Barabdasi-Albert model to generate the topology of the
network, but in contrast to this paper, nodes are used to
represent users of the system and the spatiotemporal movement
of the agents is simulated by setting a high average number
of connections per node. The protocol was evaluated against

TABLE I: Framework Hyperparameters

Category Hyperparameters
Depl Graph structure
cployment Number of merchants
scenario Number of banks
Peer to merchant probability
Information Peer to peer probability

Peer to bank probability
Peer movement probability

propagation

Withdrawal amount

Merchant synchronization frequency
Number of offline transactions allowed
Ratio of honest to malicious agents

Risk control
and security

malicious users and tested multiple mitigation mechanisms.

The proposed framework is developed with a focus on
token-based offline CBDC systems, as account-based designs
introduce a different set of risks that require separate consider-
ation. While both models must contend with the possibility of
double-spending in the absence of immediate synchronization
with the central ledger, the mechanisms and vulnerabilities
differ. For example, in token-based systems, control derives
from possession of cryptographic keys, which exposes users to
irreversible loss in the event of key compromise and increases
the difficulty of preventing double-spending during offline
transfers. In account-based systems, by contrast, ownership
is tied to centralized account records; when those records
are unavailable offline, the safeguards against double-spending
that normally follow from real-time ledger validation are
suspended, leaving the model reliant on hardware enforcement
or transaction limits. These divergences highlight that an
assessment framework tailored to token-based designs cannot
be straightforwardly applied to account-based offline architec-
tures.

III. AN ASSESSMENT FRAMEWORK

A framework to assess the performance characteristics and
security attributes of offline CBDC systems is presented. The
framework is built on top of hybrid network models which
can be adjusted through hyperparameters to a variety of use-
cases. Those use-cases range from a dense urban environment
to a rural one, where the communications infrastructure may
be sporadic, minimal or absent altogether. This allows for
simulation parameters, such as geographic density and agent
behaviours, to be tailored to specific jurisdictions. The gener-
ated networks can scale to the available compute capability.
Table I gives an overview of those hyperparameters as set out
below:

1. Deployment scenario: The specifics of the region where
the CBDC will be deployed, including, but not limited to,
how well-connected the locations are with each other, the
number of agents, efc.

2. Information propagation: The description of how infor-
mation flows through the network. This subset of hyper-
parameters is typically described in terms of interaction
probabilities between network agents and probability of an
agent moving through the network.

3. Risk control and security: Parameters related to the mea-
sures taken by the CBDC system to minimize risk exposure
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Fig. 1: Overview of the simulation graph structure.

to the adversarial model. Examples include limits on the
withdrawal amounts and/or the number of offline trans-
actions before online synchronization is required, ratio of
malicious to honest agents, etc.

A. Network model

Figure 1 presents the network model M = (G, A) that the
framework uses. It is based on a graph G = (V,E) used as
an underlying representation of a geographic area. Each node
v € V represents a geographical location on the map (e.g.,
neighborhood, city), and each edge e € E represents a physical
path that an agent can take to move between those locations.
As such, the higher the degree of a node, the more well-
connected is the location, leading to more agents moving there
and increasing the transaction activity. In this notation, the set
A represents a set of agents, where each agent a € A resides in
one of the graph nodes. Agents can represent different entities
in the real world, such as banks, merchants, individuals, etc.
Agents located in the same node are considered to be within
proximity to conduct offline transactions. If an agent needs
to interact with another agent outside its node, they would
either move to that node using edges from E, or go online.
The motivation for such a network model is that it depicts
real-life population behavior that lends itself well for use in a
simulation.

To model urban scenarios, we employ graphs generated us-
ing the Barabasi—Albert (BA) model [24]. Urban environments
are typically characterized by the presence of high connec-
tivity hubs—nodes with significantly more edges—connected
to spokes—nodes with lower connectivity. The hubs mimic
central areas of a city with increased financial activity, such
as the downtown core, while spokes represent areas of lower
activity, such as the suburbs. The BA model is well-suited
to such a network topology due to its underlying mechanism
of preferential attachment, resulting in a power-law degree
distribution, where the probability P(m) of a node having m
connections is proportional to m~7, resulting in an uneven
distribution of edges, leading to network hubs that mirror those
observed in real-world urban systems.

