Blockchain Meets Securities: A Scalable Tokenization Framework

REINA KE XIN LI, Department of Electrical and Computer Engineering, University of Toronto, Canada
SRISHT FATEH SINGH, Department of Electrical and Computer Engineering, University of Toronto, Canada
ANDREAS PARK, Rotman School of Management, University of Toronto, Canada and Department of Manage-
ment, University of Toronto Mississauga, Canada

ANDREAS VENERIS, Department of Electrical and Computer Engineering and Department of Computer
Science, University of Toronto, Canada

This paper presents a securities tokenization solution that brings the accessibility, transparency, efficiency, and innovation of
blockchain and decentralized finance to real-world securities. Tokenization in principle seems straightforward—an intermedi-
ary holds assets and issues 1:1 tokens—but decentralized finance applications (DeFi) introduce significant complications. Even
basic DeFi mechanisms, such as liquidity pools, pose challenges for tokenizing stocks and bonds because when assets are
pooled in smart contracts, ownership becomes unclear, hindering asset owners to access their entitlements, such as dividends,
coupons, or voting rights. Existing solutions often fail to address these challenges and are typically limited to specific security
types. Our solution, by contrast, generalizes to any security and any holding rights through fungible tokens and using separate
smart contracts for shareholders to redeem their entitlements. To address the decentralized ownership issue, our solution
employs off-chain accounting with additional logic for liquidity pools. We implement this on Ethereum, demonstrating that it
is 27% cheaper in gas costs than current alternatives. We also analyze the liquidity logic of over 90% of Ethereum’s liquidity
pools, confirming compatibility with our solution. Finally, we demonstrate its use for dividend-paying stocks, common stock,
mergers, and coupon-paying bonds.

CCS Concepts: « Applied computing — Digital cash; Economics; « Networks — Application layer protocols; « Information
systems — Information systems applications.

Additional Key Words and Phrases: Tokenization, Blockchains, Finance, Smart Contracts, Decentralized Applications

ACM Reference Format:
Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris. 0. Blockchain Meets Securities: A Scalable Tokenization
Framework. Distrib. Ledger Technol. 0, 0, Article 0 (0), 25 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Blockchain technology is a powerful tool promoting fairness, transparency, accessibility, efficiency, and security,
properties desirable in finance. These advantages have led to the development and enthusiastic adoption of
various decentralized finance (DeFi) protocols' leveraging blockchain with the goal of democratizing finance,

IThe market capitalization of popular DeFi protocols can be viewed at https://coinmarketcap.com/view/defi/.

Authors’ addresses: Reina Ke Xin Li, reinakx.li@mail.utoronto.ca, Department of Electrical and Computer Engineering, University of Toronto,
Toronto, Canada; Srisht Fateh Singh, srishtfateh.singh@mail.utoronto.ca, Department of Electrical and Computer Engineering, University of
Toronto, Toronto, Canada; Andreas Park, andreas.park@rotman.utoronto.ca, Rotman School of Management, University of Toronto, Toronto,
Canada and Department of Management, University of Toronto Mississauga, Mississauga, Canada; Andreas Veneris, veneris@eecg.toronto.edu,
Department of Electrical and Computer Engineering and Department of Computer Science, University of Toronto, Toronto, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 0 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2769-6472/0/0-ARTO

https://doi.org/XXXXXXX . XXXXXXX

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

HTTPS://ORCID.ORG/0009-0008-3205-574X
HTTPS://ORCID.ORG/0009-0008-7121-6171
HTTPS://ORCID.ORG/0000-0002-6749-8793
HTTPS://ORCID.ORG/0000-0002-6309-8821
https://doi.org/XXXXXXX.XXXXXXX
https://coinmarketcap.com/view/defi/
https://orcid.org/0009-0008-3205-574X
https://orcid.org/0009-0008-7121-6171
https://orcid.org/0000-0002-6749-8793
https://orcid.org/0000-0002-6309-8821
https://doi.org/XXXXXXX.XXXXXXX

0:2 « Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

removing intermediaries, and promoting innovation. As such, today’s DeFi ecosystem provides viable on-chain
alternatives for traditional financial systems and infrastructures.

