
Automating Logic Rectification by Approximate SPFDs

Yu-Shen Yang
Dept. of ECE

University of Toronto
Toronto, Canada

yangy@eecg.utronto.ca

Subarna Sinha
Synopsys Inc.

Mountain View, United States
Subarna.Sinha@synopsys.com

Andreas Veneris
Dept. of ECE

University of Toronto
Toronto, Canada

veneris@eecg.utronto.ca

Robert K. Brayton
Dept. of EECS

University of California
Berkeley, United States

brayton@eecs.berkeley.edu

ABSTRACT
In the digital VLSI cycle, a netlist is often modified to correct design
errors, perform small specification changes or implement incremental
rewiring-based optimization operations. Most existing automated logic
rectification tools use a small set of predefined logic transformations
when they perform such modifications. This paper first shows that a
small set of predefined transformations may not allow rectification to
exploit the full potential of the design. Then, it proposes an automated
simulation-based methodology to “approximate” Sets of Pairs of Func-
tions to be Distinguished (SPFDs) and avoid the memory/time explo-
sion problem. This representation is used by a SAT-based algorithm
that devises appropriate logic transformations to fix a design. The SAT
method is later complemented by a greedy one that improves on run-
time performance. An extensive suite of experiments documents the
added potential of the proposed rectification methodology.

1. Introduction
In the lifetime of the digital VLSI cycle, a synthesized design is of-

ten readjusted to achieve different goals. Logic rectification is required
in Design Error Diagnosis and Correction (DEDC) [4][9][17], a proce-
dure that follows verification and debugs an erroneous design to comply
with its specification. In DEDC, diagnosis returns a set of candidate er-
ror locations while correction applies simple logic transformations on
those locations to correct the design. It is also important in some post-
synthesis rewiring optimization techniques [16][18]. These methods
modify an already optimized logic implementation (netlist) in an iter-
ative manner to refine it for different constraints such as power, delay,
area etc. Logic rectification is also crucial when applying Engineering
Changes (EC) [11]. In a typical VLSI design process, specifications
may change even at a late stage of the design cycle. Given a correctly
designed netlist and its new set of specifications, in EC we are interested
in applying a minimal set of modifications so that the design complies
to its new set of specifications.

Modern approaches fix a design at some given netlist line(s). This
line(s) has been identified using diagnosis [4][9][17][18] and formal
synthesis [4][11] techniques. The permissible set of transformations on
this line comes usually from a dictionary model, that is, a small set of
predetermined logic transformations such as a single gate type change
and/or a single wire addition/deletion. It is evident that the success of
dictionary-based logic rectification depends on the ability of the under-
lying dictionary to accommodate its needs.

Clearly, logic rectification can be viewed as a simpler instance of
the general logic synthesis problem. Despite this fact, there are unique
reasons for the development of dedicated automated rectification tools.
Since existing synthesis tools tend to find a minimal representation of
the requested function [13][14], they may modify the design signifi-
cantly, jeopardizing part of the engineering effort invested in it. Also,
a full-blown synthesis step may prove to be a resource intensive proce-
dure for a design that needs just a few structural local netlist changes.
Dedicated automated tools that restructure the design minimally are de-
sired to preserve the engineering effort and expedite rectification.

In this paper, we first show that dictionary-based rectification may not
capture the complete solution space offered by the don’t care space of
a design. As a result, it may miss opportunities to achieve the specified
rewiring, debugging, etc goals. Next, we propose an automated rectifi-
cation methodology for combinational circuits that does not use a pre-

determined dictionary model. This methodology defines approximate
SPFDs where the results of test vector simulation are used to represent
and manipulate SPFDs. SPFDs [19] are a relatively new representa-
tion of Boolean functions that provides additional degrees of flexibility
during synthesis [5][16][19]. Using simulation to approximate them al-
lows one to remain memory efficient while enjoying their benefits. A
SAT-based algorithm using approximate SPFDs is described to auto-
mate correction with more complex and effective local logic transfor-
mations. This algorithm is later complemented by a greedy one that
may sacrifice on optimality to improve performance.

Extensive experiments confirm the theoretical results and show that
approximate SPFDs provide an effective alternative to dictionary-based
rectification sometimes by orders of magnitude. They return modifica-
tions where dictionary-based restructuring fails increasing the impact of
debugging, rewiring, EC, etc tools. This encourages further researchs
in SPFDs as a mean to aid existing methodologies [4][9][16][17][18].

The paper is structured as follows. Section 2 provides the motivation,
Section 3 discusses SPFDs and Section 4 defines approximate SPFDs.
Section 5 builds upon this new concept with an optimal SAT-based
resynthesis algorithm and a greedy one. Section 6 presents experiments
while the last Section concludes the work.

2. Motivation
Most logic rectification approaches use transformations from a pre-

determined dictionary to change a design when correcting it, optimiz-
ing it, etc. For instance, in DEDC, some EC instances and diagnosis-
based rewiring, the dictionary model of [1] is widely used. This model
contains 11 predetermined types of possible logic transformations that
involve addition and deletion of single wires and single gates. For ex-
ample, the “missing inverter” transformation inserts an inverter while
“missing gate” adds a 2-input i.e., AND, OR, NAND and NOR gate to the cir-
cuit. Equivalently, “missing/extra wire” adds/deletes an existing wire
in/from the netlist. Other rewiring techniques [3][10] also use a finite
number of predefined transformation types similar to the ones in [1].