Rural scenarios were modeled with the Watts—Strogatz (WS)
network model [25], which generates small-world networks—
networks that combine high clustering with short average path
lengths. Similarly, rural environments are typically marked

by localized clustering and limited connectivity beyond these
clusters. Therefore, to replicate this structure, the WS model
randomly introduces, with a probability p, “shortcut” edges
between nodes, thereby significantly reducing the average path
length between otherwise distant nodes while preserving high
local clustering. The resulting small-world networks exhibit
a relatively homogeneous topology, with nodes maintaining
approximately uniform degrees, reflecting the more evenly dis-
tributed and locally constrained connectivity patterns typical
of rural settings.

B. Hyperparameters of interest

1) Deployment scenario: This category of hyperparameters
influences the structure of the generated network that repre-
sents the deployment topology of the currency system. Our
framework considers the average node degree, the presence of
hubs, and the number of agents in the network. The first two
relate to the underlying graph creation model and influence
the information flow in the network, while the last dictates
the number of users, merchants, and banks in the simulation.

2) Information propagation: Another important character-
istic is how the information flows through the network. If
information flow is constrained, system state updates (e.g.,
revocations) could be delayed indefinitely in systems where
updates are propagated through peers. Therefore, we define
the following hyperparameters that impact information flow:

Peer to peer/merchant interaction probability: The proba-
bility that an agent will participate in a transaction. Controls
how the information is propagated between agents inside each
node, effectively controlling how fast agents within the same
node are notified about the latest state update.

Peer to node movement probability: The probability that
an agent will move to a neighbouring node. Controls the
information propagation speed through the network, since
agents can interact (and propagate system updates) with each
other offline only when located in the same node.

Peer to bank probability: Represents the likelihood that an
agent accesses their online bank account triggering a direct
state update from the bank.

3) Risk control and security: We propose the following
hyperparameters that influence the security of a CBDC system
to study the potential harm incurred due to malicious attacks:

Maximum withdrawal amount: Influences the time an agent
can remain offline by indirectly limiting the number of transac-
tions through the withdrawal amount. Useful when the average
transaction amount is large, allowing for more granular control
compared to limiting the number of transactions.

Merchant synchronization frequency: Controls how fre-
quently merchants reconcile their offline state with the bank
allowing the latter to detect any counterfeit.

Number of offline transactions allowed: Controls how long
can an agent be offline in terms of the number of transactions.

Ratio of honest to malicious agents: A percentage of the
agents are considered to be malicious users that try to double-
spend. Performing sensitivity analysis on this parameter allows
to test the level of security that the system can provide.
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IV. EXPERIMENTAL EVALUATION
A. The Briolette ecosystem

Evaluation of the framework was conducted with Brio-
lette [8] as the test system. Briolette is an open source
offline digital currency framework with the aim to facilitate
research related to offline currencies. It is a proof of concept
system for token-based retail digital currency that supports
offline settlement, re-spending of received funds, and token
traceability. It was chosen since it embeds a fully functional
offline transaction protocol and shares many similarities with
a blockchain ecosystem, including the use of digital signatures
for proof of ownership, synchronization with a source of truth
(consensus) and an epoch denoting block height.

Interaction with the system occurs through a wallet appli-
cation. This wallet must be registered and receive a special
credential used to access the various services of the system.
The generated credential can be used to obtain tickets from
the ticketing service that function as destination addresses and
are necessary for sending or receiving tokens. Both tickets and
tokens incorporate expiration dates and optionally other trans-
action limits. Wallets periodically synchronize to a shared state
(consensus service) containing the epoch number, certificates
for the system’s services, and revocation information. Updates
to the shared state are provided by the state service and are
propagated among participants through a gossip protocol. A
lifecycle of a wallet is determined by a delta between the
issuance epoch and the current epoch, which is equivalent to
the difference in block heights. If a wallet is caught performing
malicious behaviour, it is blacklisted and its credentials are
revoked the next time it connects for a synchronization.

1) Token lifecycle: A token moves through three phases:
mint, transfers, and expiration/revocation. Tokens are assigned
a monetary value and an initial recipient—typically, an in-

termediary Financial Institution, such as commercial banks—
before being signed by the mint. During a transaction, tokens
are bound to a valid ticket linked to the recipient’s credentials
via a digital signature, which serves as proof of ownership.
Additional transactions generate nested signatures for non-
repudiation. Due to this nesting feature, token size grows as a
function of transactions, eventually requiring a trimming (re-
minting) operation to refresh the token state.

