
Extraction Error Modeling and Automated Model Debugging
in High-Performance Low Power Custom Designs

Yu-Shen Yang1 Andreas Veneris 1,2 Paul Thadikaran3 Srikanth Venkataraman3

Abstract

Test model generation is common in the design cycle of cus-
tom made high performance low power designs targeted for high
volume production. Logic extraction is a key step in test model
generation to produce a logic level netlist from the transistor level
representation. This is a semi-automated process which is error
prone. This paper analyzes typical extraction errors applicable to
clocking schemes seen in high-performance designs today. An au-
tomated debugging solution for these errors in designs with no state
equivalence information is also presented. A suite of experiments
on circuits with similar architecture to that found in the industry
confirm the fitness and practicality of the solution.

1 Introduction

Large and complex VLSI designs such as microprocessors,
SOCs and ASICs often require high-performance low power cus-
tom logic blocks designed at the transistor level [2][3][5]. Since
a transistor level representation cannot be used directly to gener-
ate production tests, a gate level (logic) representation of these
blocks, also known as a test model, is extracted from the transis-
tor schematic and used instead. A rough outline of the steps in test
model generation is found in Figure 1 [6] [10]. The test model is
generated according to the functionality of the extracted netlist, ad-
ditional synthesized logic and external test vector constraints using
logic extraction [4]. Logic extraction is a semi-automated process
which is error prone [10]. Since the amount of verification on the
test model before test generation may be limited, extraction errors
may carry forward and discovered during test validation.

As soon as the test model fails verification/validation, manual
debugging is performed. This is a time-consuming and resource in-
tensive process that may delay test delivery to the factories and/or
reduce their quality. Therefore, automated error extraction debug-
ging tools benefit the test model generation cycle. Knowledge of
these error types is also useful because it can be used to annotate
and improve the extraction process. It should be noted, the nature
and the effects of extraction errors are radically different to the ones
by common design errors presented in [1]. Therefore, existing de-
sign error debugging techniques [8] may not be applicable/efficient
when applied to extraction errors.

The work of Yang et al. [10] presents a set of common extraction
error types. However, that methodology [10] is limited in the sense
that it handles test models that have a one-to-one mapping of their
state elements to those of the transistor level representation. It also
does not examines extraction errors that may occur in the complex

1University of Toronto, Department of Electrical and Computer Engi-
neering, Toronto, ON M5S 3G4 ({yangy, veneris }@eecg.toronto.edu)

2University of Toronto, Department of Computer Science, Toronto, ON
M5S 3G4

3Intel Corporation, Architecture Group, Hillsboro, OR 97124
({paul.thadikaran, srikanth.venkataraman}@intel.com)

clocking scheme of high-performance designs. In this paper, we
add and complement to this work [10] as follows:

• We examine common error types found in the clocking
scheme of the test model and by proposing a debugging
in contemporary microprocessor, ASIC and SoCs blocks.
These clocking schemes require multiple clocking domains
that achieve high frequencies (≥ 1 GHz), consume little
power and meet strict reliability and performance constraints
[2][3][5].

• We develop an automated simulation-based debugging so-
lution that handles single extraction errors in pipelined test
models with no (and/or partial) state equivalence information
to the transistor level representation.

A suite of experiments on designs with similar architecture to
that found in industry demonstrates the practicality of the approach.
Methods such as the one presented here benefit the testing of mi-
croprocessors, ASICs and SoCs. They help in identifying model
inaccuracies at early stages of the design cycle to reduce test deliv-
ery turnaround time and improve test model generation.

The paper is structured as follows. Section 2 contains prelimi-
naries and it reviews prior work. Section 3 reports types of extrac-
tion errors in the clocking scheme of modern designs and Section 4
presents the automated debugging methodology. Section 5 contains
experiments and the last section concludes the paper.

2 Background

Extraction builds a logic representation from a custom tran-
sistor level block [4]. This representation is later used for test
generation. This work assumes that the extracted netlist contains
(N)AND, (N)OR, NOT, tri-state buffer and flip flop prim-
itives. For these primitives, we define the controlling value of a
(N)AND ((N)OR) to be a logic 0(1). In implementation, we use a
zero delay simulator for all combinational circuitry.

