
Debugging Sequential Circuits Using Boolean Satisfiability

Moayad Fahim Ali1 Andreas Veneris1,2 Sean Safarpour1 Rolf Drechsler3

Alexander Smith1 Magdy Abadir4

Abstract

Logic debugging of today’s complex sequential circuits is an
important problem. In this paper, a logic debugging method-
ology for multiple errors in sequential circuits with no state
equivalence is developed. The proposed approach reduces
the problem of debugging to an instance of Boolean Satisfia-
bility. This formulation takes advantage of modern Boolean
Satisfiability solvers that handle large circuits in a computa-
tionally efficient manner. An extensive suite of experiments
with large sequential circuits confirm the robustness and effi-
ciency of the proposed approach. The results further suggest
that Boolean Satisfiability provides an effective platform for
sequential logic debugging.

1 Introduction

As VLSI designs increase in size and complexity, errors be-
come more frequent and harder to track. Common sources
for these errors, also known as design errors, are bugs due to
CAD tools and human interference [1][4]. Experience from
a real life synthesis environment shows that the cardinality
of these errors is usually small (2-3 errors) [4]. Given a de-
sign that fails verification, an engineer is often faced with
the tedious task of identifying the source(s) of errors. With
60% of the overall VLSI design cost attributed to verification
and debugging, it is evident that automated logic debugging
tools are of great benefit.

Logic debugging is a challenging problem as the solution
space grows exponentially with the increasing number of er-
rors [12]. This is because the specification is usually treated
as a “black box” controllable at the primary inputs and ob-
servable at the primary outputs. For example, the specifica-
tion may be provided in a high-level language whereas the
design is given in a logic-level implementation.

Debugging of combinational designs has an extensive lit-
erature and many efficient automated tools exist [4]. This
is partly because this type of debugging bears similarity to
fault diagnosis of full-scan designs which is a well examined
topic [5]. On the other hand, there has been relatively lit-
tle work in logic debugging for sequential machines [4]. This
can be attributed to the increased complexity of the problem
when no state equivalence information is available between
the design and the specification [3] [6]. In this respect, one
may compare this problem to the one of fault diagnosis for
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chips with no scan chains, a practically intractable problem
[5]. Since most design blocks contain memory elements which
are reshuffled many times during synthesis and optimization,
debugging of sequential machines becomes a time-consuming
and resource-intensive step in a VLSI design cycle with tight
time-to-market constraints.

In this paper we propose a debugging method for multi-
ple design errors in sequential circuits with no state equiv-
alence information. The proposed method formulates the
problem around the concept of Boolean Satisfiability (SAT).
Therefore, it automatically benefits from recent advances in
the field [2] [8] [9] [11] [14]. To the best of our knowledge,
this is the first sequential circuit debugging method based
on Boolean Satisfiability. Since logic debugging and fault
diagnosis are similar in nature [12], the proposed approach
applies to fault diagnosis of chips with no/partial scan chains.

An extensive suite of experiments in this paper demon-
strates the robustness of the SAT-based logic debugging for-
mulation. It is shown that large sequential circuits (over
10,000 gates) corrupted with multiple errors are handled in
a few seconds. Since SAT can model a VLSI design at vari-
ous degrees of abstraction, and due to the promising results
presented here, this work encourages more research effort in
SAT-based debugging.

The paper is organized in five sections. The next section
contains background information and definitions. Section 3
contains the SAT-based sequential circuit debugging formu-
lation and implementation. Section 4 reports experiments
and Section 5 concludes this work.

2 Definitions

In this paper, we are interested in sequential circuits with
primitive gates AND, OR, NOT, NAND, NOR, XOR and XNOR and
fault-free memory elements (flip-flops). The input to the
problem is a specification and an erroneous design initial-
ized to a known state. The specification is given as a set of
sets of vectors V = V 1,m1 , V 2,m2 , . . . , V k,mk with correct
primary responses. Each element V j,mj of this set is a test
sequence of input vectors vj,1, vj,2, . . . , vj,mj for mj consec-
utive simulation cycles. In this sequence, the design gives
correct primary output responses for all values of m < mj

and an erroneous response for the last vector of the sequence,
that is, vector vj,mj .

