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Abstract— In the modern design cycle, substantial manual
effort is required to correct errors found when verification reveals
an unreachable state. This work introduces two methodologies
to automate this task. Given an unreachable target state, both
methodologies return a set of design locations where changes can
be implemented to make the target state reachable (i.e., solu-
tions). The first methodology uses intertwined steps of reachable
state-space approximation, property checking, and traditional
debugging to compute a subset of the solutions that make the
target state reachable in some fixed number of clock cycles. The
second methodology uses property-directed reachability with an
enhanced version of the circuit’s transition relation to compute
the complete set of solutions to the problem. As an additional
benefit, it returns an inductive invariant proving that no further
solution(s) exist. The completeness of the approach comes at
the cost of increased runtime when compared to the first
methodology. Empirical results on industrial designs confirm the
effectiveness of both approaches.

I. INTRODUCTION

In modern hardware design, functional verification has grown to
consume the majority of the design effort [1]. Debugging accounts
for a substantial 60% of the verification cycle [2]. Most verification
and debugging tasks are now partially or fully automated, somewhat
mitigating the substantial engineering effort they demand. However,
when verification reveals an error in the form of an unreachable state,
identifying the root cause remains a predominantly manual task.

When functional verification reveals an error such as a firing asser-
tion, observation signal value mismatch, or a scoreboard discrepancy
an error trace is returned that demonstrates the failure. An automated
debugging tool [3]–[6] can use this error trace to aid the engineer in
finding the source of the error. Conversely, when a state is shown to
be unreachable in violation of the specification, an error is clearly
detected, but no error trace exists to guide an automated debugging
tool. As a result, traditional debugging tools cannot be applied to
accelerate the debug process.

Towards the goal of alleviating this problem, the work in [7]
introduces an automated technique to facilitate diagnosis of unreach-
able states. The approach consists of intertwined steps of state-space
approximation, traditional property-checking, and traditional SAT-
based automated debugging [3]. Given an unreachable target state
and a set of suspect locations, it computes a subset of the suspect
locations where a change can be implemented to make the target state
reachable (i.e., solutions). First, property-directed reachability [8]–
[10] is used to compute an initial over-approximation of the set of
states reachable in a fixed number of clock cycles. Subsequently, a
traditional SAT-based debugger is used to debug a sequence of state
transitions from any state in the approximation to the target state. Due
to the inherent nature of the state space approximation the approach
may find spurious solutions, which are identified using property-
directed reachability and discarded. This has the beneficial side effect
of refining the state space approximation, reducing the chances of
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finding further spurious solutions. The approach additionally has a
configurable tradeoff between runtime and resolution.

Since this technique may only provide a subset of the possible error
sources, it limits the engineer’s confidence that the results maximally
preserve the engineering effort invested in the design. To address this
concern, this paper presents an additional methodology that computes
the complete solution set of the problem, but typically requires more
runtime than the previous approach. Given an unreachable target state
and a set of suspect locations, it returns every suspect location that
can be changed to make the target state reachable in any number
of clock cycles. As an added benefit, upon termination it returns an
inductive invariant that proves no further solution(s) exist. This is
accomplished by modeling the debugging problem as an unbounded
model checking problem.

In greater detail, the methodology works as follows. First, an
enhanced transition relation of the circuit is constructed by inserting
error-select registers. Each error-select register is associated with a
suspect location, such that the suspect location is effectively replaced
by an arbitrary Boolean function when its respective error-select
register is active. Non-active error-select registers do not change the
behavior of the circuit. Additional constraints are added to ensure
that only one error-select register is active at a time. From this con-
struction, the target state is reachable under the enhanced transition
relation if and only if a change can be implemented at one of the
suspect locations to make it reachable in the original circuit. These
locations represent solutions to the problem. To find the solutions,
reachability of the target state under the enhanced transition relation
is checked using Property-Directed Reachability (PDR). When the
target state is reachable, a counter-example is returned in which an
error-select register is active, indicating that the respective suspect
location is a solution. The error-select register is then deactivated
and PDR is executed again. This process is repeated until the target
state is unreachable, indicating that no further solutions exist. At this
point, PDR returns an inductive invariant proving this claim.

