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Abstract

We present a formal logic verification methodology for
combinational circuits. The method uses simulation,
logic diagnosis and ATPG to identify circuit lines that
implement equivalent logic functions efficiently. One ad-
vantage of the proposed technique is that it identifies
line equivalences under controllability and observability
don’t care conditions, while not suffering from false neg-
atives. The method is easy to implement, and, due to
its general nature, existing techniques can benefit from
ideas described here. We also give implementation de-
tails and present experiments to confirm its potential.
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1 Introduction

The digital VLSI design cycle consists of many synthe-
sis stages. Although most of the synthesis process is
automated, errors may occur due to bugs in CAD tools
and due to human interference [1]. These errors, if not
detected early in the design cycle, may have large fi-
nancial and time-to-market consequences. Hence, de-
sign verification is important to ensure the correctness
of the final product. Verification is NP-hard, and it
is unlikely that a unified solution exists for all hierar-
chical synthesis stages. For this reason, the research
community develops efficient design-specific verification
solutions [7].

The focus here is the problem of logic verification of
combinational circuits that exhibit some degree of struc-
tural similarity to their originals. Such similarities ex-
ist because of the incremental nature of the synthesis
process where consecutive logic synthesis steps can be
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viewed as atomic operations on a circuit to obtain a new
one [1] [11] [13]. Designs that correspond to atomic op-
erations close in this sequence of events are expected to
have some degree of structural similarity.

Techniques that exploit such structural similarities
identify pairs of lines in the two circuits that perform the
same function. Such equivalent line pairs are “matched”
progressively to reduce the complexity of the overall ver-
ification problem. To identify equivalences, random test
vector simulation and implication learning [9] [7] are
usually invoked. These methods are not guaranteed to
identify all equivalences under controllability and ob-
servability don’t cares [13]. This is because equivalent
lines may have different logic values for the same test
vectors as long as these vectors operate in their don’t
care space. To prove line equivalences, existing tech-
niques use Binary Decision Diagrams (BDD’s) [3] [8]
[12], ATPG [10] [13], SAT solvers [6] or combinations of
the above [11]. A survey of existing work is found in [7].

Motivated by these observations, we present a logic
verification methodology for combinational circuits that
uses simulation-based Design Error Diagnosis and Cor-
rection (DEDC) techniques [2] [17] and advances in
ATPG [5] [9]. One of its unique characteristics is its
ability to identify equivalent lines under controllability
and observability don’t care conditions while avoiding
false negatives. This enhances the potential to simplify
the verification problem. Furthermore, it may allow
for future implementations that identify multiple sets of
equivalent lines, a topic which has not been addressed
by present literature.

The method identifies equivalent line pairs in two
steps. At first, random test vector simulation is per-
formed and candidate lines are matched according to
their logic values. Additional candidate line pairs are
found by injecting an error in one circuit and diagnosing
the other circuit for lines that may explain the faulty be-
havior. A novel construction proves these equivalences



formally using ATPG. It should be noted, the use of
ATPG is not restrictive to the method and other for-
mal equivalence tools can be used such as BDDs and
SAT solvers. Additionally, due to the general nature of
the operations performed by the proposed method, ex-
isting techniques can benefit from observations in this
paper. Experiments for circuits that do not always bear
a large degree of structural similarity demonstrate the
effectiveness and practicality of the approach.

This paper is outlined as follows. The next Section
reviews background information. Section 3 contains the
method and implementation details. Experiments can
be found in Section 4 and Section 5 concludes this paper.

2 Background

Logic design errors are functional mismatches between
the specification and the gate–level description [2] [17].
Most literature uses a design error (correction) model,
i.e. a small predetermined set of possible error types,
proposed by Abadir et al. [2]. This model contains
simple error types such as gate replacement, missing
input wire, extra input wire etc.

In simulation-based DEDC, given an erroneous de-
sign, a specification, a design error model and a set of
input test vectors, we need to identify lines in the de-
sign that are potential sources of error (diagnosis) and
suggest appropriate modifications on these lines from
the design error model used to rectify it (correction).
Note that the set of logic transformations returned by a
DEDC algorithm may contain some equivalent transfor-
mations along with the actual one. This is true because
there may be multiple locations at which one can syn-
thesize a particular function to rectify the design.

Test vector generation and verification of the recti-
fied design in DEDC are inherently “hard” problems [2]
[17] because the error location is not known. On the
other hand, given input test vectors with failing output
responses, there exist DEDC methods for single errors
that are exhaustive on the solution space yet run in lin-
ear time [17]. In this work we use the simulation-based
DEDC algorithm from [17] which is exhaustive on the
solution space. The input to the algorithm is an erro-
neous netlist, its specification, and a set of input test
vectors. The output of the algorithm is a list of all
candidate locations with applicable corrections.