The set V can be obtained by random simulation and/or
formal techniques. Test vector generation for counter-
examples in sequential logic debugging is not the topic of
this work [6]. Additionally, assuming that memory elements
are fault-free allows both the specification and the netlist to
reach a common initial state. For example, this state can
be the reset state for all memory elements. Other advanced
initialization procedures can be found in [6] as they are not
the topic of this work. The output of the method is a set
of potential error locations at which a correction(s) may be



applied to rectify the design for the set of vectors V . These
candidate locations can quickly provide the engineer with a
small set of sites to concentrate on and perform correction.
The output of the approach also provides useful information
for the correction process. It is emphasized that error correc-
tion and formal verification techniques (following correction)
are reviewed in [3] [4] [6] and are not dealt with here.

The proposed method uses a set of input test vectors to
determine the source of the errors. Traditional simulation-
based sequential logic debugging techniques use the set
V of vectors to return sets of candidate error locations
E1, E2, . . . , Ek. Each set of candidate locations Ei is a set
where the presence of some error explains the erroneous be-
havior for the respective input test sequence vi,mi . These
sets are later intersected E = E1 ∩ E2 ∩ · · · ∩ Ek to return
the set E of error locations that some corrections on these
lines rectify the circuit behavior for all test sequences. The
proposed SAT-based method follows a similar approach.

We describe the algorithms on circuits with r primary in-
puts X = x1, x2, . . . , xr, initial state QI = q1, q2, . . . , qs and
t primary outputs Y = (y1, y2, . . . , yt) = f(X, QI). We use
L = {l1, l2, . . . , ln} to represent internal circuit lines includ-
ing stems and branches. The method in Section 3 adds new
hardware which requires two extra lines for each original
circuit line. We use the notation S = {s1, s2, . . . , sn} and
W = {w1, w2, . . . , wn} to label these lines.

In this presentation, variables for lines xi, li, wi and yi are
defined to model circuit constraints under simulation for each
vector vj,m, m = 1, . . . , mj in sequence V j,mj . To avoid con-

fusion, we use the notation x
j,m

i , l
j,m

i , w
j,m

i and y
j,m

i for these

variables and Xj,m, Lj,m, W j,m, and Y j,m for the respective
sets (vectors) of variables. Under this notation, superscripts
j and m match the indices of simulated test vector vj,m at
cycle m. The notation S = {s1, s2, . . . , sn} is used to indi-
cate both SAT variables and line names. Variables for lines
S are common to all test vectors j and all cycles m.

3 Debugging Sequential Circuits

Given a sequential logic netlist and a set of vectors V as
defined in Section 2, the algorithm introduces new logic in
the netlist to model error locations and error cardinality con-
straints. It then compiles this new circuit into a CNF formula
Φ. This formula has two components.

The first component is the conjunction of m1 + · · · + mk

CNF formulas Cj,m(Lj,m, W j,m, Xj,m, QI , Y
j,m, S) for all

input test vector sequences j = 1, . . . , k and all simulation
cycles m = 1, . . . , mj . Intuitively, each CNF Cj,m enforces
constraints of sequence V j,mj on the logic netlist and po-
tential error sites through the inputs Xj,m and the outputs
Y j,m. As will be explained, error locations are encoded in the
circuit with extra hardware. The second component EN (S)
encodes constraints for the error cardinality N . These con-
straints are also coded with new hardware. Since the number
of errors N is unknown, its maximum value is a user-specified
parameter. The algorithm starts with N = 1 and increments
this value by 1 if the solver fails to return any location(s).

The complete formula Φ is expressed as:

Φ = EN (S) ·

k
∏

j=1

mj
∏

m=1

C
j,m(Lj,m

, W
j,m

, X
j,m

, QI , Y
j,m

, S)

In the subsections that follow, we describe how to compile
each component of Φ.

3.1 Test Sequence Constraints

In this subsection we explain the first component of Φ,

namely
∏k

j=1

∏mj

m=1
Cj,m(Lj,m, W j,m, Xj,m, QI , Y

j,m, S).

To simplify this presentation, we develop the theory around
an example that assumes a single input sequence V 1,m1 ;
that is, k = 1, with two cycles (m1 = 2). At the end of the
subsection, the results are generalized for multiple input
sequences (k > 1) with an arbitrary number of simulation
cycles.