All designs used here are two-stage strictly pipelined to resem-
ble the architecture of custom high-performance cores found in
modern designs. This architecture is shown in Figure 2 where com-
binational logic A, B and C is completely separated by layers of
register files I and II with memory elements. We refer to these parts
of the design as the core circuitry. Since we assume that there is no
feedback in the circuit, all test vectors used in experiments are two
clock cycle input test patterns.

The clocking circuitry of the design is also shown in that fig-
ure [2][3][5]. The difficulty in implementing designs operating at
high frequencies is that not only do high frequencies cause high
clock skew and jitter, but they also increase the power consump-
tion. To maintain performance, minimize power, reduce noise and
lower clock skew and jitter, contemporary clock systems distribute
clocks at lower frequencies, generate faster local clocks and en-
able multilevel clock gating [2][3][5]. Therefore, different types of
clock manipulator components are used to locally generate clocks
with the required frequencies.

Fail

Fail

Pass

Pass

To Tester

Logic and
Model

Test Generation

Golden

Model Debugging

Test Model Verification

Test Model Generation (CUT Netlist)

Gate Level Extraction

Level)

Test Validation

(Transistor
Logic

Custom

Constraints

Test

Synthesized

Figure 1. Test Generation Flow

There are several sources of extraction errors during test model
generation [10]. Logic extraction may introduce errors in the final
flattened netlist due to erroneous module mappings. An additional
source are functional mismatches in the definition of module op-
eration constraints between different libraries (simulation library,
synthesis library, physical design library, ATPG library, etc). In
this case, the mapping is correct but the operation of the module
is interpreted differently by various libraries. In both cases, these
errors may change the functionality of the extracted test model.

It is important to note that a single error contained in a mod-
ule definition may “translate” to multiple erroneous instantiations
in the extracted netlist [10]. This library module mapping is known
to the engineer who can use it to debug the design. However, since
automated extraction tools are usually involved, a one-to-one corre-
spondence between all register files of the transistor-level and gate-
level representation may be lost [4][10]. In other words, state equiv-
alence information between the transistor level and the test model
may not be fully available to the engineer. Obviously, complete or
partial lack of knowledge of this state equivalence information adds
to the complexity of the overall debugging problem.

Outputs

Global Clocks
Local Clocking Scheme

I

File

Reg

Inputs II
C

Logic
national
Combi-

B
Logic

national
Combi-

A
Logic

national
Combi-

File

Reg

Figure 2. Benchmark Architecture

The work of Yang et al. [10] reports types of errors at the core of
the circuit (test model) that are typical during extraction. Since the
debugging approach in Section 4 handles all types of errors reported
in [10], and to illustrate the nature of the presented problem, we
briefly review these core error types.

Roughly speaking, core circuit errors are divided into three cat-
egories. The first category contains errors that may happen on
a flip flop. For example, an asynchronous memory element
may be mapped erroneously to a synchronous one and vice versa.

OUT

Clock3Clock2

IN1

IN0

Clock1

(b)

(a)

OUT

IN1

IN0

SEL

IN0

SEL

OUT

IN1

IN1

IN0

Clock1

SEL

IN0

OUT

IN1

Merger
OUT

Clock2 Clock3

QDD Q

Figure 3. (a) MUX Implementations (b) MUX-
Latch Implementations

(c)

(a) (b)

(d)

D Q

QD QD

Local
Global

Clock1
Global

Enable

Loc Clk1

Loc Clk2

Loc Clk3

Local

Enable

Clock2
Local

Global
Clock1
Global
Clock2

Enable

Clock2
Global

Global
Clock1

Clock3

Glb Clk1

Glb Clk2

Clock1

Enable

Clock2

Figure 4. Gated Clock Error

Library specification mismatches on the priority of clock and
reset line contests may also cause the test model to behave er-
roneously when compared to its transistor level implementation.