In a agenda-setting speech on July 31, 2025, S.E.C. Chairman David Atkins announced “the launch of Project
Crypto—a Commission-wide initiative to modernize the securities rules and regulations to enable America’s
financial markets to move on-chain”? A central component of this vision is the tokenization of real-world securities
so that investors can take advantage of the accessibility and transparency of blockchains, with the potential to
eliminate intermediaries in the custody, management, and trading of the underlying assets. In fact, Citi’s annual
survey anticipates that by 2030, tokens and digital assets will drive 10% of market turnover [31]. As per the
January 23, 2025 United States Executive Order,? “individual citizens and private-sector entities [must be able to]
maintain self-custody of digital assets” In this broader context where the United States’ financial markets move
on-chain and where users can hold tokenized assets in self-custody, it is highly desirable that users also have
access to secondary markets and on-chain liquidity through DeFi protocols.

The process of tokenization is akin to the issuance of American Depositary Receipts (ADRs), exchange-tradable
certificates issued by a U.S. depositary bank representing a share of a foreign company’s stock [30]. Similarly, a
tokenization scheme entails a deposit of shares with a “trusted” custodian issuer, who issues on-chain tokens
representing these shares so that they may be traded on blockchain markets, creating an on-chain representation
of a traditional financial instrument.

On-chain financial markets would naturally have to enable the trading of tokenized publicly traded stocks using
the on-chain analog of traditional stock exchanges: decentralized exchanges. Decentralized exchanges are online,
open, and eliminate the need for brokers, clearinghouses, custodians, market makers, and other intermediaries
necessary for traditional stock trading [2]. Thus, with stock tokenization, the functions of traditional stock
exchanges can be translated seamlessly on-chain while improving accessibility, transparency, and efficiency for
investors. In fact, the authors in [23] argue that investors could save 30% of trading costs if stock trading was
organized using optimally designed, blockchain-based automated market makers.

However, even though the process of creating a token is well-established, the workings of DeFi applications
create significant barriers. A major challenge faced by stock tokenization in DeFi ecosystems is ownership
attribution. A stock is an investment contract that provides the owner with different rights, such as the right to
vote in shareholder meetings and the right to dividends [4, 6]. The issuer of tokenized shares of a stock must be
able to distribute the rights associated with the stock to the correct owners. Although tokens on blockchains
have well-defined holding accounts, in some cases, the account may be a smart contract which is only holding
the tokens on behalf of their owners [24]. Furthermore, some DeFi protocols, such as lending protocols and
decentralized exchanges, hold assets in liquidity pools, and the ownership of each token is not well-defined.
Previous works on securities tokenization fail to adequately address this challenge, as they either ignore assets
held by smart contracts [3, 8, 12, 20, 29, 32, 35], or restrict the tokenized asset’s use to custom permissioned
DeFi protocols with additional functionalities [26], thereby eliminating key advantages of DeFi such as the
inter-operability with most decentralized applications. Meanwhile, existing security token standards face the
same problems and focus only on compliance enforcement and regulated transfers [10, 13, 19].

This paper extends and generalizes the results in [21] that present a solution for tokenizing stocks on Ethereum
that translates the stock’s holding rights on-chain and addresses the challenges of ownership accounting. The
solution involves three parts: (i) a Stock Token Contract that provides a liquid tokenized representation of the
stock on-chain; (ii) the Off-Chain Accounting procedure that calculates the ownership of tokenized shareholdings;
and, (iii) a Rights Redemption Contract that allows tokenized shares to be redeemed for rights on the chain.