When k = 1, the first component comprises of m1 copies
of CNF formula Cj,m(Lj,m, W j,m, Xj,m, QI , Y

j,m, S) repre-
senting the circuit. Each copy enforces different constraints
on potential error locations and input/output behavior of
the correct netlist. Clearly, this representation resembles the
Iterative Logic Array (ILA) modeling of a sequential netlist
in test generation [5]. In the ILA representation, a sequential
circuit is “unrolled” in time. This is performed using identi-
cal copies of its combinational circuitry at different simula-
tion cycles where the output of the memory elements from
cycle i is connected to the appropriate gate primitives in
cycle i + 1. For example, the ILA representation of the se-
quential circuit in Fig. 1(a) is shown in Fig. 1(c) for some in-
put test sequence two cycles long. The equivalence between
these two representations becomes evident if we draw one
“time-slice” of the circuit of Fig. 1(a) as shown in Fig. 1(b).
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Figure 1: Example circuit

Given an erroneous netlist and a test sequence with m1

cycles, the circuit is first transformed to its ILA representa-
tion. Error locations are then modeled by attaching extra
hardware. This hardware reflects the potential of an error
on lines of the circuit for all m1 simulation cycles. It should
be noted that this hardware does not require the error to be
excited in all cycles but it merely indicates the presence of
an error that may or may not be excited. In particular, to
model the presence of a fault on line l

1,m

i , a multiplexer with
select line s is attached to every instance m = 1, . . . , m1 of
this line for the different cycles. All these m1 multiplexers
are later translated into CNF for Φ. The first input of each
multiplexer is attached to the line l

1,m

i and the second input

is attached to a new line w
1,m

i . The output of each mul-

tiplexer is connected to the gate where l
1,m

i was originally
connected. It is important to note that all m1 multiplexer
copies share the same select line s.

Consider again the circuit in Fig. 1(a) and assume the de-
sign error to be a gate replacement of the OR gate that drives



line l1 to a NOR gate. Since the gate is an input only to a
memory element, any input test sequence needs at least two
cycles to detect the error at the primary output [5]. The
reader can verify that vector sequence V 1,2 = {v1,1, v1,2} =

{x1,1
1 x

1,1
2 , x

1,2
1 x

1,2
2 } = {10, 11} is such a sequence that pro-

duces an erroneous primary output value 0 if the initial state
is 0.

The presence of an error on line l1 can be represented
with two multiplexers with common select line s at respective
positions l

1,1
1 and l

1,2
1 of the ILA representation of this circuit,

as shown in Fig. 2. The first input of each multiplexer is
connected to the output of the respective NOR gate and the
second input is connected to a new line w1,i, to model the
potential error in the respective cycle i. The output of the
multiplexer is connected to the original output of the NOR

gate. Observe that the functionality of the faulty circuit is
selected when the value of the common select line s = 0. On
the other hand, a new circuit with “free” lines w1,1 and w1,2

is selected when s = 1.
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Figure 2: Debugging in two cycles
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Figure 3: Multiplexer implementation

As shown in Fig. 3, the CNF for a multiplexer requires
only four clauses. As a result, the CNF for the ILA circuit

implementation for cycle i is F i = (q1,i + l
1,i

1 ) · (x1,i
1 + l

1,i

1 ) ·

(x1,i
2 +l

1,i

1 )·(q1,i+x
1,i
1 +x

1,i
2 +l

1,i
1 )·(x1,i

1 +l
1,i

2 )·(x1,i
2 +l

1,i

2 )·(x1,i
1 +

x
1,i
2 +l

1,i
2 )·(s+l

1,i

1 +q1,i+1)·(s+l
1,i
1 +q1,i+1)·(s+w

1,i
1 +q1,i+1)·

(s+w
1,i
1 + q1,i+1) · (q1,i +y1,i) · (l1,i

2 +y1,i) · (q1,i + l
1,i

2 +y1,i).
Hence, the CNF for the circuit in Fig. 2 is F = F1 · F2.

Once multiplexers are introduced at every circuit line for
all cycles, the updated ILA circuit representation is trans-
lated into CNF. To get the final Cj,m, we need to insert
clauses to represent input/output specification constraints
for the erroneous circuit and all m1 cycles of test sequence
V 1,m1 . This is done (for every cycle) with a set of unit-literal

clauses for primary input variables x
1,m
1 , x

1,m
2 , . . . , x1,m

r , cor-

rect primary output variables y
1,m
1 , y

1,m
2 , . . . , y

1,m
t , and initial

state variables QI . These literals agree with the respective
logic values of the vector vj,m and circuit response at cycle
m; that is, if vj,m assigns a logic 1 (0) to input xl then x

j,m

l

(xj,m

l ) appears as a unit-literal clause in the formula.