The other two categories include errors that relate to different
multiplexer and multiplexer-latch implementations shown in Fig-
ure 3. In that figure, a triangle with no circle indicates a tri-
state buffer. It can be shown, with the use of appropriate truth
tables [10], depending on the input values of each module, the out-
put may be different. In practice, an extraction error arises from any
replacement of one module for another. For example, one module
implementation from the three implementation types shown in Fig-
ure 3(a) maybe mistakenly implemented with another module from
Figure 3(a), etc. The net result is that this module misplacement
may produce an erroneous test model that misleads test generation.

3 Error Types in Clocking Circuitry

In this section we present a set of extraction error types that are
common to the clocking circuitry of high-performance cores for
microprocessors, SoCs, ASICs, etc in the industry today [2][3][5].

3.1 Gated Clock

Modern devices impose strict power consumption and reliabil-
ity requirements. Since not all design components may always need
to operate simultaneously, the gated clock scheme of Figure 4(a) is
commonly used to disable clocking of temporarily inactive compo-
nents and save power [2][5]. The hardware in that figure is built in
such a way so that the Local Clock 1 operates in the frequency
of Global Clock 2 as long as Enable is at a logic 1.

(c)

(a) (b)

QD QD
Global Local

Enable

Local
Clock
Global

Enable

Clock1 Clock

Glb Clk

Enable

Loc Clk1

Loc Clk2

Clock2

Figure 5. Frequency Divider Error

Different implementations of the gated clock are shown in Fig-
ure 4(b) and 4(c). As seen, these implementation differ on the posi-
tion (if any) of a NOT gate. An extraction process may erroneously
replace one implementation with another during mapping for the
flattened netlist. The waveforms for all implementations are found
in Figure 4(d). We observe, that for the same input, they all produce
different local clock results.

3.2 Local Clock Frequency Divider

Frequency dividers are used on approximate domain global
clocks to generate integral local clock frequencies that drive var-
ious design blocks at different speed [3][5]. Figures 5(a) and 5(b)
contain common hardware to implement such dividers. If the ex-
traction process erroneously introduces a NOT gate at the input of
the Enable line, the new local clock generated will be en-
abled at complementary phase (Figure 5(c)). This may result in a
circuit malfunction because the memory elements of the core will
lock/propagate different logic values.

3.3 Local Clock Pulsed Buffers

Local clock buffers are used to generate clocks of a desired fre-
quency for various design blocks [3][5]. These buffers are driven
from global clocks through delay-matched taps. Different local
clocks drive the various critical and non-critical units of the mi-
croprocessor in appropriate frequencies that guarantee performance
yet save power. These buffers are available as pulsed and non-
pulsed. Non-pulsed drivers simply buffer the input global clock
and they usually present no problem to the extraction process.

Figure 6(a) shows a medium pulsed clock driver. At the rise
of the global clock, the pull-down path is asserted to generate the
rising edge of the local clock. At the same time, the self-reset pull-
up path is asserted to generate the falling edge of the clock. The
delay buffer is adjustable to permit different types of duty cycle for
the output local clock. Variations of the hardware in Figure 6(a),
shown as a box in Figure 6(c), allow for pulsed buffers that generate
slow and fast frequency local clocks from global clocks. We omit
these hardware descriptions that can be found in [5]. Additionally,
Figure 6(b) shows the schematic for another medium pulsed clock
driver with complementary phase to the one of Figure 6(a).

During extraction, erroneous mapping or mismatches in library
specifications may utilize a different pulsed buffer in place of the
other. For example, a medium frequency buffer may be accidentally
replaced with a slow frequency one or with one with inverted phase.
From real life experience, it is usually unlikely that a fast frequency
buffer will be replaced by a slower one, although the debugging
method, presented next, can handle this case. When a pulsed buffer
replacement error occurs, it may change the functionality of the test
model and the input/output vectors collected in test generation may
give faulty output responses during vector validation.