As this approach trades increased run time for completeness, it
provides a valuable tradeoff to the user. If the entire solution set
is needed, the engineer can apply the exact approach at the cost of
increased runtime. However, the user may have sufficient knowledge
of the design and intuition about the source of the error to guide
debugging. In these cases, it is possible to use the approximate
approach with appropriate parameter values to find the desired
set of solutions more quickly. This allows the user to choose the
methodology best suited to their particular problem while remaining
confident that the results can be applied to accelerate debugging.

Experiments on industrial designs confirm the theoretical findings
and the practicality of the presented approaches. The complete
solution set of the problem is found to represent an average of
only 10% of the suspect locations, substantially narrowing down the
source of the error. The approximation-based approach provides a
4.8x speedup relative to the complete approach, and is able to find
an average of 43.4% of the complete solution set.

The remainder of this paper is organized as follows. Section II
presents background information regarding unbounded model check-
ing and traditional automated debugging. Section III defines the
problem and presents the approximation-based algorithm. Section IV
presents the complete approach. Section V presents experimental
results. Finally, Section VI concludes the paper.



II. PRELIMINARIES

The following notation is used throughout this paper. Given a
sequential circuit C, S = {s1, ..., s|S|} denotes the set of state
elements (registers) of C. Each assignment t ∈ {0, 1}|S| to the state
elements is a state of C. The transition relation of C is denoted
T ⊆ {0, 1}|S| × {0, 1}|S|. For a state pair 〈t, t′〉, 〈t, t′〉 ∈ T if and
only if there exists an assignment to the primary input that causes
C to transition from t to t′. Additionally, the propositional formula
t ∧ T ∧ t′ is satisfiable if and only if 〈t, t′〉 ∈ T . The set of initial
states of C is denoted I ⊆ {0, 1}|S|. For a predicate P over the set
of state variables S, any state t ∈ P is referred to as a P -state.

For the purpose of model checking, C can be modeled by a Finite
State Machine (FSM) M = (S, I, T ). A sequence of states t0, ..., tn
is a trace of M if and only if 〈ti, ti+1〉 ∈ T for all 0 ≤ i < n and
t0 ∈ I . A state t is reachable under M if it appears in a trace of M .
It is also i-step reachable if it appears in a trace of i cycles or less. In
this paper, the predicate Ri denotes the set of i-step reachable states.

A. Property-Directed Reachability

The work presented here uses extensively the unbounded model
checking algorithm of Property-Directed Reachability (PDR) [9].
Given an FSM M = (S, I, T ) and a safety property P ⊆ {0, 1}|S|
representing the set of safe states, PDR attempts to prove that P
holds for M . It either returns an inductive invariant proving that
no unsafe states are reachable or a counter-example showing that an
unsafe state is reachable.

To achieve the above, PDR computes a sequence of predicates
over the state elements F = 〈F0, ..., Fk〉. The set of Fi-states over-
approximates the set of states reachable in i or fewer clock cycles
(i.e., Ri). Each Fi is represented by a formula in Conjunctive Normal
Form (CNF) and each clause in Fi over-approximates Ri.

The algorithm proceeds through a series of iterations k = 1, 2, ...
in which iteration k attempts to find a k-step counter-example. This
process will either result in new clauses being added to some or all
of the formulas for F0, ..., Fk, or in a counter-example being found.
If P indeed holds, the algorithm will eventually reach a point at
iteration k where Fi = Fi−1 for some i ≤ k. At this point, Fi is
an inductive invariant proving the property P holds. The algorithm
returns REACHABLE if an unsafe state is reachable under M and
UNREACHABLE otherwise.

B. Traditional SAT-based Debugging

The work presented here also utilizes the SAT-based automated
debugging framework of [3]. Given an error trace exposing erroneous
behavior in a circuit, the framework returns a set of locations
where a fix can be implemented to correct the behavior. Letting
L = {l1, l2, ..., l|L|} denote the suspect locations in the circuit, the
transition relation is enhanced by the addition of a set of error-select
lines e = {e1, e2, ..., e|L|}. If ei = 0 then the behavior at location li
is unchanged. Setting ei = 1 replaces li with a free variable wi.