Example 1: Recall the circuit from Fig. 1 in which the gate
replacement error is detected in the second cycle with test
sequence V 1,2 = {10, 11} because y1,2

err = 0 and y1,2
corr = 1.

The ILA representation of the erroneous circuit for V 1,2 is

shown in Fig. 2. To enforce the correct input/output vec-
tor constraints from V 1,2 on the ILA representation, we add
unit-literal clauses q1,1, x

1,1
1 , x

1,1
2 , y1,1 x

1,2
1 , x

1,2
2 and y1,2.

Unit-literal clause q1,1 is added because we assume that the
memory elements of the circuit can be correctly initialized
to their reset (0) state. Therefore, the final CNF formula for
V 1,2 is F ′ =

∏mj

m=1
Cj,m(Lj,m, W j,m, Xj,m, QI , Y

j,m, S) =

F · q1,1 · x
1,1
1 · x

1,1
2 · y1,1 · x

1,2
1 · x

1,2
2 · y1,2. Observe that if

F ′ is passed to a SAT solver, the engine will necessarily as-
sign s = 1. The assignment s = 0 will cause the solver
to backtrack with a conflict because the erroneous circuit is
requested to produce a correct primary output behavior.

This process is repeated for every test sequence V j,mj , j =
1 . . . k to get CNFs Cj,m(Lj,m, W j,m, Xj,m, QI , Y

j,m, S), the
product of which forms the first component of Φ. Note that
each such formula requires a new set of variables for primary
inputs (Xj,m), primary outputs (Y j,m), internal circuit lines
(Lj,m), error lines (W j,m) and initial state QI . This is be-
cause every input test vector may translate into a different
set of constraints for these variables. However, only one set
of select line variables S = s1, s2, . . . , sn is required because
the error locations of a solution must satisfy all vector con-
straints simultaneously. The second component of Φ, de-
scribed next, constrains the cardinality N of error lines.

3.2 Error Cardinality Constraints

The second component EN (S) enforces appropriate con-
straints in Φ that require a solution with at most N error
locations. This component also requires extra hardware to
be added to the enhanced ILA form from Subsection 3.1.
When the updated ILA is translated to CNF, we obtain Φ.
The following example gives the intuition for EN (S) when
N = 1. Following this example, we present the hardware
construction that generalizes the idea for multiple errors.

Example 2: Consider formula F ′ as computed in Example 1.
This formula models the erroneous circuit under simulation
of test sequence V 1,2. Assume multiplexer select line s is
introduced in F ′ as a unit-literal clause to produce formula
F ′′ = F ′ · s. Given F ′′, a SAT solver assigns s = 1 and
attempts to find a satisfying assignment for the circuit lines
and the “free” variables w1,1 and w1,2 so that the circuit emu-
lates the specification for test sequence V 1,2. Note that once
the solver returns successfully, the logic value assignments
for these free variables are those found in the specification
on lines l

1,1
1 and l

1,2
1 , respectively (if such lines exist).

The general idea for EN (S) is an extension of the example
above. That is, formula Φ can be updated with clauses that
enumerate exhaustively all possible sets of error sites. These
clauses will enforce subsets si1 , si2 , . . . , siN

of S to be set to a
logic 1 and indicate that N error(s) are activated. Although
this formulation is intuitive, it requires an exponential num-
ber of clauses to be inserted explicitly in Φ.

To overcome a memory explosion with increasing values of
N , a different approach is taken with an encoding of EN (S)
using the hardware construction as shown in Fig. 4(a). In
this figure, thick lines indicate buses of O(logn) bit-width
(N ≤ n) and all other lines represent single bit lines. This
hardware acts as a counter forcing the SAT solver to “enu-
merate” sets of N fault sites. It performs a bitwise addition
of the multiplexer select lines S = s1, s2, . . . , sn and com-
pares the result to the user-defined number of faults N . The
output of the comparator is “forced” to logic 1 with a unit-
literal clause so that the bitwise addition of the members of
S (that is, the set of fault sites enumerated) is always equal
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Figure 4: Counter implementation

to N . As with the select lines, the variables introduced for
this hardware are common to all test sequences V .