(d)

Glb Clk

Loc Clk1

Loc Clk2

Loc Clk3

(a)

(b)

(c)

Adjustable
Delay
Buffer

Clock
Global

freq.

phase1
pulse clk

Medium

Local
Clock1

Stretch0
Stretch1

Enable1

Enable2

ClkBuf Type 1

Stretch1
Stretch0
Enable1
Enable2
Global
Clock

ClkBuf
Type 1

Local
Clock2

Medium
freq.

pulse clk
phase2

Stretch1

Enable1
Enable2

Gclk

Stretch0

Stretch1
Stretch0
Enable1

SlowClkSync
Global
Clock

 ClkBuf
Type 2 or 3

Local
Clock3

Slow
freq.

pulse clk
phase1

Stretch1

Enable1
Enable2

Gclk

Stretch0

Figure 6. Clock Pulsed Buffer Error

4 Debugging Pipelined Designs

In this section we present an automated simulation-based de-
bugging method for single extraction errors. Automated debug-
ging involves two steps namely diagnosis and correction. Diag-
nosis identifies lines in the circuit where error effects may originate
and correction proposes a module modification (replacement) on
these lines to rectify the design. These modifications are selected
from the types of extraction errors presented in the previous two
sections. Since module mapping information is known to the engi-
neer, it suffices for diagnosis to identify a single line driven by an
error module. All other lines with similar erroneous modules are
discovered by using the mapping information.

One basic ingredient of diagnosis is a enhanced path-trace pro-
cedure. Path-trace is a line marking algorithm originally proposed
by Venkataraman and Fuchs [9] to aid fault diagnosis. In the current
work, we modify the procedure to accommodate the needs of the
problem. The modified procedure simulates an input vector with
failing responses and begins by marking an erroneous primary out-
put. Subsequently, if the output of a gate is marked and all its inputs
have non-controlling values, path-trace marks all inputs of the gate.
If the output of a gate is marked and its inputs have one or more
controlling values, path-trace randomly marks one such input. If
the output of a gate is marked and its input have only logic unknown
(X) and/or non-controlling values, path-trace marks all input that
has an X . Finally, if the gate is a memory element, its input, reset
and clock lines are always marked.

Due to the pessimistic nature of path-trace, it can be shown that
it always marks at least one line driven by an error module. We
omit the proof of this claim which is similar to the one found in [7]
that contains another 3-valued variation of path-trace.

Additional care needs to be taken once path-trace marks the out-
put of some memory element of the pipeline. Although the proce-
dure correctly marks (among other lines) the input of the flip-flop,
the logic values in the circuitry of the fan-in cone of this input may
be obsolete. This is because of the different clock domains that
trigger independently and may change the values of the lines in the
fan-in cone that feed the marked flip-flop.

To elaborate further, consider the architecture in Figure 2 and
assume that the memory elements in register files I and II are trig-
gered by two independent clock domains as shown in Figure 7. Fur-
thermore, assume that flip-flop F in file II driven by clock1 is
marked by path-trace at time-frame t7. In other words, path-trace
started from an erroneous output marking lines in combinational
circuitry C as it reaches the output of F .

The reader may verify that any error effect that propagates to
F , it did so using logic values in combinational circuitry B that
corresponds to time frame t5 (or before), that is, prior to the trigger
of clock1. This is because local clocks (including clock1) may
be shared with register file I and overwrite the values in circuitry
B past time frame t5 when clock1 triggers to store values in F.
Since these values are now lost, we need to devise a way to restore
them so that path-trace continues marking lines at the input of F
correctly. Equivalently, if logic values in circuitry B are updated
correctly and a memory element in register file I is marked, we
need to restore all values of the gates in combinational logic A at
time frame t3 to have path-trace continue marking lines correctly.

The above discussion indicates that one needs to store the logic
values of each logic primitive of the core for all time frames as dif-
ferent clocks trigger. These stored values can be recovered to guide
path-trace to mark suitable sets of lines at appropriate time-frames.
In the proposed implementation, these logic values are stored in
the file registry and the primary input of the circuit. This is done
with respective storage tables updated appropriately throughout the
simulation of the circuit. Once an erroneous primary output is ob-
served, the stored table values are simulated in the combinational
block they fan out to restore the logic values on the primitives at
correct time frames. We illustrate the need and utilization of the
storage tables with an example.