2“American Leadership in the Digital Finance Revolution”, delivered July 31, 2025.
3“Strengthening American Leadership in Digital Financial Technology”, issued January 23, 2025.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

https://www.sec.gov/newsroom/speeches-statements/atkins-digital-finance-revolution-073125
https://www.whitehouse.gov/presidential-actions/2025/01/strengthening-american-leadership-in-digital-financial-technology/

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:3

A Stock Token Contract implements a fungible and liquid token, making it operable with general DeFi
protocols. The Off-Chain Accounting eliminates the gas costs involved in the accounting, allowing for the
complex calculations required for dealing with smart contracts such as liquidity pools and for supporting an
unbounded number of on-chain shareholders. It works by calculating both shareholders’ wallet balances and their
contributions to DeFi pools at a particular block using blockchain event queries. Furthermore, it is adaptable to
the evolving regulatory landscape as the off-chain nature allows the accounting procedure to be easily upgraded,
in case, for example, it is decided that shareholders do not own tokens they contribute to DeFi pools. The result of
accounting is brought on-chain by a signed message from the issuer that allows on-chain shareholders to redeem
rights through a Rights Redemption Contract that performs signature verification, which can be customized to
distribute arbitrary holding rights.

The proposed solution has low gas costs, costing at least 27% less gas than other solutions for tokenizing
dividend-paying stocks presented in [35] and [18]. Furthermore, as opposed to the solutions in [35] and [18], our
solution is not limited to dividend-paying stocks—it can represent stocks with arbitrary holding rights such as
voting rights. Crucially, our solution allows inter-operability with general DeFi protocols including over 90% of
liquidity pools, and it can upgrade its accounting procedure without incurring additional costs of on-chain smart
contract updates.

The work in [21] focuses on stocks; here we expand the prior work by providing details for a more complex
tokenization use case—namely, coupon-paying bonds. For bonds, there is another layer of complexity in the
ownership accounting. Bondholders accumulate rights to the next coupon between coupon payments. Therefore,
when there is a transaction of bonds between coupon payments, the buyer must make an accrued interest payment
to the seller [7]. Accrued interest payment is based on the passage time since the last coupon payment. However,
similar to stock tokenization, the pooling of assets in DeFi complicates the distribution of accrued interest
payments considerably. Here we address this by proposing the use of an expanded version of our Off-Chain
Accounting procedure to account for ownership of the bond, not only at a single block (as in the case of, for
instance, dividend-paying stocks), but over the course of the entire period between coupon payments. This
approach therefore expands the payment options of bonds, possibly allowing for better risk sharing, and it
intuitively extends to other assets such as structured notes. Moreover, the approach can be applied, for instance,
to situations allowing an issuer to pay dividends or grant voting rights based on holding horizons.

Finally, this paper discusses on-chain shareholder voting, alluded to in [21], in further detail, addressing the
problem of fractional ownership and fractional voting which may occur on-chain and cause deviation from
real-world shareholder voting setups.

The remainder of the paper is organized as follows: Section 2 provides a background of the relevant tools and
concepts, Section 3 details the proposed solution, Section 4 describes a modification to the proposed solution to
accommodate bond tokenization, Section 5 presents an evaluation of the proposed solution, Section 6 discusses
the trust assumptions and use cases of the proposed solution, Section 7 provides an overview of the related works
in the literature, blockchain standards community, and industry, and Section 8 outlines potential directions for
future work.

2 BACKGROUND

This section presents the blockchain concepts relevant to the proposed solution, including the token standards
and cryptographic algorithms used in the solution, and the DeFi protocols that the solution is designed to operate
with.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

0:4 « Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

2.1 Ethereum Request for Comment Token Standards

Ethereum Request for Comment (ERC) token standards provide standardized APIs for interacting with specified
token types, such as ERC20 and ERC721. An ERC20 token is a fungible token smart contract that tracks the
balances of its holders [33]. An ERC721 token is a Non-Fungible Token (NFT) smart contract, where each token
has a unique tokenld that is mapped to its owner and other additional data [15].