Subsequently, for a k cycle error trace, the enhanced transition
relation is unrolled into a k frame ILA representation. Additional
constraints are derived to set the primary input values to the values
from the error trace in each time-frame and to force the primary
output values to the reference values. An additional constraint is
added to ensure that the circuit begins in a particular initial state.
Finally, a cardinality constraint φn ensures that exactly n error-select
lines are simultaneously active. The constrained ILA is converted
into a propositional formula in CNF. The formula is such that each
satisfying assignment indicates an n-tuple of suspect locations that
can be simultaneously modified to correct the erroneous behavior in
the circuit. As such, all satisfying assignments to the formula are
found using an all-solutions SAT solver.

III. APPROXIMATION-BASED APPROACH

This section presents an algorithm that localizes bugs that cause
unreachable states. Given an erroneous circuit C, a set of suspect
locations L = {l1, ..., l|L|}, and an unreachable target state condition
S the proposed methodology finds suspect locations where a fix can
be implemented to make at least one S-state reachable. The set of
suspect locations L is provided by the user. In the worst case it can
include every location in the circuit. In practice, a larger suspect set is
expected to increase the runtime of the algorithm. The engineer may
therefore apply knowledge regarding the source of the error to reduce
the size of L to e.g., all locations within a block that is suspected
to be the error source. The target state condition S is a predicate
representing the set of target states, all of which are assumed to be
unreachable in C. This is also a parameter provided by the user.

A solution is defined as an n-tuple of locations in the circuit
that can be replaced by different Boolean functions to make any
target state(s) reachable. The functions may be arbitrarily complex
and may require the addition of new state elements, but do not
require modifying any other locations in the circuit. In practice,
we are usually interested in solutions with n = 1, i.e., those that
consist of only a single suspect location. The purpose of the proposed
methodology is to find suspect locations that are indeed solutions
to the problem. It returns Lsol ⊆ L, which is a set of solutions
from L. Note that the methodology is intended only to indicate
locations where a functional change makes a target state reachable.
The engineer is responsible for deciding how to implement the fix.
As required for traditional SAT-based debugging using a set of error
traces [3], a full verification step is needed to confirm the correctness
of the modified design.

The methodology of this section also requires two parameters
that dictate the portion of this solution space it explores. The first
parameter is the window size N which determines how many clock
cycles are modeled explicitly by the debugging step. The second is the
cycle limit K, which dictates the number of clock cycles modeled by
the state space approximation. Their exact rationale and usage within
the algorithm are explained later in this section.

The algorithm models and debugs a sequence of state transitions
from an arbitrary reachable state to S. As calculating the exact set of
reachable states is an intractable problem, an over-approximation is
used to model the potentially reachable states. Spurious solutions
that may arise from the use of the approximation are detected
and discarded. Detecting spurious solutions has the beneficial side
effect of refining the reachable state space approximation, potentially
reducing the number of spurious solutions found later.

In greater detail, the approach consists of three main steps:
reachability analysis, debugging, and spurious solution detection. The
reachability analysis step computes an over-approximation of the set
of K-step reachable states (i.e., RK ), where K is the cycle limit
parameter described earlier. Towards this end, it executes PDR with
S as its unsafe state set. In doing so, PDR computes the sequence
F = 〈F0, F1, ..., Fk〉 where each Fi over-approximates the set of
i-step reachable states and has the property that Fi ∩S = ∅ (i.e., no
S-states are in Fi). As such, FK over-approximates RK . PDR may
terminate before computing FK . In this case, FK = ¬S is used. As
S is unreachable, its negation clearly over-approximates the set of
K-step reachable states for any value of K.

The debugging step solves a SAT-based debugging instance de-
signed to find suspect locations that can be changed to allow for
a sequence of state transitions from some state in FK to a target
state. The window size parameter N defined earlier determines the
maximum length of the sequence of added transitions. As such, the
debugging instance creates an ILA representation of N time-frames
using the enhanced transition relation described in Section II-B.
Intuitively, the ILA is constrained using FK at its initial states and S
as the next state of its final time-frame. The primary input and output
variables are left unconstrained, allowing the solver to find solutions



Algorithm 1 APPROXIMATEUNREACHABILITY(C,S,K,N )
1: Lsol = ∅
2: T = transition relation of C
3: PDR(T,S,K)
4: U = DEBUGGINGINSTANCE(C,S, FK )
5: while (Solution = SAT (U)) 6= UNSAT do
6: t = current state of Solution
7: if PDR(T, t,K) == REACHABLE then
8: Lsol = Lsol ∪ {Solution}
9: else