Clock2

Clock1

t8t7t6t5t4t3t2t1t0

Figure 7. Example Clock Waveform

Example: Consider the circuit in Figure 8(a) with Register Files
RF I = {F1, F2, F3) and RF II = {F4, F5} and combinational
core A, B and C that contains a single error with a single instan-
tiation. This is the multiplexer implementation, shown within the
dotted box, that needs be replaced with the leftmost (inverted) mod-
ule from Figure 3(a). Assume the two clocks of the design have
the timing characteristics from Figure 7. In the same figure, the
aforementioned tables are also shown. Observe, a pair of tables is
dedicated to the Primary Input (PI) and a single table to register file
RF I . The column marked as C1 (C2) corresponds to information
that pertain to Clock 1 (Clock 2). These tables do bookkeep-
ing of logic values throughout simulation and they are updated at
every clock trigger as follows.

All entries of PI Table I are initialized to logic unknown X .
Assume that at time t0 the first input vector 0001 is applied at the
input. This vector excites the error and error values propagate to
RF I . At time t1, both clocks trigger and all the tables are up-
dated as shown in Figure 8(a) to reflect logic values of the memory
elements and the primary input prior to that clock trigger.

The RF I table is updated first with the original values of the
flip flops in RF I . In this case, all memory elements are initialized
to X . Since both clocks trigger, all columns of the PI Table II are

X

X

X

X

F1

F2

F3

F4

F5

C1C2C1

C2

X

C1
IN0

IN1

IN2

IN3

C1 C2

0 0

0

1

0

1

0 0

C1 C2
F1

F2

F3

X

X

X

X

X

X

C1 C2

C1 C2 C1 C2

X

X

X

(b)

(a)

F5

1

1

XF3

F2

F1
C2C1

F4

F3

F2

F1

0

0

1

1

C2C1

IN3

IN2

IN1

IN0

(d)

PI Table IIPI Table I

RFI Table

00

1

0

(c)

1

PI Table II

RFI Table

PI Table I

IN3

IN2

IN1

IN0

X

0

00

IN3

IN2

IN1

X

X

IN0
C2

X

X X

XX

0

QD

QD

QD
QD

QD

X

QD

QD

QD

QD

QD

X

XX1

1

0

0

Clock1

Clock2

Clock2

Clock1

1

00 0 1

0

00
X X

0
Clock1

IN3

1

IN2

IN1

IN0
OUT0

OUT1

0

0

1

0

X

X

X

X

X

X

X X

X

X

X

1

Error Module

X X

Clock1

Clock2

Clock2

Clock1

1

X X
X

X

1

X

0

0

0

1

1

X
X X X

1
Clock1

IN3

IN2

0

IN1

IN0

OUT1

OUT0

Figure 8. Error Circuit for Example 1 (a) first
vector (b) second vector (c) storage tables at
t1 (d) storage tables at t3

overwritten by two copies of PI Table I. Intuitively, the first (last)
two columns of Table II hold the value of the primary input prior
to the last Clock 1 (Clock 2) trigger. Finally, both columns of
PI Table I are updated with the input vector. After the tables are
updated, the values are latched in RF I and simulated in the circuit
for time-frame t1. In that figure, the faulty values at the fan out
cone of the error site are shown in circles.

At time t2, assume that the second input vector, 1100 is ap-
plied. At time t3, only Clock 1 triggers and portions of all the
tables are updated as shown in Figure 8(b). Since only Clock 1
triggers, only respective columns of the three tables are updated as
explained earlier. These columns are shown in bold in that figure.
Observe, column C1 of RF I table memorizes the logic values
stored at the RF I flip flops at time frame t1 (circuitry in Figure
8(a)). It can be seen, after the tables are updated and the values are
latched/simulated, error effects are observed at the primary output
of the circuit.