2.2 Elliptic Curve Digital Signature Algorithm

Elliptic Curve Digital Signature Algorithm (ECDSA) is built upon elliptic curve cryptography, a form of public-key
cryptography that leverages the algebraic structure of elliptic curves over finite fields [27]. It is the algorithm
used to generate Ethereum public and private keys and to sign and verify Ethereum transactions.* OpenZeppelin
provides an audited library for the safe implementation of ECDSA signatures on-chain.’

2.3 EIP-712

EIP-712 defines a procedure for hashing and signing typed structured data [9]. In EIP-712, “\x19\x01” is prepended
to messages before they are signed, followed by a domain separator and the hash struct. The domain separator
encodes the name and version of the signing domain (e.g. name and version of the application), the active chain
ID, and the verifying contract’s address. The hash struct encodes the structured message datatypes and data.

2.4 DeFi Protocols

The DeFi protocols of interest in this work are lending protocols and Automated Market Makers (AMMs), which
have liquidity pools in which users deposit tokens.

2.4.1 Lending. Decentralized lending platforms replace lenders with liquidity providers, who provide liquidity
to a lending pool by depositing tokens. They are issued ERC20 liquidity pool tokens representing their deposits,
which they can burn to make withdrawals from the pool. A liquidity provider’s ownership of tokens in the pool is
proportional to the amount of liquidity they provide. For instance, on Aave,® Spark,” and Morpho [16], liquidity
providers can withdraw the same amount of tokens as they deposited. Meanwhile, on Compound® and Fluid,’
the amount is scaled by the platform’s exchange rate.

24.2 AMMs. AMMs are decentralized exchanges that replace traditional order book pricing with liquidity pools
and algorithmic pricing. Liquidity providers deposit tokens into an AMM’s liquidity pool at a rate determined
by the AMM’s invariant function, which are then used by exchange users to swap against at a rate that adjusts
dynamically based on the pool’s token balances. The pool can be structured as a uniform liquidity pool or as a
concentrated liquidity pool.

Uniform liquidity AMMs: In these AMMs, liquidity is distributed uniformly across the entire price range.
Liquidity providers are issued ERC20 liquidity pool tokens to represent their positions, which they can burn
to withdraw tokens from the pool. Their ownership is, again, proportional to the amount of liquidity they

4For more information, see https://ethereum.org/en/glossary/#ecdsa.

>The OpenZeppelin library documentation can be found at https://docs.openzeppelin.com/contracts/5.x/.

6Aave documentation can be found at https://docs.aave.com/developers/v/2.0/the-core-protocol/atokens and https://docs.aave.com/developers/
tokens/atoken.

7Spark documentation can be found at https://devs.spark fi/.

8Compound documentation can be found at https://compound.finance/docs/ctokens and https://docs.compound.finance/collateral-and-
borrowing/.

9Fluid documentation can be found at https://docs.fluid.instadapp.io/.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

https://ethereum.org/en/glossary/#ecdsa
https://docs.openzeppelin.com/contracts/5.x/
https://docs.aave.com/developers/v/2.0/the-core-protocol/atokens
https://docs.aave.com/developers/tokens/atoken
https://docs.aave.com/developers/tokens/atoken
https://devs.spark.fi/
https://compound.finance/docs/ctokens
https://docs.compound.finance/collateral-and-borrowing/
https://docs.compound.finance/collateral-and-borrowing/
https://docs.fluid.instadapp.io/

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:5

provide [34]. Protocols such as Uniswap V2 [2], Sushiswap V2,!° and PancakeSwap V2!! use a Constant Product
AMM (CPAMM), wherein the product of token balances in the pool is fixed. Other protocols like Balancer!?
use a constant geometric mean invariant with support for multiple tokens per pool, while Bancor!® extends the
CPAMM model with single-sided liquidity provision.