10: U = U ∧ FK

11: end if
12: end while
13: return Lsol

Ten STen Ten...RKFK

Fig. 1. Model used in the debugging step

for any input assignment. Finally, since exactly one error-select line
must be active, a cardinality constraint [3] is applied to the error-
select lines. The cardinality constraint φ1 enforces that exactly one
error-select line is 1, and is defined as follows:

φ1 = (e1 ∨ ... ∨ e|L|) ·
∧

1≤i<|L|
i≤j≤|L|

(ēi ∨ ēj) (1)

In Eq. 1, the first clause ensures that at least one error-select line
is active. The remaining clauses require that no pairs of error-select
lines are active simultaneously. A similar cardinality constraint φn

can be constructed for higher cardinalities. Such a constraint ensures
that exactly n suspect locations are active. The resulting debugging
instance is depicted in Figure 1 and can be expressed as follows:

FK ∧ T 1
en ∧ ... ∧ TN

en ∧ S ∧ φn (2)

Where T i
en is the ith copy of the enhanced transition relation in

the ILA. A solution to Eq. 2 may indicate an n-tuple of locations
where a change can be implemented to make a target state reachable.
Due to the over-approximate nature of FK , the debugging step may
find spurious solutions if the chosen current state is a member of the
set FK \ RK (i.e., it is not K-step reachable). Such a result may
not indicate a design location where a change can be implemented to
make a target state reachable. This necessitates a spurious solution
detection step. When the SAT instance is solved, the solution is
verified by using PDR to check if the current state is K-step
reachable. If it is, the solution is proven to be non-spurious and added
to the solution set. Conversely, if the current state is shown not to
be K-step reachable, the solution is discarded. As a side effect of
proving its unreachability, FK is refined such that it does not include
the unreachable current state. It may additionally exclude other states
proven not to be K-step reachable. This is shown in Figure 2 where
state t has been shown not be K-step reachable. As a result, a more
accurate approximation shown in Figure 2(b) is derived.

The entire procedure is shown in Algorithm 2. Line 3 executes
PDR to compute the initial approximation FK . Line 4 constructs the
debugging instance of Eq. 2. Subsequently, line 5 finds a solution to
the debugging instance. On line 6, the current state of the solution is
extracted and line 7 checks if it is K-step reachable. If so, line 8 adds
it to the solution set. Otherwise the solution is found to be spurious
and the updated FK is conjuncted onto the debugging formula on
line 10, preventing the algorithm from finding any further solutions
with this current state.
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Fig. 2. Set FK (a) initially (b) after proving state t 6∈ RK

The following theorem proves the correctness of the algorithm.

Theorem 1 The solution set of Algorithm 1 is exactly the set of all
solutions that make a target state S reachable N cycles after a K-
step reachable state.

Proof: The debugging instance of Eq. 2 uses FK as its current
state set. Throughout the algorithm’s execution, FK is updated,
but always includes every K-step reachable state. Therefore, the
current state set of the debugging instance always includes all K-
step reachable states, implying that the algorithm finds every solution
that reaches the target state and has a K-step reachable current state.
Furthermore, solutions where the current state is not K-step reachable
are rejected, ensuring that all solutions found have a K-step reachable
current state. This implies that it finds exactly the set of all solutions
that allow for a sequence of N transitions from a K-step reachable
state to a target state in S.

Theorem 1 proves that the algorithm works when S can be reached
with N transitions from a state that is K-step reachable. While this
represents a useful subset of the solutions, in practice many other
solutions may exist. The following section extends the algorithm to
find the complete solution set.

IV. EXACT APPROACH

The approach of the previous section finds a particularly useful
subset of the solutions to the problem of state unreachability. How-
ever, it has two key drawbacks. First, in order to use it the engineer
must apply design knowledge to set parameters that dictate and limit
the portion of the solution space it can explore. The second is that it
may not provide confidence that it returns the actual error source, as
it does not return every solution. This section presents a methodology
to debug unreachable states that eliminates these drawbacks. Similar
to the previous methodology it accepts an erroneous circuit C, a set
of suspect locations L = {l1, ..., l|L|}, and an unreachable target
state condition S as its input. It finds every solution in the set L and
is complete by nature. As an additional feature, it terminates with a
proof that no further solution(s) exist in L.