Once the errors are observed, path-trace is performed on combi-
national core C and it temporarily stops at F5. Since this flip flop is
controlled by Clock 1, the primitives in register file RF I are up-
dated with the values in the C1 column of the RF I Table in Figure
8(b). Next, combination logic B is simulated to restore values and
path-trace continues in B to stop at F3. Since F3 is controlled by
Clock 1, primary input values are restored from the (C1,C1)

Algorithm 1 Table Update and Enhanced Path-Trace
1: TPI 1 := PI Table I
2: TPI 2 := PI Table II
3: TRF := RF I Table
4: C := Clocks triggered at time t
5: RFI := the set of registers in Register File I
6: PI := the set of primary inputs

7: procedure UPDATE TABLE(TPI 1, TPI 2, TRF , C,
RFI , PI)

8: for all c ∈ C do
9: for all f ∈ RFI do

10: TRF (c, f)← the state of f
11: end for
12: TPI 2(c)← TPI 1
13: end for
14: for all c ∈ C do
15: for all i ∈ PI do
16: TPI 1(c, i)← the value of i
17: end for
18: end for
19: end procedure

20: procedure ENHANCED PATH TRACE(TPI 1, TPI 2,
TRF , C, RFI , PI)

21: path-trace on comb. circuitry C
22: RF2List← marked registers in RF2
23: for all r1 ∈ RF2List do
24: c1 ← clock of r1

25: read and place values in TRF (c1) on registers in
RF1

26: simulate and path-trace comb. circuitry B
27: RF1List← marked registers in RF1
28: for all r2 ∈ RF1List do
29: c2 ← clock of r2

30: read and place values in TPI 2(c1, c2) on
PIs

31: simulate and path-trace on comb. circuitry A

32: end for
33: end for
34: end procedure

column of PI Table II. Once these input values are simulated in
block A, path-trace continues to mark the error location. �

Algorithm 1 contains pseudo code for the procedure UP-
DATE TABLE that updates the storage tables at every clock trig-
ger during simulation. The same figure contains the pseudo code
for ENHANCED PATH TRACE that uses these values to assist path-
trace in diagnosis. This is also the central procedure used in diag-
nosis. The first procedure works as follows. For every clock c ∈ C
triggered at time t, the RF I Table is updated first with the current
values of the flip-flops in register file I (line 10). Next, the PI Table
II is updated by copying PI Table I to the column which is main-
indexed with c (line 12). Intuitively, the columns of PI Table II
under the same main index contain the values of the primary inputs
prior to the last indexed clock triggered. Finally, the PI Table I is
updated with the input vector (line 16).

The values stored in the tables are used appropriately by EN-
HANCED PATH TRACE to restore logic values in the core circuitry
and assist path-trace during diagnosis. When path-trace marks the
registers in register file II, it reads the proper entry in RFI Table, and
retrieves the correct values in combinational circuitry B by simu-
lating the circuitry with the values read from the table. Then, path-
trace proceeds by marking in the combinational circuitry B (lines

24-26). When path-trace reaches the registers in register file I, it
again reads the entry in PI Table II according to clocks controlling
the registers on the path and restores the states of the lines in combi-
national circuitry A. Path-trace continues marking in core circuitry
A and terminates when it reaches a primary input of the circuit, as
explained earlier. These actions are taken in lines 29-31.

After path-trace returns a set of candidate error locations, the al-
gorithm ranks these locations in terms of path-trace counts and en-
ters correction where error sites are visited in descending order of
marks by path-trace. All potential error modifications are exhaus-
tively enumerated on these sites and the circuit is re-simulated for
the input test vectors. Corrections that return correct primary output
results for the test vectors qualify debugging. For example, once di-
agnosis returns the error site pointed in Figure 8(a), correction will
enumerate candidate correction models from Figures 3(a) and 3(c)
to find that both modules qualify.

ckt primit. FF ckt prim. FF

count count count count

A 2197 210 E 10046 3787

B 3603 749 F 13086 3055

C 5034 871 G 23978 4663

D 7836 2876 H 36654 8963

Table 1. Circuit Characteristics

ckt # of module time (sec)
Brute Path- Brute- Proposed Speed
Force Trace Force One All up