A predetermined dictionary model, although effective for some in-
stances, may not be adequate when complex transformations are re-
quired such as the addition/deletion of several gates and wires. To study
the effectiveness of dictionary-based rectification and to motivate the
present work, we perform the following experiment. For circuits in the
ISCAS’85 suite of benchmarks we introduce an error. A “simple” error
involves a change of gate type for a single gate followed by the addition
or deletion of some wires in the support of that gate. A “complex” error
applies more transformations such as the deletion and addition of many
gates and wires in the fan-in cone of a single gate.

In this study, the effectiveness of the general purpose dictionary model
in [1] is measured against that of the error equation. The error equation
[4] uses formal methods to answer with certainty whether there exists a
modification that corrects the design at a specified circuit location. The
error equation does not return the actual correction as it merely reports
whether some amount of resynthesis may or may not correct that design
at the particular location. It achieves this by forming the miter circuitry
between the primary outputs of the golden model and the design, intro-
ducing a new variable at the candidate location and solving a system
of Boolean equations using formal techniques [2]. If the system has a
solution for the new variable, this solution also specifies the range of
the new function. Otherwise, if it has no solution, no transformation on
that location can modify the design to correct it.

Table 1 contains average results from 10 single error experiments
for each circuit. Circuits with the suffix “c” are injected with a single
complex error while single simple errors are introduced in the remaining
circuits, which have the suffix “s”. To identify candidate locations for
modification we use a path-trace simulation-based diagnosis method [9]
that guarantees to return all such single candidate locations. Since this
method uses a subset of the complete input test space, it may return a
few locations that cannot be corrected but it will never miss a solution,
that is, it will return all locations where some form of resynthesis can
be applied to correct the design [9][18]. The second and sixth columns
of Table 1 contain the average number of error locations returned by
path-trace. The following two columns show the percentage of error
locations that can be fixed according to the error equation and according
to an exhaustive dictionary-based rectification method [9].

It can be seen that, on the average, the dictionary model in [1] fails for
as much as half of the cases with simple errors. For example, in circuit
c499, the error equation claims that some modification on five locations
(76% of 7.1 locations) can rectify the design whereas the dictionary
model is successful in only two cases. As shown, the success of the
dictionary model diminishes further when more complex resynthesis is
required. This is because complex modifications perturb the functional-
ity of the design in ways that simple dictionary-driven transformations
may not be able to address. Such modifications, though, are common
in today’s intricate design environment where errors or changes in the
Register-Transfer Level (RTL) necessitates complex local changes in
the netlist [11]. Automated logic rectification tools that can address
those problems effectively are therefore desirable to increase the impact
of the underlying debugging, rewiring, EC, etc engines.

3. Sets of Pairs of Functions to be Distinguished
SPFDs [19] provide a powerful formalism to express the implemen-

tation flexibility of circuit nodes during logic synthesis. An SPFD

R = {(g1a,g1b),(g2a,g2b), · · · ,(gna,gnb)} (1)

denotes a set of pairs of functions that must be distinguished i.e., for
each pair (gia,gib) ∈ R, the minterms in gia must produce a different
value from the minterms in gib at the output of the node (wire) associ-
ated with R. R can be represented as a graph G = (V,E) [16], where

V = {mk | mk ∈ gi j,1≤ i≤ n, j = {a,b}}

E = {(mi,m j) | {(mi ∈ gpa) and (m j ∈ gpb)}

or {(mi ∈ gpb) and (m j ∈ gpa)},1 ≤ p≤ n} (2)

Edges e∈E are referred to as SPFD edges. Figure 1 shows the SPFDs
at the input and output of a 2-input OR gate. It shows that input a can
distinguish (vectors in terms of ab) 00 and 01 from 10 and 11, and input
b can distinguish 00 and 10 from 01 and 11. The output c can distinguish
01, 10 and 11 from 00. The SPFD of a node/wire can be derived in a
multitude of ways depending on its application during logic synthesis.
For instance, SPFDs can be computed in a compatible fashion (similar
to the compatible don’t care computation [13]) from the primary outputs
to the primary inputs [16]. In rewiring applications, the SPFD of a wire
(na,nb) can denote the minimum set of edges in the SPFD of nb that
can only be distinguished by na (but none of the remaining fanins of
nb) [16]. In all these methods, it is necessary to ensure that the SPFD of
a node is a subset of the union of the SPFDs of its fanins. Thus,

∪m
i=1Ri ⊇ Ro, (3)

where node no has m fanins {n1, · · · ,nm}, Ri denotes the SPFD of the ith
fanin ni and Ro denotes the SPFD of no . The above equation indicates
that the “information” at a node has to be a subset of all the information
at its fanins.