Intuitively, this implicit hardware representation for
EN (S) provides a trade-off between time and space. Ex-
periments show that modern SAT solvers take advantage of
this trade-off; they avoid an exponential explosion in the
time domain while their memory requirements remain low.
In the remainder of this section, we show how to construct
the counter hardware in CNF with O(n) number of clauses.

As seen in Fig. 4(a), the counter contains an adder for
the select lines and a comparator. Assume that the binary
representation of the integer passed from the adder to the
comparator is blog n−1 . . . b1b0. A comparator for SAT-based

debugging of 2 faults is formed by adding CNF blog n−1 ·

blog n−2 · . . . · b2 · b1 · b0 in EN (S). This ensures that two select
lines are always 1 and all others are forced to 0, otherwise
Φ is not satisfiable. In a similar manner, a comparator can
be constructed in CNF for any value of N with log n extra
unit-literal clauses.

An implementation for the adder with O(n) clauses is
found in Fig. 4(c). The 1-bit values of the select lines are
added progressively in a binary tree fashion to compute the
log n bit sum. The binary tree has log n levels, with select
lines at level 0. At each level i = 0 . . . log n, 2log n−i integers
are added pairwise. Each such integer is i + 1 bits long, and
integer bits are added with a sequence of full-adders shown
in Fig. 4(b). A full-adder can be encoded in CNF using 14
clauses (6 clauses if the carry-in is omitted). The CNF size
for the adder is proportional to the number of CNF variables
(bits) used to hold the values of the select lines and all inter-
mediate results of the adder tree. Hence, the total number
of these CNF variables is at most:

# CNF variables ≤

log n
∑

i=0

2log n−i(i + 1)

= 2log n

[

log n
∑

i=0

i

(

1

2

)i

+

log n
∑

i=0

(

1

2

)i

]

≤ 2log n

[

∞
∑

i=0

i

(

1

2

)i

+

∞
∑

i=0

(

1

2

)i

]

= 4 · 2log n

= O(n)

The calculation uses the fact that
∑∞

i=0
xi = 1

1−x
and

∑∞

i=0
ixi = x

(1−x)2
when |x| < 1. Since the full-adders con-

tribute a constant multiplicative factor of clauses, we con-
clude that the number of clauses for the counter is O(n).

3.3 Implementation

In this section we discuss memory requirements and run-time
heuristics. From the previous discussion, it is clear that the
space requirements for Φ are linear O(nkm) in the number of
circuit lines n, the number of test sequences k and the length
m of these sequences.

Although space efficient, for large industrial circuits the
formula Φ may grow quickly with the number of vectors. To
keep the space requirements low yet preserve efficiency, we
compile a set of formulas Φ1, Φ2 . . . , Φd k

p
e. Each formula en-

codes constraints for p distinct test vectors and it needs only
O(npm) space where p < k. In creating Φi, we only place
multiplexers on fault sites at which solutions to Φi−1 are
found. Intuitively, Φ is the conjunction of all these formu-
las Φi. The rationale of the heuristic lies in the fact that in
diagnosis a small number of vectors usually screens the ma-
jority of invalid candidates [4] [12]. Consequently, only a few
fault sites and respective multiplexers (in the experiments
less than 5% of the circuit lines on average) are introduced
in subsequent phases of the algorithm. The benefit of this
heuristic is further examined during experiments.

To improve performance further, the algorithm runs in two
passes as it originally inserts multiplexers only at structural
circuit dominators [5]. Once a set of dominator-solutions
is identified, a second pass is run to find solutions in their
respective fan-in cones. Running the method in this two-
pass fashion keeps the size of the added hardware and the
solution space small, which makes it easier for the solver.

Since the CNF of the circuit presented to the SAT solver
is replicated for a number of cycles for each input/output
vector sequence, the SAT instance may become large. To
ease the task of the SAT solver, test sequences are sorted
in increasing size mi1 ≤ mi2 ≤ · · · ≤ mik

and presented in
this order to the SAT solver. This heuristic ensures that the
first few SAT instances (which tend to be the hardest ones)
Φ1, Φ2, . . . are solved first. These instances have a relatively
small size, and so they present an easier task to the SAT
solver. Larger sequences are solved later when the process
has already identified a set of error locations, a fact that
eases the task of the solver.