2) Offline transaction: Token transfers between wallets
consist of the following steps. First, the two peers validate each
other through a gossip handshake that ensures that both share
the most recent shared state known to them. Next, the sender
will validate the receiver’s ticket by validating the signature
of an authorized entity and confirming expiry status and any
supported attributes. Once successful, the receiver validates the
tokens and can choose to accept or reject them. If accepted,
the sender binds them to the receiver’s ticket and sends them
over. It is noted that a correctly constructed token does not
protect against duplicates. Thus, singularity of the token can
only be established when the token is synchronized with the
consensus mechanism. During synchronization, the validation
service compares the existing token history with the incoming
one. A double-spend event is identified if a fork is detected
or the new history is shorter than the existing one. The nested
signatures are used to identify the source of the fork and the
offending wallet is subsequently blacklisted.

3) State update: The system periodically issues state up-
dates. These updates contain new revocation data obtained by
the user wallet revocation service, as well as any new certifi-
cates for the services of the system. The updates are signed
in order for wallets to be able to check their authenticity.

The proposed framework is not restricted to Briolette.
Alternate digital currency systems based on Distributed Ledger
Technologies could be considered; for example, already estab-



TABLE II: Experimental Parameters

Parameter Value
Double spender ratio (Ratiogs) ﬁ, %, %, % / [ﬁ, %]
Peer—peer communication prob. (Pp2p,) 0.2 /10.1, 0.5]
Peer—merchant comm. prob. (Pp2p,) 0.6 / [0.1, 0.5]
Peer mobility prob. (Ppove) 0.2 /10.05, 0.7]
Starting account balance (ASparance) 500 / 200
Number of agents (|A|) 50000 / 1000
Number of merchants (M) 30
Number of banks (B) 5
Online bank contact prob. (Ppank) 0.01
Merchant sync frequency (Fsync) 8 steps
Top-up amount (Mo pup) 10 units

Offline transaction limit (Lo 7 f1ine) 6

Low balance top-up threshold (7jo) 2 units
Total simulation steps (Sgreps) 72 steps
Number of graph nodes (|V|) 64

lished channels in the Lightning Network enable peer-to-peer
transactions without connectivity to the Bitcoin ledger.

B. Experimental and simulation setups

We conduct two types of experiments: threat level experi-
ments and a sensitivity analysis. The first evaluates key system
metrics, such as counterfeit and double-spender detection
against different threat levels (i.e., different percentages of
malicious agents in the system). Sensitivity analysis varies
the values of the four input parameters of the simulation (i.e,
peer to peer/merchant interaction probabilities, peer movement
probability, and the ratio of honest agents to double-spenders)
to understand the relationship between its input and output
parameters. The simulation environment here was developed
by using a modified version! of Briolette [8] codebase. The
modifications yielded a significant performance boost over
the default Briolette simulator configuration, enabling us to
perform large-scale simulations with up to 50 thousand user
agents in a reasonable timeframe. Additionally, an improved
transaction fork detection algorithm has been added to the
simulator since the original algorithm ignored certain double-
spending behavior, resulting in skewed measurements.

Table II presents an overview of the parameters used in
the experiments. The first part of the table summarizes pa-
rameters that vary between the threat level and sensitivity
experiment types, with corresponding values separated by a
slash character. For sensitivity experiments, the [a, b] notation
represents an inclusive range with uniform distribution for
parameter values used throughout the evaluation. The second
part of Table II presents parameters that are identical across
both experiments.

In all of the conducted experiments, all consumer agents
start with a predefined amount of coins in their bank account,
and each coin has a denomination of one unit of currency. Con-
sumers are allowed to perform L, s fjine transactions without
having to reconnect to the bank, and if the user-held balance
becomes too low (less than Tj,,,), the agent will request a top-
up from the bank while also syncing their data with it. Every
merchant in the network interacts with a bank every Fyy,e
simulation steps (one simulation step is equivalent to one hour)
by going online. In the real world, merchants typically have

Thttps://github.com/ukitta555/briolette_cbdc_paper

constant access to the network, meaning that they are not
restricted to interacting with the bank at periodic intervals,
except in certain scenarios such as farmer’s market, where
connectivity can be limited. Such activity could correspond
to depositing profits at the end of the business hours or
accounting period depending on the time scale. During this
interaction, the merchant shares the data about all coins that
have been spent during the window between synchronizations,
which the bank later checks for counterfeits. During this
interaction, the merchant also synchronizes their epoch data
with the bank. Malicious agents enter the simulation in two
batches at steps 0 and 15.