A function f is said to satisfy an SPFD R = {(g1a,g1b),(g2a,g2b), · · · ,
(gna,gnb)}, if for each (gia,gib)∈R, f (gia) 6= f (gib). In graph-theoretic
terms, f has to be a valid coloring of the SPFD graph of R, i.e. any two
nodes connected by an edge must be colored differently. In this paper,
we use the automated approach by Cong et. al. [5] to synthesize a two-
level AND-OR network for the function f of some given node so that it

Table 1: Quantifying logic transformations
ckt error error dict. ckt error error dict.

name loc. equat. model name loc. equat. model

c432 s 9.8 75% 44% c2670 s 9.2 99% 11%

c499 s 7.1 76% 40% c5135 s 6.4 100% 25%

c880 s 3.8 67% 38% c3540 c 3.0 100% 6%

c1355 s 5.3 100% 19% c5315 c 6.4 97% 16%

c1908 s 18.0 84% 23% c7552 c 20.6 64% 20%

10

00

11

01

10
SPFD a

SPFDb

00

11

01

10
SPFD c

a

b

c

01

11

00

Figure 1: SPFDs for OR gate: SPFDc ⊂ SPFDa∪SPFDb

satisfies the given SPFD R. Thus, the set of minterms that belong to the
onset of the node are derived from R (note that no two minterms that
must be distinguished in R can belong to the onset) and imaged onto the
local fanin space of the node. This image function gives the function f
that satisfies R. The minterms that are not represented in R can be used
as don’t cares to simplify f .

4. Approximating SPFDs
SPFD computations represented by BDDs [2] may suffer from mem-

ory explosion problems for large circuits [16]. A recently proposed
SPFD computation with simulation and SAT [20] is memory efficient
at representing SPFDs but it may become computationally intensive be-
cause every edge in the SPFD of a node/wire is computed.

One way to reduce the complexity of representing and computing
SPFDs is to approximate the SPFDs. An approximated SPFD repre-
sents a subset of the edges of the original SPFD. This is done to alleviate
the memory and runtime problems of formal approaches. A non-trivial
problem is figuring out a good subset of edges to pick when approx-
imating the SPFD. We show that logic rectification operations, where
only a small portion of the circuit is being changed, are well served by
approximate SPFDs.

To see this, it is instructive to think of rectification as a pair of “er-
ror/correction” operations. This is indeed the case for DEDC [9][17],
EC [11] and, more recently, rewiring, that was also expressed as a de-
bugging process [18]. The actual resynthesis (correction) consists of
a set of existing netlist wires that need to be added as fanins to the
node. Once this set is found, according to the theory of approximate
SPFDs developed next, the automated algorithm in [5][19] can be used
to resynthesize the design at that location and provide a broad range of
powerful modifications not available in predefined dictionary models.

The set of edges represented by the approximate SPFD can be cho-
sen depending on the “error” in the circuit, which is also a metric for
the “amount” of rectification needed. Different errors at the same node
would result in a different set of edges being chosen to approximate the
SPFD. The circuit containing the error is simulated using a set of pri-
mary input vectors V chosen so that the error can be observed at the
primary outputs for some of the vectors. A set of SPFD edges that spec-
ifies the minterm pairs that need to be distinguished in V ×V in order
to correct the error forms the approximate SPFD for the erroneous node.

DEFINITION 1. The global SPFD (gSPFD) Ri of a node ni speci-
fies that the primary input minterms in the onset of ni have to be distin-
guished from the primary input minterms in the offset of ni.

Previous work uses either the gSPFDs or a compatible subset of
gSPFDs to drive logic optimizations. A common feature of both these
types of SPFDs is that they analyze the entire set of primary input
minterms to decide what the node needs to distinguish. This may lead

f

c

b
a z

e

d

Figure 2: Circuit for Examples 1 and 2

 (a) (a)

000

010

100

110

001

011

101

111

(b)

000

010

100

110

001

011

101

111

Figure 3: (a) Original circuit SPFDz (b) Modified circuit SPFDzmod

to prohibitive amounts of memory to store or enumerate the SPFDs. To
reduce this complexity, we allow for an SPFD representation as follows:

DEFINITION 2. Given a subset V of the primary input minterms
V , the approximate SPFD (aSPFD) Rappx

i (V) w.r.t V of a node ni

specifies the minterm pairs in V ×V that ni has to distinguish. Rappx
i

contains no information about the minterms in V −V .

In other words, the aSPFD of a node considers what needs to be
distinguished only for a subset of the primary input vectors V . Since it
stores less information than gSPFDs, it is inherently less expensive to
represent, manipulate and compute.

Next, we describe a procedure to compute aSPFD for the circuit
nodes using test set V . In practice, V contains 2,000 tests for the IS-
CAS’85 circuits and includes vectors that fail (produce a difference at
one of the outputs) and ones that do not. In the experiments, V contains
vectors with high stuck-at fault coverage but other methods, such as
simulation and verification, to obtain V can be used [6]. Assume that
the original circuit (specification) is denoted as C c and the erroneous
circuit C e. Let nerr denote the erroneous node in C e, i.e. the node that
needs to be corrected to make C e equivalent to C c. The aSPFD of nerr
and the remaining nodes are computed differently. This is due to the
fact that the aSPFD of nerr should capture information about the error
that needs to be fixed and the aSPFDs of the remaining nodes represent
what they can distinguish. The aSPFD for nerr is computed as follows:

1. Simulate the correct circuit C c and the erroneous circuit C e using
the V set of vectors.

2. Let V c denote the vectors for which all outputs of C c are equal
to their respective outputs of C e. Let on(V c) denote the vectors
in V c for which nerr is equal to 1 in C e and o f f (V c) denote the
remaining vectors (for these vectors nerr is equal to 0 in C e).