Given an erroneous design, there may be many ways one
can resynthesize and correct it [4][5][13]. The existence of
many candidate correction locations (for a fixed error(s))
provides additional flexibility to the design engineer during
debugging. It is also an important fact for logic optimiza-
tion techniques that use logic debugging as their underlying
engine [13].

The single-solution SAT-based logic debugging method
presented in Section 3 can be easily modified to an all-
solution engine as follows. As soon as a solution with er-
ror sites si1 , si2 , . . . , siN

is returned, the clause (s′i1 + s′i2 +
· · · + s′iN

) is immediately added as a learned clause. This
causes the solver to backtrack and search for other error sites
in the remaining solution space reusing part of the existing



Table 1: Sequential debugging for single errors

ckt # of # cycles # loc. CPU (sec)
name gates min. max. dom. all dom. all

s298 142 2 4 3 6 0.02 0.02

s444 171 2 3 2 6 0.05 0.02

s1196 479 1 3 1 4 0.21 0.07

s1488 522 1 5 2 10 0.22 0.06

s1494 531 1 3 2 10 0.22 0.05

s3384 1,610 2 6 3 7 1.97 0.95

s4863 1,817 2 6 4 9 1.05 0.53

s5378 1,407 1 2 2 6 0.56 0.23

s6669 2,908 1 6 10 25 1.30 0.60

s9234 1,185 3 3 7 12 0.48 0.41

s15850 4,303 1 4 11 32 0.72 0.30

s35932 11,186 1 6 5 7 2.74 2.43

s38417 13,940 3 4 3 12 6.52 2.44

b12 932 2 6 21 30 0.25 0.22

b14 5,924 2 5 4 8 5.10 2.98

b15 8,027 4 6 24 34 3.72 0.82

b21 13,169 3 6 4 11 36.90 14.30

Avg. 4,014 1.88 4.59 6.35 13.40 3.65 1.55

computation. Details about this heuristic, as well as other
heuristics that improve performance, are found in [12].

Finally, the proposed method has the added advantage of
providing information that is useful in correction. To see
this, the presented formulation does not make any assump-
tions on the logic value of the error for each test vector.
Given sets of logic assignments w

j,m

i1
, w

j,m

i2
, . . . , w

j,m

iN
for val-

ues of j and m on the “free” lines for respective candidate
circuit lines li1 , li2 , . . . , liN

returned by the algorithm, these
assignments are required on these lines to guarantee that
the netlist emulates the specification for all test sequences.
These logic assignments can be used by the test engineer to
derive corrections as in traditional logic debugging [4]. Due
to all these characteristics, we conclude that Boolean Satis-
fiability provides an attractive platform for sequential logic
debugging and fault diagnosis.

4 Experiments

The automated sequential circuit debugger described in the
previous sections is implemented in C++ using zChaff [9]
as the underlying satisfiability engine. The experiments are
conducted on a Pentium IV 2.8GHz Linux platform with
2GB of memory using ISCAS’89 and ITC’99 circuits opti-
mized using SIS (script.rugged) [10]. Errors are inserted
in the correct circuit and simulated to obtain the set of vector
sequences with failing responses. Each experiment uses 20
test sequences. All errors are a random functional change to
random circuit lines excluding primary input/output lines.
Each experimental result shown here is an average of ten
experiments and all run-times are in seconds.

Tables 1 and 2 show results in a similar manner for single
error and double error experiments, respectively, except for
the second column. Column one contains the circuit name.
Column two of Table 1 has the number of gates and that of
Table 2 shows the maximum number of CNF clauses for any
Φi for both single and double errors. It can be seen that the
SAT formula remains reasonably small even for large circuits.
This confirms the potential of the heuristics in subsection 3.3.

Columns three and four present the minimum and max-
imum number of cycles required to observe the error(s).
These numbers represent the range of the mj values dis-