3 Proposed Approach

In principle, there are two components to a logic veri-
fication tool: (i) how to identify and prove the equiva-
lence of candidate line pairs and (ii) how to use these
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Figure 1: Logic verification in [3]

equivalences to simplify the problem.
For the second component, we follow a variation of

the scheme proposed by Brand [3]. In this scheme, line
equivalences are used to reduce physically the size (i.e.
gatecount) of the circuits under verification. For exam-
ple, and without loss of generality, consider two single
primary output cones of combinational logic (circuits)
H and G under verification, as in Fig. 1(a). In [3], an
XOR gate is added at the primary output to form an
external miter. It follows that the circuits are equiva-
lent if the stuck-at-0 fault at the output of the miter is
redundant.

However, proving such brute-force redundancies is a
hard problem with a complexity that depends on the
size of the miter and equals that of the original verifi-
cation problem [3]. To reduce the size of the miter, [3]
uses random test pattern simulation to identify poten-
tial equivalent lines such as h and g in Fig. 1(b). To
prove their equivalence, an internal miter is formed on
these lines (Fig. 1(b)) and ATPG is invoked for stuck-
at-0 fault at the output of this XOR gate. If the fault is
redundant, lines h and g are equivalent and g can re-
place h in circuit H . This replacement does not dupli-
cate the logic that feeds g into H , but it simply replaces
h with an extra branch that stems from g. Finally, the
circuitry that feeds h is deleted, and the size of the ex-
ternal miter is reduced as shown in Fig. 1(c).

As in [3], our technique uses line equivalences to re-
duce the size of the miter. One main difference is that a
multiplexer is used in the place of an XOR to form inter-
nal and external miters. At the end of this Section, we
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Figure 2: (a) Original external miter (b) Computing vectors for DEDC (c) Verifying (b′, h5) pair equivalence (d)
New miter configuration when b′ replaces h5 (e) Verifying (g3, h4) pair equivalence (f) Final miter

discuss the advantages of this construction. In the sub-
section that follows, we present the overall strategy. In
this discussion, we assume circuits H and G are under
verification, where circuit H is always pruned to ease
the verification process. We also use the same notation
to indicate the name of a line as well as the function it
implements.

3.1 Line Pair Selection and Verification

In the proposed approach, selecting a list of candidate
equivalent line pairs and proving their equivalence (com-
ponent (i)) is done in three phases. In the first phase,
parallel logic simulation is performed for a small num-
ber of vectors (usually less than 1000 vectors). Indexed
arrays of logic values are updated at each line during
simulation, and they are hashed into a hash table. Lines
that hash in the same hash table entry form the initial
set of candidate equivalent line pairs as in [3] [8].

Although random simulation is useful, it does not
guarantee the identification of equivalences under sets of
controllability and observability don’t cares [13]. To in-
crease the number of candidate line pairs and improve
the overall performance, in the second phase, the al-
gorithm performs a sequence of diagnosis-based oper-
ations to discover more potential pairs. It should be
noted that a diagnosis-based RTL-to-logic line equiva-
lence searching technique is also presented in [14]. How-
ever, the purpose, use and implementation of the al-
gorithm presented here stem from the diagnosis-based
design rewiring work in [18] [19] and the technique is

radically different from the one presented in [14]. In
more detail, the algorithm operates as follows.

Let line g ∈ G for which potential equivalent lines in
circuit H need to be found. To find these equivalences,
a (non-redundant) design error is injected at the gate
driving g to implement erroneous function g′. In experi-
ments, we introduce simple wire-related errors such as a
wire removals or wire replacements. These error types
usually alter the functionality of the circuit less than
gate related errors and there is an increased likelihood
to find equivalent transformations [17].

Following the error introduction, a multiplexer with
select line S is attached; the inputs to the multiplexer
are lines g and g′ and the output is the original output
of g. It can be shown [18] [19] that test vectors returned
by ATPG for the S stuck-at-1 fault 1 are also vectors
that detect the design error g′. These vectors are input
to a DEDC engine and diagnosis is performed on circuit
H for the vectors derived for the error in G. Clearly,
any location h ∈ H returned by DEDC is a line po-
tentially equivalent to g. By construction [17], DEDC
returns error locations that account for controllability
and observability don’t cares in linear time.

Given candidate equivalent line pair (g, h) we need
prove their equivalence. To do this, the algorithm per-
forms the construction in Fig. 1(b) in circuit H , with the
exception that a multiplexer with select line S is used
instead of an XOR. If ATPG confirms that a stuck-at 1
fault on S is redundant, then lines g and h are equivalent

1An alternative approach runs ATPG for S stuck-at 0 but the
net effect is the same.



and the replacement (Fig. 1(c)) is performed. Addition-
ally, since ATPG is employed for the complete circuit,
the algorithm avoids false negatives [11].