Both the threat level and sensitivity analysis experiments are
conducted on a network of |V| nodes with M merchants and
B banks. The experiments involve |A| agents with ASparance
coins of initial balance. The edge configuration of the network
is fixed and generated using either the Barabdsi-Albert or
Watts-Strogatz graph generation algorithms. To reduce the
noise in the sensitivity analysis results, the simulation is run 10
times for each of the 20,480 unique parameter combinations,
and the results are averaged out.

The parameter values in Table II were selected to ap-
proximate conditions typically observed in both urban and
rural scenarios, though they may not fully capture real-
world heterogeneity. Each additional parameter increases the
dimension space of the sensitivity analysis, increasing the
simulation complexity. Ergo, where direct evidence was un-
available, the values were determined using heuristics. For
instance, the values for Ratioys (ratio of double-spenders to
the overall number of agents in the system) in threat level
experiments span from a relatively adversarial configuration—
one malicious agent per ten honest agents—to a more extreme
setting of one malicious agent per one honest agent. The
latter represents an adversarial intensity during which honest
agents in distributed systems are typically unable to maintain
state consensus. In practice, parameter values for deployment
could be obtained either directly through empirical studies or
indirectly via appropriate proxy metrics.

C. Threat level experiments

Threat level experiments describe the behavior of the system
under different ratios of malicious agents in the system (see
Table II). Specifically, the experiments examine the ratio of
detected counterfeit tokens to the total number of tokens,
the percentage of double-spenders detected, and the mean
difference between the latest epoch issued by the operator and
the epochs of the user agents in the field for each threat level.

1) Discovered counterfeit ratio: Figure 2a presents how
well the CBDC system detects and seizes counterfeit coins
for the urban and rural scenarios. The discovered counterfeit
ratio is calculated as the total value of seized Ntokfélfls over the
initial token supply of the system: DCR = % where N

mi
is the total number of seized counterfeit coins, Vl.C is the value
of seized counterfeit coin i (in our case, each coin is worth 1
unit of currency), and 7 Sy is the initial token supply—that is,
the total valuation of coins generated by the simulation before
agents begin interacting.

It is observed that all threat levels follow the same pattern:
an initial lag period is observed before the first merchant-
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to-bank interaction occurs, followed by a linear ascend, and
an inflection point after which the counterfeit ratio increases
logarithmically until saturation. The inflection point represents
the point in time when most of the malicious agents have been
detected and revoked by the CBDC system, and the bank only
has to collect the double-spent coins that are still circulating
in the network from previous double-spend events.

It is also observed that with an increase in threat level, the
counterfeit ratio increases as well. In particular, the relation-
ship between threat levels and the counterfeit ratio appears to
be linear—a two-fold increase in the ratio of double-spenders
to honest agents in the system leads to a roughly two-fold
increase in counterfeit detection.

The results for the rural scenario paint a similar picture, with
the only major difference being the maximum values for each
of the threat levels. Due to the lower average node degree
of the WS graph, it is harder for counterfeit coins to reach
the bank, leading to an increase in the quantity of detected
counterfeits by the end of the simulation.

2) Caught double-spenders: Figure 2b describes the per-
centage of malicious agents that have been labeled as double-
spenders for the urban and rural scenarios, denoted as
DScaugns- This figure can be used to interpret the ability of
the system to detect malicious agents in a timely manner.

All curves resemble a step-like function, with constant
segments and periodical discontinuities. The discontinuities
can be explained by the periodic nature of merchant-to-bank
communication, when the merchants validate their coins with
the ledger, which, in turn, marks the agents that double-spent
as malicious.