A 30.0 9.6 32.5 4.4 9.8 3.3
B 30.6 11.3 87.4 26.4 35.6 2.5
C 32.0 12.1 149.5 29.7 43.6 3.4
D 30.6 13.7 170.4 42.4 64.4 2.6
E 31.3 10.2 109.1 16.8 24.5 4.5
F 31.3 15.4 136.8 54.6 70.5 1.9
G 32.3 12.6 88.5 24.9 40.0 2.2
H 31.0 14.6 321.1 101.0 161.2 2.0

Avg 31.1 12.4 2.8

Table 2. All State Equivalence Designs

5 Experiments

Tests are carried on two-stage pipelined sequential designs (Fig-
ure 2) built with modified ISCAS’85 and ITC’99 combinational cir-
cuitry on a Pentium R© 2.8 GHz processor. The clocking circuitry
of these circuits consists of a scheme of 4 global clocks that drive
21 local clocks. The frequency of the global clock domains is an
integral multiple of each other. The circuit names, primitive count
and memory element count are found in Table 1.

There is a total of 11 different types of extraction errors pre-
sented here and in [10]. To emulate a real physical synthesis en-
vironment, we realize 2-3 different module libraries for each error
type for a maximum of 33 module types. In practice, this indicates
a set of modules with the same functionality but different phys-
ical characteristics. For each circuit, we perform three types of
experiments using the debugging algorithm from Setion 4 where
all information, some (partial) information and no information of
state equivalence is known, respectively. In the case of partial state
equivalence, we randomly utilize 50% of the state equivalence in-
formation.

Each experiment contains averages of 15 runs and times are in
seconds. To exhibit the effectiveness of the proposed debugging
approach, we compare its performance with a brute-force method
where the engineer debugs the design manually by simply enumer-
ating all module libraries. This brute-force approach is the common

ckt # of module time (sec)
Brute Path- Brute- Proposed Speed
Force Trace Force One All up

A 30.0 24.7 47.7 10.8 21.5 2.2
B 30.6 17.2 134.9 22.3 61.5 2.2
C 32.0 19.9 228.9 43.5 108.3 2.1
D 30.6 23.6 259.1 78.7 142.3 1.8
E 31.3 21.3 170.2 20.3 61.6 2.8
F 31.3 29.6 233.3 115.4 215.9 1.1
G 32.3 30.9 178.9 74.1 106.4 1.7
H 31.0 29.6 566.6 124.4 369.9 1.5

Avg 31.1 24.6 1.9

Table 3. No State Equivalence Designs

ckt # of module time (sec)
Brute Path- Brute- Proposed Speed
Force Trace Force One All up

A 30.0 5.9 51.4 3.8 8.9 5.8
B 30.6 10.8 132.5 26.4 50.1 2.6
C 32.0 11.9 226.5 60.0 90.5 2.5
D 30.6 12.3 256.3 62.7 99.9 2.6
E 31.3 8.3 170.0 25.7 38.7 4.4
F 31.3 14.3 601.6 65.3 88.6 6.8
G 32.3 11.7 247.6 29.2 48.1 5.1
H 31.0 12.8 486.8 120.9 185.0 2.6

Avg 31.1 11.0 4.1

Table 4. Partial Equivalence Designs

debugging practice in the industry today when the test model fails
since conventional design error techniques do not apply due to the
different nature of the errors.

Tables 2, 3 and 4 contain results for the all-, no- and partial-
state equivalence case, respectively, presented in a similar manner
as follows. The first column has the circuit name. Debugging re-
sults shown in the remaining columns are based on simulation of
2,000-3,000 erroneous vectors with high fault coverage (> 90%).