In summary, the algorithm performs the following
three steps to discover and prove equivalent line pairs:

Step 1: Collect candidate pairs using simulation

Step 2: Discover more candidate pairs as follows:

Step 2a: Select line g ∈ G and inject an error

Step 2b: Derive test vectors for this error

Step 2c: Use DEDC to diagnose H

Step 3: Prove the equivalence of all candidate pairs

The following example illustrates the implementation
details for Steps 2 and 3 of the verification process.

Example: Consider circuits G and H under verifica-
tion as shown in Fig. 2(a). In that figure, the external
multiplexer-based miter is also shown. The ultimate
goal is to prune the size of circuit H and simplify the
complexity of a redundancy check on SE .

In Step 2a, a line from circuit G is selected and a
non-redundant design error is introduced on this line.
Assume line b′ → g4 is selected and “replace b′ → g4

with a → g4” error is introduced. To derive test vectors
for this error, a multiplexer is attached in circuit G as
in Fig. 2(b). Inputs to this multiplexer are lines b′ and
a and its output feeds gate g4. Vectors are collected if
ATPG for S stuck-at-1 is performed (Step 2b).

In Step 2c, DEDC diagnoses circuit G using these
vectors for candidate equivalent lines. If a DEDC al-
gorithm exhaustive on the solution space is used, line
h5 is returned. In order to verify formally the equiva-
lence of line pair (b′, h5), a multiplexer (internal miter)
is attached with inputs h5 and b′ and output gate h6,
as shown in Fig. 2(c). Obviously, the redundancy of the
SI stuck-at 1 fault implies the equivalence of the two
lines in H , and b′ can replace h5, as in Fig. 2(d).

Repeating Step 2, one may introduce an error on g3

and have DEDC return candidate equivalent line h4.
Fig. 2(e) contains the hardware to verify the pair and
Fig. 2(f) shows the final miter after this line replace-
ment in H is also performed. It is observed that only
one gate from H remains, which greatly simplifies the
redundancy check of select line S of the external miter.

Observe that candidate equivalent pairs (b′, h5) and
(g3, h4) cannot be found by implication-based tech-
niques since no such relationship can be established
between lines in the same pair. Similarly, ran-
dom simulation will miss the equivalence of pair
(g3, h4) ((b′, h5)) if some of the test vectors (a, b, c) =
{(0, 1, 0), (0, 1, 1), (1, 1, 0)} ((1, 0, 1)) are included.

During implementation, lines from H are selected to
perform Steps 1. . .3 in topological order. The algorithm
works iteratively, and at successive iterations it selects
lines three circuit levels apart. If the equivalences dis-
covered in the current level are not sufficient (set by a
user-defined parameter), lines from the next immediate
level are selected. This heuristic efficiently balances the
number of times the ATPG engine needs to be called
against the complexity of ATPG, which depends on the
circuitry size it operates (Step 3). Finally, in Step 2c,
the algorithm considers lines returned by DEDC that
are associated with correction(s) rather than lines re-
turned by diagnosis alone. These lines have a higher
potential to qualify in Step 3 and reduce the total num-
ber of times ATPG is called.

In these last paragraphs we argue for the choice of
the multiplexer to implement Step 3. When single line
equivalences are considered, a multiplexer is equivalent
to an XOR. This is not the case for multiple and simul-
taneous line equivalence identification.

For example, consider the two circuits G and H un-
der verification in Fig. 3(a) and (b), respectively. It
can be shown that circuit H is synthesized from G if
c → g1 is deleted and gate h4 is added. Assume two
simple errors are injected on g1 and g4 simultaneously
and vectors are collected as in Step 2b. If multiple er-
ror DEDC is performed in H then locations h1 and h5

are returned. Fig. 3(c) shows the construction, analo-
gous to Step 3, to verify the equivalence of multiple lines
(< g1, h1 >, < g4, h5 >). For simplicity, in this figure
we use line names to represent circuitry that implements
respective boolean functions in Fig. 3(a) and (b). Since
fault SI stuck-at 1 is redundant, the line replacement
can be performed and the verification problem is sim-
plified considerably, as shown in Fig. 3(d).
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The multiplexer construction in Fig. 3(c) cannot be
emulated with the use of XORs as these gates always pro-
duce a 1/0 fault-free/faulty logic value. Furthermore,
the reader can verify that no single line equivalence
(h1, g1) or (h5, g4) can be established independently.
Therefore, multiple and simultaneous line equivalence
identification methods, which have been shown to be
useful in design rewiring [18] [19], may aid logic verifi-
cation as well. In the future, we intend to investigate
such methods and assess their performance.