The discontinuities increase sharply later in the simulation
for all curves. This is due to the fact that the second batch
of double-spending agents appears in the system on step
15, and there is a lag before they start spending counterfeit
tokens. Once those coins are in circulation, the banks will start
flagging both the initial batch of double-spenders (that have

appeared at step 0) and the batch that has appeared at step 15.
This effect is more pronounced for threat levels %, %, and %
Also note that by the end of the simulation, the discontinuities
stop appearing. This is because all of the double-spenders have
been caught—for all lines in Figure 2b, the final ratio value is
exactly the percentage of the malicious agents in the system.

It is worth noting that, in a real-world deployment, ad-
ditional controls - other than online checks - would be in
place to prevent and/or detect double-spending (e.g., secure
hardware, reputation checks), reducing the time needed to
detect a double-spender.

3) Epoch differences: Figure 3 presents the mean and
standard deviation of the difference between the latest epoch
number published by the system and the epoch number known
to a random honest agent, which is denoted as Eg4;¢r. Here,
one can reason about the propagation of information in the
network as follows: bigger/smaller values of the mean repre-
sent slower/faster information propagation, while the standard
deviation represents how far apart the agent population is from
a random agent.

Four curves, split into two pairs, are depicted in each of the
sub-figures. The blue/green pair represents the unnormalized
mean and reflects the absolute epoch difference. Similarly, the
orange/red pair depicts the standard deviation of the difference.
Both pairs have a periodic structure related to the merchant-
to-bank synchronization cycles. The range of values depicted
in the curves is shown to be stable throughout the simulation,
implying that the information disparity is eliminated at the end
of each period (and does not grow over time).

The maximum and minimum values of the mean span the
interval from O to 1, indicating the network achieves consensus
at the latest epoch number. The spikes in the mean curves are
caused by epoch updates arriving from the banks to merchants.
At the start of the period, the mean difference is 1 indicating
maximum disparity between the bank and network nodes. As
time passes, the information disseminates across the network,
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as shown by the decreasing mean difference values.

The standard deviation curves also support the hypothesis
that the system is stable in terms of information propagation.
A delay can be observed between the peak of the mean and
standard deviation curves that is attributed to the propagation
between the bank update and information flow through the
network. In essence, the peak of the standard deviation curve
represents the point in time where the network is roughly
bifurcated, where 50% of the nodes have received the update
and the other 50% have not. It can be observed that a
percentage of nodes always maintains a disparity with the
bank’s information throughout the simulation’s life-cycle.

Rising threat levels lead to higher minimums for both the
mean and standard deviation in each period. This is because
malicious agents withhold information from honest agents,
always sharing information about the first epoch when trans-
acting. This makes the information propagate slower across
the network, which causes the mean and standard deviation
to increase. However, note that minimums trend down as
the simulation continues, which confirms our hypothesis: as
the number of malicious agents in the system reduces, the
information spreads more freely across the network. This is
evident in Figure 3a, where the curve goes to zero before the
simulation is over since all double-spenders have been caught.

D. Sensitivity analysis experiments

This section describes the sensitivity analysis results. Fig-
ure 4 presents the results for Sobol indices analysis [26], which
is a standard way to estimate the impact of simulation inputs
on an output variable using variance decomposition. Each
subplot consists of four pairs of bar segments, with each pair
representing one of the four inputs that we perform the analysis
on. The inputs are peer to peer/merchant interaction probabil-

0.000

0.008
+0.029

0.003
+0.030

0.012
+0.036

I 0.0006

o

3.

3

2| =
0.0004
0.012
+0.036

0.030
0.025
-0.020

-0.015

p2pP

0.0002
0.010

Rural

0.005

0.0000 0.008

+0.029

P2M

-0.000

—0.005
-0.010

—0.0002

0.000
+0.000

0.003
+0.030

0.000
+0.000

DS_Ratio

—0.0004

DS_Ratio Move DS_Ratio

-0.000
+0.000

0.0002
0.0001

0.0000

Urban

-0.0001

0.000 ~0-0002

+0.000

=3
®
=
o'
o

—0.0003

©
Fig. 5: Second-order Sobol Indices for (a,d) DCR, (b,e) DScaugn: and (c,f) Egiyy.
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ities, peer movement probability, and the ratio of malicious
agents (see Table II). The inputs are located on the horizontal
axis. The analysis is performed for three outputs, namely
discovered counterfeit ratio, double-spenders caught ratio, and
mean epoch difference, presented previously in threat level
experiments. The vertical axis represents the sensitivity values.
For example, the blue bars are the first-order Sobol indices,
which represent the effect on the output explained specifically
by the input to which the bar is related. However, this metric
needs to be evaluated jointly with another—the total Sobol
indices, which are represented by orange bars. The total Sobol
indices show the effect of all the groups of variables that
contain the input in question on the output. If the first-order
index is of the same magnitude as the total index, then the
input contributes a lot to the variance of the output. Otherwise,
a higher-order analysis is typically performed to take into
account all pairwise interactions between inputs.