The next two columns contain the average number of mod-
ules examined by manual debugging (brute-force) versus the one
marked by path-trace. We observe, the enhanced path-trace has
good resolution as it eliminates more than 40% (on the average) of
useless module enumerations. The next three columns contain CPU
times for the brute-force and the proposed debugging algorithm;
Column 4 contains the time for the brute-force method to find all
possible solutions, column 5 the respective time for the proposed
approach to find one solution and column 6 the time to find all so-
lutions. The solution may not be unique due to fault equivalence
[8]. As seen from the speed up ratio (last column), the proposed
approach reduces the effort dedicated to test model debugging by a
factor of 3 when it searches for all solutions. The same experiments
(not reported here) also show that the speed up is approximately 11
times when the method exits after the first solution.

Figure 9 plots the run-times of the different cases of state equiv-
alence information availability from Tables 2, 3 and 4 for four cir-
cuits. In three cases the CPU saving due to the information pro-
vided by the state equivalence is reflected in the final debugging
effort. This is expected because state equivalence eases the task of
path-trace as it reduces the number of time frames it has to traverse.
In fact, this is the case for all circuits in our experimental set up
except circuit A (dotted line) where the run time does not monoton-
ically reduce as more state information becomes available. This is
because the number of candidates marked by path-trace varies and
it has an impact in the overall debugging time.

In the future, we plan to investigate other discrepancies in test
model generation for different circuit architecture types with feed-
back and further refine the debugging approach.

Full Partial None
0

30

60

90

120

150

Equivalence Information

T
ot

al
 C

P
U

 T
im

e
(s

ec
)

Circuit A
Circuit C
Circuit D
Circuit E

Figure 9. Run-time vs. State Information

6 Conclusion

This paper investigates discrepancies during extraction in test
model generation of high-performance designs. Different classes
of extraction errors in modern clocking schemes are presented.
A diagnosis algorithm for single extraction errors in designs with
no/partial state equivalence with the transistor level schematic is
also proposed. Experiments demonstrate its efficiency that helps
improve extraction and shorten the test delivery turnaround time
for high-performance ICs.

References

[1] M. Abadir, J. Ferguson, and T. Kirkland. Logic verification
via test generation. IEEE Trans. CAD, 7:138–148, January
1988.

[2] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyamal, T. Asakawa,
K. Morita, T. Muta, T. Motokurumada, S. Okada, H. Ya-
mashita, Y. Satsukawa, A. Konmoto, R. Yamashita, and
H. Sugiyama. A 1.3-ghz fifth-generation sparc64 micrproces-
sor. IEEE Journal of Solid-State Circuits, 38(11):1896–1905,
2003.

[3] D. Bearden, D. Caffo, P. Anderson, P. Rossbach, N. Iyengar,
T. Petrsen, and J.-T. Yen. A 780mhz powerpc microprocessor
with integrated l2 cache. IEEE ISSCC, pages 90–91, 2000.

[4] S. Kundu. GateMaker: A Transistor to Gate Level Model
Extraction for Simulation, Automatic Test Pattern Generation
and Verification. IEEE ITC, pages 372–381, 1998.

[5] N. Kurd, J. Barkatullah, R. Dizon, and T. Fletcher. A multi-
gigahert clocking scheme for the pentium R© 4 microproces-
sor. IEEE Journal of Solid-State Circuits, 36(11):1647–1653,
Nov. 2001.

[6] M. Kusko, B. Robbins, T. Snethen, P. Song, T. Foote, and
W. Huott. Microprocessor test and test tool methodology for
the 500mhz ibm s/390 g5 chip. Proc. IEEE ITC, 1998.

[7] J. Liu, A. Veneris, and H. Takahashi. Incremental diagnosis
of multiple open-interconnects. Proc. IEEE ITC, pages 1085–
1092, 2002.

[8] A. Veneris and I. Hajj. Design error diagnosis and correction
via test vector simulation. IEEE Trans. CAD, 18(12):1803–
1816, December 1999.

[9] S. Venkataraman and W. Fuchs. A deductive technique for
diagnosis of bridging faults. Proc. IEEE ICCAD, pages 562–
567, 1997.

[10] Y. Yang, J. Liu, P. Thadikaran, and A. Veneris. Extraction
error diagnosis and correction in high-performance designs.
Proc. IEEE ITC, pages 423–430, 2003.