4 Experiments

We implemented the algorithm in Section 3 using C and
conducted experiments on a Sun UltraBlade 100 work-
station with 128Mb of memory for ISCAS’85 combi-
national benchmark circuits that contain redundancies.
Two experiments are reported in which the original cir-
cuit is verified against its optimized version. In the im-
plementation, the ATPG and DEDC engines from [9]
and [17] are employed.

Table 1: Circuits optimized by SIS

ckt gate # of % DEDC # all # DEDC CPU
name count repl. based equiv. based (min:sec)
C432 232/0 35 28% 56 19 00:24
C880 383/0 49 46% 97 51 00:18
C499 618/104 83 33% 97 39 00:40
C1355 546/0 88 27% 504 147 00:19
C1908 880/360 33 24% 102 31 01:38
C2670 1193/0 90 19% 812 294 00:54
C5315 2307/631 155 38% 1433 374 04:03
C6288 2416/1712 62 11% 289 53 14:17

In the first set of experiments, circuits are optimized
by SIS [15]. In the second set of experiments, bench-
marks are first optimized by SIS and they are further
optimized by Design Compiler(TM) (Synopsys) [16] for
delay minimization. A relatively high mapping effort
and a clock with a small period is used. As a result, the
circuits are altered considerably and many similarities
are eliminated. The average values of these experiments
are presented in the next paragraphs.

Table 1 contains results for the first set of experi-
ments. The first column contains the circuit name and
the second column contains the number of internal gates
for pruned circuit H at the start/end of the experi-
ment. The algorithm always prunes the original circuit
because it has more gates and redundancies which are
hard for ATPG to tackle.

The total number of replacements performed is found
in column 3 and the next column contains the percent-
age of these replacements discovered only by DEDC.
These are equivalences that cannot be detected with

random simulation or with implication techniques. We
observe that a significant amount of equivalent pairs can
be found only by the proposed diagnosis-based method-
ology. These equivalences allow for enough replace-
ments to eliminate H and ease the final task of ATPG.
This confirms the effectiveness of the approach.

The above observations are confirmed if we exhaus-
tively count the total number of equivalences between
the two circuits, shown in columns 5 and 6 of Ta-
ble 1. Column 5 contains the total number of one-to-one
equivalences for lines in H and G. The next column
contains the number of these equivalences found only
by the diagnosis-based method. We observe that many
line equivalences are found only by the diagnosis-based
method. The last column of Table 1 contains the run
time. Most time is spent on redundancy checkings by
ATPG and less than 2% of the time is spent in DEDC
(Step 2c). The dominant ATPG factor is usually that
of the external miter. Therefore, an implication-based
preprocessing step for ATPG, such as the one described
in [10] [13], is expected to improve these run times.

The first five columns in Table 2 contain data for
the second experiment presented in a similar manner as
above. Optimized circuits in this experiment undergo
a major amount of resynthesis that destroys significant
structural similarity. The values in this table indicate
the effectiveness of the method in a real life synthesis
environment. Column 6 of Table 2 shows the normal-
ized speed-up of the overall verification effort due to the
DEDC-based approach. It is seen that the speed-up is
considerable in many cases. However, for some circuits,
such as C432, C880 and C1355, simulation-based verifi-
cation alone (Steps 1 and 3) is able to outperform the
proposed combined approach (Steps 1. . .3). This is be-
cause the overall gain induced by removing gates using
DEDC-based Step 2 is less than the time spent in Step 2
itself.

In the future, we plan to investigate different param-
eters and heuristics involved with the method. These
include the type of errors injected and their effect in the
search process as well as different line selection strate-
gies. We also plan to explore the idea of similarity en-
hancing logic transformations as described in [13]. Fi-
nally, we expect to experiment with multiple and simul-
taneous candidate line equivalences as described earlier
in Section 3.

5 Conclusions

We presented a method for logic verification of combi-
national circuits with a degree of structural similarity.
To identify equivalent lines between the two designs,
novel simulation-based and diagnosis-based techniques



Table 2: Circuits optimized by Synopsys

ckt gatecount # of % diag. CPU normalized
name before/after repl. based (min:sec) speed-up
C432 232/0 23 44% 00:48 0.82
C880 383/0 40 51% 00:37 0.69
C499 618/412 22 71% 09:22 1.34
C1355 546/270 54 27% 06:34 0.91
C1908 880/595 31 43% 12:11 1.45
C2670 1193/0 117 15% 02:08 1.72
C5315 2307/473 241 33% 10:58 1.41
C6288 2416/2071 41 27% 21:01 1.09

are described. These equivalences are later used to re-
duce the complexity of the verification problem. Exper-
iments demonstrate the potential of the approach.

In the future, we plan to experiment with different
parameters involved such as the error types injected and
the line selection process. We also plan to investigate
multiple and simultaneous line equivalences as well as
similarity enhancing transformations presented in [13].
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