3. Let V e denote the vectors for which an output of C c is not equal
to the corresponding output of C e. Let on(V e) denote the vectors
of V e for which nerr is equal to 1 in C e and o f f (V e) denote the
remaining vectors (for these vectors nerr is equal to 0 in C e).

4. The approximate SPFD of nerr states that the minterms in on(V c)
have to be distinguished from the minterms in on(V e) and the
ones in o f f (V e) have to be distinguished from the ones in o f f (V c).

Notably, to generate the aSPFD for the erroneous node, both the cor-
rect and the erroneous vectors need to be simulated. This is because
it is necessary to have both kinds of primary input vectors: ones for

Table 2: Truth table for circuit in Example 1
a b c d e f z zmod

0 0 0 0 1 1 0 0

0 0 1 0 0 0 1 1

0 1 0 1 0 1 1 1

0 1 1 1 1 1 1 1

1 0 0 0 1 1 0 0

1 0 1 0 0 0 1 1

1 1 0 0 0 1 1 0

1 1 1 0 1 0 1 1

(a)

010

100

110 011

101

111

001000

(b)

111

101

011

001

110

100

010

000

Figure 4: (a) aSPFD of zmod (b) aSPFD of b in modified circuit

which the error is observed at the outputs and ones for which no error is
observed. This ensures that the aSPFD of nerr contains information on
what needs to be corrected and what does not. Let TFO(nerr) denote the
transitive fanout of nerr. For each node nk 6∈ TFO(nerr), the aSPFD of
nk distinguishes the onset minterms of nk in V from the offset minterms
of nk in V . Thus, the aSPFD of each of these nodes specifies the pri-
mary input pairs that each node can (or has) to distinguish in C c and in
C e for the vectors in V = V c∪V e. This is true because the SPFDs in
the two circuits are identical for gates not in TFO(nerr). Since resynthe-
sis cannot use nodes in TFO(nerr) as they create combinational feed-
back, it is not necessary to compute the aSPFDs for these nodes.

EXAMPLE 1. Figure 2 depicts a sample circuit for the truth table in
Table 2 where the dotted line is not a wire of the original design. The
gSPFD of the output z in the sample circuit in terms of primary inputs is
shown in Figure 3(a). The black (white) nodes indicate that z has logic
value 1 (0) when the labeled input vector is applied. Assume the wire
(e,z) is removed, e.g. zmod = NAND(d, f). The last column ”zmod” of
Table 2 shows the logic value of z after the modification.

The gSPFD of the primary output of the modified circuit zmod in
terms of primary inputs is shown in Figure 3(b). Suppose the origi-
nal and modified circuits are simulated with primary input vectors V :
001, 100, 101, 110 and 111. The discrepancy is observed for vector
110. In terms of the notation used in the aSPFD calculation procedure,
V c = {001,100,101,111} and V e = {110}. Furthermore, on(V c) =
{001,101,111}, o f f (V c) = {100}, on(V e)= φ and o f f (V e)= {110}.
The aSPFD of zmod specifies that the minterms in on(V c) have to be dis-
tinguished from the minterms in on(V e) and the minterms in o f f (V c)
have to be distinguished from the minterms in o f f (V e). Since on(V e)=
φ, only the minterms in o f f (V c) have to be distinguished from the
minterms in o f f (V e). Thus, the aSPFD of zmod w.r.t to V is {110,100},
as shown in Figure 4(a). It is approximate since it only contains a sub-
set of the complete information about SPFDs that zmod needs to distin-
guish and maintain correct functionality. For instance, to ensure that
zmod is equivalent to z, it will also be necessary to distinguish 110 from
000. However, this information is not contained in the aSPFD of zmod
derived using the vectors {001,100,101,110,111}. The aSPFD of b,
which is in the fanin cone of zmod , for the same set of primary input
vectors is shown in Figure 4(b).

The penalty when approximating SPFDs is that once resynthesis is
done, the circuit has to undergo formal verification. This is because
aSPFDs do not contain the complete information about what the nodes
need to distinguish but only a subset of it that is contained in V . In
DEDC and EC where the specification acts as a “black box” and has no

structural similarity to the netlist, a full blown verification step [6][8]
(i.e., equivalence checking) is already mandatory since the error loca-
tion is unknown [17]. In rewiring, an order of magnitude faster dedi-
cated formal verification step is usually performed since the locations
of both the error and the correction are known [3][10][18].

Experiments show that aSPFDs based on a set of vectors V with
2,000 tests provide a good approximation for the design functionality
because the transformations pass formal verification in most (80-90%)
cases. Intuitively, this is partly because the error effects are limited
to a small region and the aSPFD construction at the erroneous node
can be manipulated in ways that correct the error with a high degree
of probability. In addition, the mapping from the primary input space
to the local fanin space of the error location is typically many-to-one.
Consequently, a primary input minterm pair (ma,mb) that is missing
in the aSPFD may still be covered. This could happen if its image
(yad ,ybe) in the local fanin space is the same as the image of a minterm
pair (md ,me) present in the aSPFD. In other words, some of the primary
input minterm pairs get distinguished for free. This is particularly likely
to happen in scenarios where there aren’t too many minterms pairs that
need to be distinguished to correct the error at the first place.

5. Automating Rectification
The proposed rectification procedure seeks to re-implement location

nerr using one or more additional fanins so that C e implements the same
function as the original circuit C c. This location nerr is suspect for cor-
rection in DEDC, rewiring, EC etc. The theory of approximate SPFDs
developed in the previous section can be used to find these additional
fanins as well as the new function desired at nerr.