Table 2: Sequential debugging for double errors

ckt # of # cycles # loc. CPU (sec)
name clauses min. max. dom. all dom. all

s298 10,166 1 2 13 29 0.04 0.02

s444 10,677 3 3 6 31 0.04 0.01

s1196 18,677 1 3 5 44 0.25 0.03

s1488 24,753 1 2 3 33 0.67 0.07

s1494 29,782 1 3 3 42 1.36 0.10

s3384 162,771 6 6 9 42 17.60 3.82

s4863 111,909 2 5 5 28 33.20 5.98

s5378 62,727 1 5 14 43 1.56 0.52

s6669 217,768 2 5 13 33 36.20 12.70

s9234 86,114 2 4 6 35 4.18 0.77

s15850 269,630 1 4 42 164 22.80 5.92

s35932 719,360 2 3 16 42 95.80 38.50

s38417 1,066,607 1 2 10 25 1.55 0.74

b12 111,359 2 2 8 29 0.16 0.05

b14 580,917 2 2 6 28 0.81 0.29

b15 902,535 2 2 4 25 1.82 0.39

b21 1,201,102 1 1 9 41 1.28 0.36

Avg. 328,638 1.82 3.17 10.10 42.00 12.90 4.13

cussed earlier. Column five shows the number of error loca-
tions found for the first pass of structural dominators (Sec-
tion 3.3). The next column shows the number of error lo-
cations upon termination of the algorithm (second pass). It
is seen that the method exhibits very good resolution; the
number of locations is small enough to aid the task of the
verification engineer in locating the source of error(s).

The run time (per location) to return the error sites from
the first pass is shown in column seven. The total time for
the first pass is found if we multiply the number of dominator
locations (column five) with the one in column seven. The
total run time (per location) for the entire circuit is shown
in column eight. Parameter p (subsection 3.3) is set to a
constant value of 5 for all the experiments shown here. The
times reported in the tables confirm that the method offers
excellent resolution in a computationally efficient manner.

As shown in the previous section, the space requirement
of the proposed method is O(npm), where n is the number
of circuit lines, p the number of test sequences in Φi and
m the maximum length of these test sequences. To further
analyze the behavior of the method, we show results where
one of the parameters n, p or m changes while the other two
remain constant during debugging for single errors.

Fig. 5 illustrates the relationship between the circuit size
n and the overall run time per solution when the value of m
remains constant. The graph shows that the method scales
linearly with the circuit size. This indicates that SAT pro-
vides an efficient platform for sequential logic debugging of
large industrial designs.

Fig. 6 illustrates the relationship between the parameter
p and the overall CPU time when m is constant. Three
sample circuits of different size suggest that the best (per-
formance wise) value for p is 5. This is because as p grows,
so does the size of the CNF formula, which makes the SAT
instance harder to solve. On the other hand, smaller values
of p enforce less tight constraints and increase the number
of potential locations the SAT solver returns. The efficiency
achieved with p = 5 balances these two parameters.

The analysis for varying values of m when p = 5 is found
in Fig. 7. Similarly to Fig. 5, the CPU time is found to scale
well with an increasing number of cycles. This similarity
between the two behaviors is partly due to the fact that
both m and n are directly associated with the size of the
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CNF formula Φi. As the CNF formula increases, so does the
time to solve the overall problem.

Table 3 provides insight into the behavior of the underly-
ing SAT solver during this SAT-based debugging formulation
for single errors. It is interesting to see that the number of
backtracks for the experiments shown in Table 1 is quite
small. This in turn means that the SAT solver makes few
“wrong” decisions that lead to conflicts and backtracks.

This behavior is due to the sequential debugging SAT-
based instance, as formulated herein, being a problem in
which solution constraints are tightly specified in terms of
the circuit structure and input test sequence(s). Therefore,
the majority of the circuit lines acquire their “correct” logic
values through Boolean Constraint Propagation [9]. Hence,
we may conclude that the solver is given a relatively easy
problem to solve irrespective of the circuit size. These con-
clusions reinforce the fact that Boolean Satisfiability is an ef-
ficient, practical and robust way to perform sequential logic
debugging in industrial designs.

Table 3: Number of backtracks

ckt # backtracks # loc. ckt # backtracks # loc.

s444 18 6 s5378 27 6

s9234 47 12 s15850 108 32

s35932 214 7 s38417 55 12

5 Conclusion

A sequential debugging technique for multiple design errors
using Boolean Satisfiability was presented for circuits with
no state equivalence. The method efficiently translates the
problem of sequential debugging into a Boolean Satisfiability
instance. Therefore, it automatically benefits from advances
to SAT solvers to increase the efficiency of the solution. As
demonstrated through experiments, the proposed approach
performs very well for large circuits corrupted with multiple
errors. Theory and experiments confirm its practicality and
encourage further research effort towards novel SAT-based
debugging techniques.
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