The proposed methodology essentially merges the debugging and
reachability analysis steps of the previous section into a single
process. As will be seen, this eliminates the possibility of find-
ing spurious solutions. This is accomplished by solving a series
of unbounded model checking problems using an enhanced FSM
model of the circuit. The enhanced FSM model behaves like the
original circuit with particular suspect locations replaced by unknown
Boolean functions. Which suspect locations are replaced depends on
assignments to error-select registers, which is new circuitry depicted
in Figure 3 that behaves similarly to the error-select lines used in
the debugging step of the previous section. Their exact rationale and
functionality is explained later in this section. Each model checking
problem either indicates a solution li ∈ L or proves that no location
in L \ Lsol is a solution, at which point the algorithm terminates.

Towards this end, the algorithm constructs an enhanced transition
relation Ten by adding new hardware in the form of error-select
registers E = {e1, ..., e|L|}. It then constructs an enhanced FSM
model of the circuit denoted by M = (S ∪ E, Ien, Ten). A trace of
the circuit tC,0, ..., tC,n is equivalent to a trace of the FSM model
tM,0, ..., tM,n if and only if the registers in the set S (those registers
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Fig. 3. Error select register and multiplexer at suspect location li

present in the original circuit) have the same assignment in states
tM,i and tC,i for every 0 ≤ i ≤ n.

In greater detail, the enhanced transition relation is constructed
from that of the original circuit as follows. For each suspect location
li, an associated free variable wi and error-select register ei are added.
The hardware shown in Figure 3 is then constructed. Note that the
error-select register is immutable (i.e., its value can never change
during the operation of the circuit) because its output is fed back to its
input. As explained later, this associates the reachability of particular
states under M with particular suspect locations being solutions. The
hardware behaves such that li is effectively replaced by an arbitrary
function when ei = 1. Error-select registers assigned to 0 clearly do
not alter the behavior of the circuit. This construction can also be
represented efficiently in CNF as shown in Eq. 3 below:

mux = (ei ∨ l̄i ∨ zi)(ei ∨ li ∨ z̄i)(ēi ∨ w̄i ∨ zi)(ēi ∨wi ∨ z̄i) (3)

The enhanced transition relation is then constructed from the circuit
with the added hardware. As the error multiplexer can be represented
by four clauses, the CNF encoding of Ten has O(|L|) more clauses
than that of the original transition relation of C.

Example 1: To illustrate the behavior of Ten, consider the circuit
of Figure 4(a). It has a single state element s1, two primary inputs
x1 and x2 and the two suspect locations are l1 and l2. Assume that
the initial state is s1 = 0 (i.e., I = (s̄1)). It is easily verified that
it is impossible for the circuit to reach a state where s1 = 1. This
unreachability can be diagnosed using the target state condition S =
(s1). In doing so, the enhanced transition relation is constructed from
the circuit shown in Figure 4(b). When e1 = e2 = 0, this circuit
behaves the same as the original circuit. When e1 = 1, l1 is set to
the free variable w1, allowing it to assume any value during model
checking. Similar behavior applies to e2 and l2. It can be seen that
when any ei = 1, this circuit behaves like the original circuit with
li replaced by some unknown Boolean function.

As mentioned earlier, the reachability of certain states under the
FSM is associated with particular suspect locations being solutions.
Consider a trace of the enhanced model. The same error-select
registers are active for every state in the trace, as these registers
are immutable. Let e1, ..., en denote the active error-select registers.
The enhanced model therefore behaves like the original circuit with
locations l1, ..., ln replaced by arbitrary Boolean functions. It can
be concluded that the original circuit has an equivalent trace if
l1, ..., ln are simultaneously replaced by unknown functions. If this
trace contains a target state, then simultaneously replacing l1, ..., ln
makes the target state reachable.

Now consider a trace that starts from an initial state, ends on a
target state, and has exactly n active-error select registers e1, ..., en.
Using the argument in the previous paragraph, the original circuit
has an equivalent trace when l1, ..., ln are replaced with unknown
functions. The trace starts from an initial state and ends at a target
state, so replacing these n locations makes a target state reachable
(i.e., they are a solution). This applies to any trace satisfying these
three properties, and we therefore tailor the algorithm to find such
traces.
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Fig. 4. (a) Original circuit (b) Circuit of Ten (error-select registers omitted)

This motivates the construction of the enhanced initial state con-
straint Ien. The formula for Ien constrains the original registers of the
circuit using I , which ensures the initial states of the enhanced model
correspond to initial states of the circuit. Since exactly n error-select
registers must be active, the cardinality constraint φn is applied to the
error-select registers. The enhanced initial state condition is therefore
Ien = I ∧φn. This completes the construction of the enhanced FSM
M = (S ∪ E, Ien, Ten).