Algorithm 1 shows the pseudo-code to find a set of fanins for ni. The
basic idea is to compute the aSPFD of nerr (w.r.t V), Rappx

err (V). Then,
for each ei ∈ Rappx

err −∪
k
i=1Rappx

i , where ei ∈ E, the set of nodes that are
not in TFO(nerr) and whose aSPFDs w.r.t V contain ei are inserted in
Cover(ei). Finally, a minimal set S of nodes from Cover is selected such
that at least one node in Cover(ei), for each ei ∈ Rappx

err −∪
k
i=1Rappx

i , is
contained in S. A new function is implemented at nerr using the nodes in
S as additional fanins according to the methodology described by Cong
et al. in [5]. If the new function does not pass verification, a new set of
nodes is selected from Cover and the process is repeated.

LEMMA 1. The aSPFD of a node nk ∈ C e, where nk 6∈ TFO(nerr),
is a subset of the gSPFD of the corresponding node ñk in C c.

Proof: Suppose, towards a contradiction, it is not true. Then, there
exists an edge e = (m1,m2) that belongs to the aSPFD of nk in C e and
does not belong to the gSPFD of ñk in C c. Thus, m1 and m2 both belong
to either the onset or the offset of ñk in C c. Assume, they both belong to
the onset. Since nk ∈ C e is identical to the corresponding node ñk ∈ C c,
m1 and m2 have to produce the same values at the output of nk as at the
output of ñk. Thus, m1 and m2 both belong to the onset of nk. Hence by
construction, (m1,m2) cannot belong to the aSPFD of nk.

�

LEMMA 2. Each edge in the aSPFD of a node nk ∈ C e, where nk 6∈
TFO(nerr), is contained in the aSPFDs of one or more of its fanins.

Proof: Assume it is not true. Then, there exists at least one minterm
pair (m1,m2) ∈ Rappx

k not belonging to the aSPFDs of the fanins in nk.
By Lemma 1, the aSPFD of nk in C e is a subset of the gSPFD of the
corresponding node ñk in C c. Equation 3 states that each edge in the
gSPFD of ñk has to be contained in the gSPFDs of one or more of its
fanins. Since nk and its fanins implement the same function in C c and
C e, the gSPFD of ñk and its fanins in C c are identical to the gSPFD
of the corresponding nodes in C e. Thus, (m1,m2) is contained in the
gSPFD of nk and at least one of its fanins in C e. Hence, by construction,
(m1,m2) has to belong to the aSPFDs of one of the fanins of nk .

�

EXAMPLE 2. Example 1 illustrates that the aSPFD of zmod is con-
tained in the aSPFD of b. If b is used as an additional fanin of zmod
(dotted wire in Figure 2) a new function f = NAND(b,d, f) at zmod
produces an equivalent circuit to the original. Using this new function,
the XOR gate can be removed reducing the original circuit gate count
from eight to seven gates.

Algorithm 1 Correction Using SPFD

1: C c := Original Circuit (or Specification)
2: C e := Erroneous Circuit
3: procedure CORRECT WITH SPFD(C e, C c)
4: Compute the aSPFD of nerr and nk 6∈ TFO(nerr) in C e.
5: Set Candidate := TFO(nerr)

6: Compute E = Rappx
err −∪

k
i=1Rappx

i where {n1, · · · ,nk} are the
fanins of nerr in C e

7: for all ei ∈ E do
8: Cover(ei) := �
9: for all nk ∈ Candidate do

10: Add nk in Cover(ei) if Rappx
k contains ei

11: end for
12: end for
13: Select a minimal set of nodes (if one exists) from Cover such

that at least one node is in Cover(ei) for each edge in E
and re-implementing nerr with the the fanins of nerr and the
nodes in Cover(ei) makes C e equivalent to C c.

14: end procedure

Next, we describe two approaches that find the set of nodes that can
be used as additional fanins to nerr for correcting the error. One is SAT-
based and it finds the optimal answer in terms of number of fanins. The
other is a greedy one that uses heuristics.

5.1 SAT-based Automated Rectification
We turn Step 13 of the correction Algorithm 1 into an instance of

a Boolean SAT problem [7][12][15]. Give the erroneous node nerr and
the aSPFDs of nerr and the nodes that are not in its transitive fanout in
C e, the SAT instance Φerr is set up as follows: Each node ni in C e is
associated with a variable vi. Two types of clauses are added to Φerr:

• Covering Clauses: Each edge e j in the aSPFD of nerr is converted
to a clause c j . If the aSPFD of nk 6∈ TFO(nerr) contains e j , then
c j has the variable vk.

• Blocking Clauses: For each node nk 6∈TFO(nerr), Lemma 2 states
that the aSPFD of a node is a subset of the union of the aSPFDs
of its fanins. Thus, it is not necessary to add a node to S once all
its fanins are included in S. Thus, for each node nk 6∈ TFO(nerr),
the following clause is added: (� m

i=1 vi + vnew
k) · � m

i=1(vi + vnew
k) ·

(vnew
k + vk) where {n1, · · · ,nm} are the fanins of nk and vnew

k is a
new variable that becomes 1 when all vi, 1 ≤ i ≤ m are 1. This
new added variable can get an implied value but it cannot be as-
signed by the decision process of the solver itself.