For both urban and rural scenarios, the inputs that make
the most impact are the same: it is the ratio of double-
spender agents for the counterfeit and double-spenders caught
ratios, and the global to local mean epoch difference is best
explained by peer to peer interaction probability. In all three
instances, the first-order indices are very close to total-order
indices, indicating that there are no meaningful higher-order
interactions happening with those parameters for that output.
This is confirmed by second-order Sobol indices in Figure 5,
where all of the input interactions failed to produce an effect
larger than 0.05 and most of the interactions had no effect on
the output in all three cases for both scenarios.

Scatter plots for the counterfeit, epoch difference, and
double-spenders outputs are presented as evidence to bolster
support for the initial hypothesis. Each plot depicts direct
relationship with the ratio of malicious agents or peer-to-peer
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interaction probability. Figures 6a, 6d show the relationship
between the counterfeit discovered and the ratio of malicious
agents, where the latter parameter ranges from 11—1 to % The
result shows a strong positive correlation for both urban and
rural scenarios, which validates the hypothesis that there is
a considerable impact on the output variable. The result is
expected since increasing the number of malicious agents in
the tested system increases the amount of double-spent coins
created in each step of the simulation. As a side note, the
growth is not entirely linear—it speeds up closer to more
extreme values of the malicious agents ratio.

Figures 6b, 6e present a negative correlation between
peer-to-peer interaction probability and the mean difference
between the global epoch and the local epoch, where the
interaction probability ranges from 0.1 to 0.5. The plots for
the rural and urban scenarios share a lot of similarities. For
example, both Figure 6b and 6e show a large variance for
the results corresponding to small values of the interaction
probability. The variance greatly decreases as the interaction
probability grows, which aligns with the hypothesis that more
interaction between honest agents results in faster data propa-
gation across the network. However, differences across figures
are also present, with the main one being the numerical values
of the epoch difference. The rural scenario shows a bigger
difference compared to the urban one, which can be explained
by differences in graph structure.

Finally, Figures 6¢ & 6f present the relationship between the
ratio of discovered double-spenders and the ratio of malicious
agents in the system, where the input still ranges from ﬁ to
%. As in the case with global and local epoch difference, the
figures show strong negative correlation, which validates the
hypothesis about the impact of the input on the output. The
sign of the correlation can be interpreted in an intuitive manner
since the more malicious agents there are in the system, the

harder it gets to catch the double-spenders as they start to
double-spend with other malicious agents, who will never
spend the coins of other malicious agents. The outliers in the
tail range from ﬁ to % can be explained by the specifics of the
simulation environment—some of the malicious agents do not
get the chance to double-spend at all throughout the simulation
if they do not move to a location with an agent. As the number
of malicious agents grows, this uncaught minority represents
a smaller percentage of malicious agents, hence an increasing
trend is present. However, at the inflection point, more and
more malicious agents who have interacted with the honest
ones do not get caught, and the trend reverses.

V. CONCLUSION

Offline functionality in digital currency systems is a highly
desired feature that promotes resilience and improves financial
accessibility for unbanked communities, but also introduces a
variety of operational risks. This paper presented a flexible and
comprehensive framework for the risk assessment of offline
digital currency systems that can be used as a tool for making
informed policy decisions. Through the use of a wide range
of configurable parameters, including the composition of the
agent population, the probabilities of peer interactions, and
the synchronization intervals, the framework allows a detailed
evaluation of various digital currency designs. By applying
the proposed framework to an open source CBDC prototype,
we demonstrated its ability to provide insight on how different
parameter configurations affect key performance metrics, such
as counterfeit detection rates, double-spending incidents, and
the propagation of state updates.

Future work in this domain may include formal methods
and analytical modeling from a risk quantification perspective
to gain a better understanding of the trade-offs between the
impact of threats and the costs to prevent them.
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