Example 2: Consider again the example from Figure 4. The
enhanced initial state condition Ien is the conjunction of I = (s̄1) and
the cardinality constraint φ1. Therefore, Ien = (s̄1)∧(e1∨e2)∧(ē1∨
ē2). The set of states in Ien is {(s̄1∧e1∧ ē2), (s̄1∧ ē1∧e2)}. Notice
that these are all states in which s1 = 0, which is the initial state
condition. Additionally, every state of Ien has one active error-select
register, matching the requirements for traces that indicate solutions.

It has been established that a trace of the enhanced model must
have three properties to indicate a solution. Specifically, it must start
on an initial state of C (an I-state), have exactly n error-select
registers active in every state, and end on a target state. PDR is used
to find such traces. The enhanced initial state condition ensures that it
finds traces beginning on an I-state with exactly n active error-select
registers, as required. The immutability of error-select registers in
the enhanced transition relation ensures that the same n error-select
registers are active error-select register in every state of the trace. The
only remaining requirement is that the trace must end on a target state.
To meet this requirement, PDR is executed with S as its unsafe state
set. If any target state is reachable, PDR returns a counter-example
trace that meets the requirements previously described. As such, if
e1, ..., en are the active error-select registers in the counter-example
then l1, ..., ln is a solution.

Example 3: Continuing the illustration of the methodology from
Example 2, recall that the target state condition is S = (s1) and
the initial state condition is I = (s̄1). The enhanced model has the
following counter-example trace: 〈t0, t1〉 = 〈(s̄1 ∧ ē1 ∧ e2), (s1 ∧
ē1∧e2)〉. Notice that t0 corresponds to an initial state of the original
circuit, t1 is a target state, and e2 is the active error-select register. In
states t0 and t1 the model behaves identically to the original circuit
with l2 replaced by an unknown function. Since t0 is an initial state
and t1 is a target state, replacing l2 with a different function makes
a target state reachable in the original circuit. This indicates that
location l2 is a solution. Indeed, the reader can confirm that replacing
the AND-gate that drives l2 with an OR-gate makes the target state
reachable. Other corrections to the problem are also possible.

After finding a solution, it is blocked so the algorithm finds the
remaining solutions if any. For a solution lj , this is accomplished
by conjoining the unit literal clause ¬ej to Ien, so that PDR will
not return any additional counter-examples in which ej is active.
If a cardinality n > 1 is used, solutions will have n active error-
select registers e1, ..., en. In this case, a clause (¬e1 ∨ ... ∨ ¬en)
is conjuncted instead, ensuring that this same n-tuple is not found
again as a solution.

Example 4: For the circuit of Figure 4, after finding the solution
l2, the enhanced initial state condition becomes Ien = (s̄1) ∧ (e1 ∨



Algorithm 2 UNREACHABILITY(C,S, L)
1: Lsol = ∅
2: S = state element set of C
3: Ten, E = CONSTRUCTMODEL(L,C)
4: Ien = I ∧ φn

5: M = (S ∪ E, Ien, Ten)
6: while PDR(M,S) == REACHABLE do
7: e1, ..., en = active error-select registers in counter-example
8: Lsol = Lsol ∪ {l1, ..., Ln}
9: M = (S ∪ E, Ien ∧ (¬e1 ∨ ... ∨ ¬en), Ten)

10: end while
11: invariant = inductive invariant extracted from PDR
12: return (Lsol, invariant)

e2) ∧ (ē1 ∨ ē2) ∧ (ē2), leaving (s̄1 ∧ e1 ∧ ē2) as the only remaining
initial state. It is easily verified that this state cannot reach any target
states, implying that l1 is not a solution. This is indeed the case. To
reach a state where s1 = 1 the output of the AND-gate must be 1. In
the initial state s1 = 0, so regardless of the value at l1 the AND-gate
will never output 1. Therefore, there is no way to modify the circuit
at l1 to rectify the unreachability of the target state.