Given a satisfying assignment for Φerr, a node nk is added to the set
S, if vk = 1. The covering clauses ensure that S can cover all the edges
in the aSPFD of nerr. Blocking clauses reduce the possibility of the
same set of edges being covered by multiple nodes in S. If the function
derived by the satisfying assignment from the set S = {v1,v2, · · · ,vn}
does not qualify formal verification, then {v1 + v2 + . . .+ vn} is added
as a blocking clause to Φerr and the SAT solver is invoked again to find
another candidate transformation. With respect to Examples 1 and 2,
the covering clause is ΦC = (b + e) and the blocking clauses are ΦB =

(a+b+dnew) · (a+d
new

) · (b+d
new

) · (d
new

+d) while Φerr = ΦC ·ΦB
and dnew is the new variable introduced by the algorithm. Note, the
solver will always come back with an answer (if it exists) as nothing
constrains the number of new fan-in wires N to add during resynthesis.

In experiments, we use a pseudo-Boolean constraint SAT solver [7]
to return an optimal solution, that is, a solution with the smallest num-
ber of new fan-in wires N. The use of a pseudo-Boolean solver is not
mandatory and any DPLL-based SAT solver [12][15] can be used in-
stead. A way to achieve this is to encode the adder/comparator circuitry
from [17] in CNF and enumerate values of N = 1,2, This circuitry
can be coded using a linear number of clauses w.r.t. # circuit lines. Once
translated/added to Φerr, it can enforce that no more than N variables
can be set to a logic 1 simultaneously or Φerr becomes unsatisfiable.

Table 3: aSPFDs comparison results for different types of single errors
ckt error error dict. [1] aSPFD % avg # min # time (sec) avg # gate % verified
name loc. equat. model improve wires wires first corr. corr/loc. count first all
c1355 s 5.3 100.0% 18.8% 81.3% 433 1.7 1.7 3.5 8.3 5.9 100.0% 46.2%
c1908 s 18.0 84.4% 13.2% 84.2% 640 1.4 1.4 18.9 8.1 4.2 90.2% 62.6%
c2670 s 9.2 97.8% 11.1% 82.2% 740 2.4 2.2 21.9 6.2 17.0 100.0% 74.7%
c3540 s 7.2 100.0% 27.8% 86.1% 310 1.1 1.1 9.3 4.5 3.7 100.0% 66.1%
c5315 s 6.4 100.0% 25.0% 100.0% 400 1.9 - 7.6 5.4 5.9 89.7% 76.6%
c7552 s 11.8 88.1% 19.2% 50.0% 260 1.7 - 25.7 3.1 4.9 88.9% 54.7%
c1355 m 2.7 100.0% 12.5% 100.0% 800 2.1 2.0 32.0 7.0 4.8 100.0% 52.1%
c1908 m 5.8 100.0% 3.4% 82.8% 2400 2.5 2.5 11.0 10.6 6.3 100.0% 68.8%
c2670 m 5.2 96.2% 4.0% 60.0% 1500 3.4 2.9 95.4 9.4 15.9 100.0% 59.8%
c3540 m 3.2 100.0% 25.0% 100.0% 400 1.6 1.6 54.2 6.1 4.1 84.9% 78.2%
c5315 m 9.6 93.8% 2.2% 100.0% 4500 2.9 - 46.8 5.7 7.4 100.0% 76.9%
c7552 m 8.8 100.0% 9.1% 90.9% 1000 1.9 - 39.2 6.9 6.3 100.0% 78.5%
c1355 c 3.7 100.0% 0.0% 72.7% inf. 2.9 2.9 38.4 3.3 6.8 100.0% 40.0%
c1908 c 15.8 46.8% 40.5% 70.3% 173 1.4 1.3 19.0 7.2 7.1 100.0% 87.9%
c2670 c 12.4 98.4% 31.1% 62.3% 200 1.7 1.7 33.2 4.7 5.9 100.0% 76.2%
c3540 c 3.0 100.0% 6.7% 66.7% 1000 3.6 3.4 122.4 3.8 6.1 100.0% 32.5%
c5315 c 6.4 96.9% 16.1% 100.0% 620 2.7 - 20.0 9.1 8.4 100.0% 78.7%
c7552 c 20.6 64.1% 19.7% 50.0% 254 1.9 - 23.7 3.5 5.2 91.2% 42.7%
Average 8.6 92.6% 15.9% 80.0% 504 2.0 - 29.2 6.4 6.6 96.0% 67.4 %

Constraining the number N in this manner, any DPLL-based SAT solver
can return with the answer. When it fails, we increase the value of the
guess N and run the solver to find a solution with more wires.

5.2 A Greedy Approach
Though the SAT-based formulation can return the minimum set of

fanins to resynthesize nerr and correct the circuit, experiments show that
it may require excessive runtimes. To improve the runtime performance,
the following greedy approach to search solutions is proposed:

1. Sort the edges E in the aSPFD of nerr according to the number of
nodes whose aSPFDs contain each edge.

2. Find the edge emin such that cardinality of Nemin , which is the set
of nodes whose aSPFDs contain emin, is the smallest.

3. Add S← S∪nk , where nk ∈ Nemin and the aSPFD of nk contains
the largest set of edges in E.

4. E← E−{e | e ∈ E and e ∈ Rappx
k }. If E 6= � , go back to Step 1.

The solutions identified by the greedy approach may contain more
wires than the minimum set. However, the experiments in the next sec-
tion indicate that the greedy approach can achieve similar quality results
in terms of the number of wires involved during resynthesis in a more
computationally efficient manner.

6. Experiments
This section presents empirical results using the original benchmark

ISCAS’85 circuits. In experiments, each circuit is simulated with a set
V of 2,000 input test vectors with high stuck-at fault coverage. Ex-
periments are collected on a Pentium 2.7GHz workstation with 1GB of
RAM using the SAT solver from [7]. Motivated by the numbers of Ta-
ble 1 in Section 2, we quantify the rectification potential of the aSPFD-
based algorithms against that of the dictionary-model of [1] and that of
the error equation [4].

Table 3 contains the results of experiments where we inject three dif-
ferent types of single errors in each circuit and we try to rectify it. The
location and the type of injected errors are randomly selected. We as-
sume that the location nerr to be corrected is provided by a fast linear-
time diagnosis method [9]. All numbers in that table are averages over
20 experiments/circuit and times are in seconds. Simple errors (suffix

“s”) involve the addition/deletion of a single wire or a gate type replace-
ment. This error type borrows exact transformations from [1]. Medium
complexity errors on a gate, such as multiple wire additions/deletions
followed by a gate type change, have a suffix “m”. The final error type
is the complex one from Section 2 (suffix “c”) with multiple errors at
the fan-in cone of a gate. This alters the functionality of the circuit the
most and presents a challenging rectification task.

Columns 2. . .6 of Table 3 contain rectification comparison results
with the error equation and the dictionary model. The second column
has the number of locations returned by diagnosis [9][17] while the next
column shows the percentage of locations the error equation claims a
solution. The two columns that follow contain the percentage of error
equation lines the dictionary and aSPFDs can resynthesize successfully.
For example, in circuit c1908 s, the error equation claims that resynthe-
sis can fix 15.4 from the 18.0 diagnosis locations. The dictionary is
successful in only 2 locations (13.2% of 15.4) while aSPFDs resynthe-
sizes 13 locations (84.2% of 15.4). It is seen, that aSPFDs outperforms
the dictionary-model for as much as 45 times (c5315 m) with a success
ratio that increases with error complexity.

The next five table columns present specifics about the algorithms of
Section 5. Column 7 has the average number of additional wires re-
turned by the greedy algorithm and column 8 has the minimum number
of wires reported by the optimal SAT-based approach. We observe that
the greedy heuristic performs well when compared to the optimal an-
swer. Since the SAT-based approach may run into run-time problems
as the number of new wires increases, it times out (“–”) after 1,000
seconds if it does not return with a solution. Column 9 contains the av-
erage time for the greedy algorithm to return the first transformation that
passes formal verification for a single location and the next column has
its average number of solutions per location. Overall, it is observed that
the greedy approach provides a fine balance between performance and
optimality. Column 11 shows the average gate count for the two-level
circuitry introduced by [5]. The gate count is small and the modifica-
tions are local to respect the existing engineering effort.

The final two columns of Table 3 contain the percentage of aSPFD
transformations that pass formal verification. The first column consid-
ers only the very first correction, if any, returned by the greedy approach
for each location. The last column contains averages over all corrections
returned for a single location. Since there are locations that rectification
may return thousands of modifications, the algorithm times out after a
limit. We see that the vast majority of the very first corrections returned
pass verification, a result that confirms [18] for simulation-based recti-
fication using a dictionary. It also confirms the viability of aSPFDs.

200 500 800 1000
0

2

4

6
x 10

4

size of test vectors

o

f
ed

g
es

(a) # of edges v.s. size of test vectors

200 500 800 1000
0

100

200

300

size of test vectors

av
g

 C
P

U
 t

im
e

(s
ec

) (b) avg CPU time v.s. size of test vectors

simple
medium
complex

simple
medium
complex

Figure 5: Resynthesis performance characteristics

Because experiments are centered around rewiring, to formally ver-
ify the transformations we use the technique from [18] where a pair of
multiplexers is attached at the error/correction location. This simpli-
fies the problem of verification to that of the redundancy of multiple
stuck-at faults. Experiments show that this method serves as an excel-
lent platform to verify aSPFD produced transformations. For example,
SAT-based equivalence checking step takes 43 seconds (on the average)
to verify instances of c5315 whereas the construction in [18] reduces
this time to less than 0.4 seconds.

The plot in Figure 5(a) depicts the number of graph aSPFD edges
that increases as the number of test vectors V gets larger. This has
an effect on the CNF size and the overall SAT solver performance. In
the future, we plan to investigate techniques to reduce the CNF size
and speed-up the SAT-based method. Figure 5(b) has the average time
for the greedy method to find the first correction. It is seen that time
increases as the number of vectors increases because the new vectors
introduce additional constraints the greedy method needs to satisfy.

Figures 6 and 7 contain information about the actual transformations.
The first graph shows the minimum number of new wires N required
(along with the original gate support) for a transformation that passes
verification. The number of new wires increases as the error gets more
complex, a result that reinforces the need for automated resynthesis ap-
proaches such as the one presented here. The second graph shows the
number of locations that have transformations that pass verification ver-
sus the size of V . As explained in the last paragraph of Section 4, the
more vectors available, the more minterms aSPFD will probably cover.
As a result, the algorithm in [5] will have a higher probability to correct
the design successfully, an observation confirmed by the plot.