The steps of the methodology are shown in Algorithm 2. In that
description, algorithm CONSTRUCTMODEL receives input L and C
and returns the enhanced transition relation and error-select register
set. Lines 3 to 5 construct the enhanced FSM model that is used
by PDR. Lines 6 to 10 contain the main loop in which solutions
are found. If a solution exists, it is extracted (line 7) and added to
Lsol (line 8). Line 9 constructs a new model in which the solution is
blocked. As the number of suspect locations is finite, the loop will
eventually terminate. At this point, PDR indicates S is unreachable
and an inductive invariant is extracted (line 11). Finally, Lsol and the
proof of solution completeness are returned in line 12.

In the following subsection, the soundness and completeness of
this algorithm are discussed.

A. Soundness and Completeness
Two theorems are presented to demonstrate that Algorithm 2 is

both sound and complete w.r.t. its input set. In the context of this
paper, soundness implies that every location returned is a solution.
Completeness implies that every solution from the set L is indeed
found. Theorem 2 shows that the approach is sound. For simplicity,
the theorems are presented in terms of an error cardinality of n = 1
but are similarly valid for other values of n.

Theorem 2 Every location in Lsol is a solution.

Proof: Line 6 finds a counter-example trace t0, ..., tn of M . As
it is a counter-example trace, it starts at an initial state and ends at
a target state, implying t0 ∈ Ien and tn ∈ S. As Ien = I ∧ φ, the
cardinality constraint φ1 ensures that exactly one error-select register
(ej) is assigned to 1 in state t0. Additionally, t0 ∈ I .

Since the error-select registers are immutable, each state in the
trace also has ej active and all other error-select registers inactive.
Further, the fact that t0 ∈ I ensures that t0 corresponds to an initial
state of C. Therefore, an equivalent trace also exists for C if lj is
replaced by an unknown Boolean function. As tn is a target state,
S can be made reachable in C by replacing lj , indicating that lj is
a solution. All locations in Lsol are found in this manner, implying
that every location in Lsol is a solution.

Because Lsol is the solution set of Algorithm 2, this proves that the
algorithm is sound. Further, Theorem 3 below proves the algorithm’s
completeness by showing that it returns all solutions from the set L.

Theorem 3 Upon termination Lsol contains every solution from L

Proof: Lines 6 to 10 are executed to find solutions until all target
states are unreachable. First, consider the case when Lsol = L at the
termination of Algorithm 2. Clearly, this includes every solution in
L, and the theorem holds in this case.

Assume the opposite case, Algorithm 2 terminates when all target
states are unreachable and Lsol ⊂ L. It suffices to show that the
unreachability of all target states implies that no solutions are left.
Consider the final call to PDR that returns UNREACHABLE. Denote
the remaining suspect locations at this point as Lrem = L \ Lsol.

Assume all target states are unreachable. This implies that there
are no traces of M that end in a target state. Consider a fixed valid
initial state IC of C. There are |Lrem| corresponding initial states of
M , each with a different active error-select register. Since all target
states are unreachable, none of these states can reach a target state
under M . This implies that for every suspect location in l ∈ Lrem,
it is impossible to replace l with a different Boolean function such
that S is reachable from IC in C. Since IC is an arbitrary initial
state of C, this holds for every initial state of C.

Therefore, none of the suspect locations in Lrem are solutions
which implies that when Algorithm 2 terminates Lsol contains every
solution from L.

As the algorithm only considers solutions from the suspect set L,
it cannot find solutions that are not in that set. If every solution in
the circuit is needed, the user may choose L so it includes every
location in the circuit. Since a larger input set may increase runtime,
the algorithm offers a favorable trade off where one can restrict the
set L to locations that are considered to be likely error sources. For
instance, if an engineer introduces a bug when modifying a specific
module it may be desirable in this case to restrict the suspect set to
said module and treat the rest of the design as correct. In this manner,
one remains confident that the results returned by the algorithm will
include the actual error source.