7. Conclusion
We presented a new representation for SPFDs, namely aSPFDs, that

uses test vector simulation to approximate their information and avoid
any memory/time explosion. We also outlined algorithms that use this
new representation to perform rectification for DEDC, EC and rewiring.
Experiments show that aSPFDs provide a powerful and dynamic method
to resynthesize a design to a new set of specifications where other meth-
ods fail. They also encourage further research in automated resynthesis
tools using aSPFDs. We plan to extend the work to rectify circuits that
require rectifications at multiple locations and sequential circuits.

8. References
[1] M. S. Abadir, J. Ferguson and T. E. Kirkland, “Logic Verification Via Test

Generation”, in IEEE Trans. on CAD, vol. 7, pp. 138–148, Jan. 1988.
[2] R. E. Bryant, “Graph–based algorithms for Boolean function

manipulation,” in IEEE Trans. on Computers, vol. C–35, no. 8,
pp. 677-691, 1986.

[3] S. C. Chang, M. Marek-Sadowska and K. T. Cheng, “Perturb and
Simplify: Multi-level Boolean Network Optimizer,” in IEEE Trans. on
Computer-Aided Design, vol. 15, no. 12, pp. 1494-1504, Nov 1996.

[4] P. Y. Chung, and I. N. Hajj, “Diagnosis and correction of multiple design
errors in digital circuits,” in IEEE Trans. on VLSI Systems, vol. 5, no. 2,
pp. 233-237, June 1997.

simple medium complex
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

complexity of errors

o

f
se

le
ct

ed
 n

ew
 w

ir
es

 (
n

o
rm

al
iz

ed
 %

)

of selected new wires v.s. complexity of errors

0 wire
1 wire
2 wires
3 wires
4+ wires

Figure 6: New wire selection effort

200 500 800 1000
5

6

7

8

9

10

11

12

13
avg. corr. loc. v.s. size of test vectos

size of test vectors
av

g
 c

o
rr

. l
o

c.

simple
medium
complex

Figure 7: # corrections vs. size of V

[5] J. Cong, Y. Lin, and W. Long, “SPFD-Based Global Rewiring,” in Proc.
ACM/SIGDA Int’l Symp. on FPGAs, pp. 77-84, 2002.

[6] R. Drechsler, Advanced Formal Verification, Kluwer Academic
Publishers, 2004.

[7] N. Eén and N. Sörensson, “Translating Pseudo-Boolean Constraints into
SAT,” in Journal on Satisfiability, Boolean Modeling and Computation,
vol. 2, pp. 1-26, March 2006.

[8] G. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms,
Kluwer Academic Publishers, 2000.

[9] S. Y. Huang and K. T. Cheng, Formal Equivalence Checking and Design
Debugging, Kluwer Academic Publishers, 1998.

[10] W. Kunz, D. Stoffel and P. R. Menon, “Logic Optimization and
Equivalence Checking by Implication Analysis,” in IEEE Trans. on
Computer-Aided Design, vol. 16, no. 3, pp. 266-281, March 1997.

[11] C.-C. Lin, K.-C. Chen and M. Marek-Sadowska, “Logic Synthesis for
Engineering Change,” in Trans. on Computer-Aided Design, vol. 18,
no. 3, pp. 282-292, March 1999.

[12] M.H. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” in Proc. of DAC,
pp. 530-535, June 2001.

[13] H. Savoj, R. K. Brayton, and H. J. Touati, “Extracting local don’t cares
for network optimization,” in Proc. of ICCAD, pp. 514-517, 1991.

[14] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and
A. Sangiovanni-Vincentelli, “Sequential Circuit Design Using Synthesis
and Optimization,” in Proc. of ICCAD, pp. 328-333, 1992.

[15] J. P. M.-Silva and K. A. Sakallah, “GRASP – A Search Algorithm for
Propositional Satisfiability,” in IEEE Trans. on Computers, vol. 48, no. 5,
pp. 506-521, May 1999.

[16] S. Sinha, “SPFDs: A New Approach to Flexibility in Logic Synthesis,”
Ph.D. Thesis, University of California, Berkeley, May 2002.

[17] A. Smith, and A. Veneris, and M. F.Ali and A. Viglas, “Fault Diagnosis
and Logic Debugging Using Boolean Satisfiability,” in IEEE Transactions
in Computer-Aided Design, vol. 24, no. 10, pp. 1606-1621, Oct. 2005.

[18] A. Veneris and M. S. Abadir, “Design Rewiring Using ATPG,” in Proc.
IEEE Trans. on Computer-Aided Design, vol. 21, no. 12, pp. 1469-1479,
Dec. 2002.

[19] S. Yamashita, H. Sawada and A. Nagoya, “SPFD: A new Method to
Express Functional Flexibility,” in IEEE Trans. on Computer-Aided
Design, vol. 19, no. 8, pp. 840-849, Aug. 2000.

[20] J. Zhang, S. Sinha, A. Mishchenko, R. K. Brayton and M. C-. Jeske,
“Simulation and Satisfiability in Logic Synthesis,” in IWLS, 2005.