V. EXPERIMENTAL RESULTS

All results presented in this section are run on a single core of an
i5-3570K 3.4 GHz workstation with 16GB of RAM. The proposed
algorithms are implemented on top of the PDR implementation within
ABC release 1.01 [11] and the state-of-the-art SAT-based debugging
framework of [3]. Experiments are timed out after 4 hours. The
benchmarks consist of seven designs from OpenCores [12] and one
design from an industrial partner. Each problem instance is created
by injecting a common design error that makes a state erroneously
unreachable. Common design error include changed operators, com-
plemented if-statement conditions, added incorrect state transitions,
etc. The set L of suspect locations is chosen as all locations in the
cone-of-influence of registers that appear in the target state predicate.
If more than 1000 such locations exist, the 1000 closest to the
registers appearing in the target state predicate are chosen. This
ensures that the suspect locations give the greatest resolution to the
user. All experiments are run using an error cardinality of n = 1.

Table I shows comprehensive results. The first four columns show
the name of the problem instance, the number of gates in the design’s
AND-INVERTER graph representation, the number of registers in
the design, and the size of the suspect set, respectively. The next
two columns show the number of solutions found and runtime for
the exact approach of Section IV. The next four columns relate to
the approximate approach of Section III, with cycle limit K = 50
and window size N = 1. They show the number of solutions found,
percentage of solutions found compared to the exact approach, run
time, and speedup relative to the exact approach, respectively.

As can be seen, the approximate approach has 4.8x geometric mean
speedup when compared to the exact approach, but finds only 43%
of the complete solution set. This provides the user with a valuable
set of tradeoffs. If the complete solution set is needed, the user can
use the exact approach and have confidence that the results can be
applied to accelerate debuggging. Conversely, if the user is able to



TABLE I
EXPERIMENTAL RESULTS

Benchmark Exact Approach Approximate Approach
benchmark #gates #registers |L| #solutions time (s) #solutions % solutions time (s) speedup
mrisc core 8165 1328 1000 10 111 10 100 15.9 7.0x
design1 1070 147 314 14 21.7 4 29 16.0 1.4x
divider 3555 360 57 53 1.2 1 1.9 1.5 0.8x
spi 1009 132 544 40 76.6 40 100 19.0 4.0x
wb 390 61 346 261 211 247 95 38.7 5.4x
usb core 4856 534 1000 4 492 4 100 17.5 28.1x
ac97 ctrl 12607 2325 126 18 16.8 10 56 1.4 12.1x
rsdecoder 4856 534 1000 40 951 40 100 371 2.6x
AVERAGE 43 4.8x
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appropriately set the parameter values for the exact approach it is
possible to get a useful subset of solutions quickly.

Figure 5 plots the number of solutions found by the two ap-
proaches. Across all experiments, the approximate approach finds
only of 43.3% of the complete solution set. In particular, for the
design divider, only 2% of the solutions are found by the
approximate approach. The experiments use a window size N = 1.
Any solutions found therefore must be in the combinational fanin
cone of a register that appears in the target state predicate, as the
results of modifications at other locations cannot propagate to the
relevant registers in one clock cycle. The divider benchmark is
pipelined and the target state is specified on registers in the final stage.
The experiment can therefore only find solutions in the combinational
fanin cones of these registers, which represents a small part of the
design. Since the problem can also be corrected in other pipeline
stages, it is evident that it finds only a restricted portion of the
complete solution set.

Furthermore, the exact approach provides an additional tradeoff
when the user restricts the set of suspect locations L. Figure 6 plots
the runtime of each approach versus |L| for mrisc_core. It can
be seen that increasing the size of the suspect set increases the total
runtime for both algorithms as expected. However, increasing |L|
appears to have a much larger impact on the runtime of the exact
approach. For the exact approach, increasing |L| makes the problem

more complex in multiple dimensions, as PDR must consider more
states, the SAT instances it must solve become more complex, and
the number of calls to PDR increases. However, the approximate
approach spends much of its runtime computing the set of reachable
states for the original circuit without error-select hardware. As a
result, the size of the suspect set only substantially impacts the run
time of the debugging step, making its runtime less dependent on |L|.
By limiting the suspect locations to e.g., the locations within a module
expected to be the source of the error, the user can substantially
improve the run time performance.

VI. CONCLUSION

This work presents two automated methodologies to debug design
errors that manifest themselves in the form of unreachable states.
The first uses steps of reachability analysis, SAT-based debugging,
and spurious solution checking to compute a subset of the solutions.
The second uses an enhanced FSM model of the circuit and PDR to
compute the complete solution set at the cost of increased runtime.
Experiments on industrial-level circuits confirm the practicality and
effectiveness of both approaches.
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