Concentrated liquidity AMMs (CLAMMs): CLAMMs allow liquidity providers to distribute their liquidity
along a selected price interval [1]. The price interval and the liquidity distributed along it is called a liquidity
position and is represented by an ERC721 NFT. CLAMMs maintain an invariant for each position, L = f(x,y),
where L is the liquidity amount, and x, y are the (virtual) token balances. The price is represented as a function
of ticks, p(i), where i is the tick, and is equal to %. Then, the invariant can be rewritten as y = g(p, L) and
x = h(p, L) for some functions g and h. For instance, in Uniswap V3, Sushiswap V3, and Pancakeswap V3, the
invariant is L = /Xy, the price is p = % the tick-to-price mapping is p(i) = 1.0001%, and x = % and y = L+/p.In
general, Equations (1) and (2) show the ownership of x and y tokens in the pool for a position with L liquidity in
the interval (p(i;), p(i,)), when the current price is p(ic).

Ax = max{h(max{p(ic), p(i1)}, L) — h(p(iu), L), 0} (1)
Ay = max{g(min{p(ic), p(in) }, L) = g(p(i1), L), 0})

2.5 Homemade Dividends

In traditional finance, Modigliani-Miller Dividend Irrelevance implies that, instead of being paid dividends,
shareholders can, equivalently, create homemade dividends by selling portions of their shares for cash [6]. This
concept can be used for the tokenization of dividend-paying stocks, wherein the tokenized stock is an ERC20
token pegged to a reserve of physical shares of the stock. When dividends are paid, the issuer uses the dividend
to buy physical shares of the stock from a traditional exchange and adds these shares to the reserve. After the
reserve is increased, each ERC20 token’s pegged value increases to the new ratio of shares in reserve to tokens
in circulation. Any on-chain price not reflecting this value increase creates an arbitrage opportunity where
one can buy the token on-chain for less and redeem it off-chain for more. Thus, arbitrageurs will ensure price
responsiveness in on-chain markets, allowing the token’s value to increase monotonically with every dividend
payment. As a result of the value increase and the divisibility of ERC20 tokens, shareholders wanting cash
dividends may create homemade dividends on-chain.

For instance, let x be the number of tokens in circulation and s be the shares in the reserve, so that one token
represents shares. A cash dividend of d per share (and thus % per token) is paid out, and the issuer receives sd
in dividends and buys % shares, adding them to the reserve, where p is the off-chain share price after dividend

payout. Then, the token represents 3 + ;—i shares. The value of the token on-chain converges to @ due to

arbitrage, so shareholders can sell s—i tokens on an exchange like Uniswap V3 to get 37“' in cash (ignoring fees),
which is the original cash dividend per token.

This solution is lightweight and inexpensive: dividend payments only require gas costs if shareholders choose
to create homemade dividends. It also does not disrupt liquidity pools as the reserve increases are agnostic to any
on-chain DeFi infrastructures. However, it can be expensive to swap small amounts on DeFi exchanges as the gas
costs do not scale with transaction value. Furthermore, the solution cannot generalize to stocks that guarantee its
holders other rights (such as voting), or assets that are not exchange-traded.

108ushiswap documentation can be found at https://docs.sushi.com/.

PancakeSwap documentation can be found at https://developer.pancakeswap.finance/.

12Balancer documentation can be found at https://docs.balancer.fi/reference.

3Bancor documentation can be found at https://bancor-network.gitbook.io/v2.1/master and https://docs.bancor.network/.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

https://docs.sushi.com/
https://developer.pancakeswap.finance/
https://docs.balancer.fi/reference
https://bancor-network.gitbook.io/v2.1/master
https://docs.bancor.network/

0:6 « Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

<<abstract>> <<abstract>>
ERC20Burnable Ownable
StockTokenContract

+ stockname : string

+ stocksymbol : string

+ decimals : uint8

mint(to : address, amount: uint256) : bool

rename (newstockname : string, newstocksymbol : string) : bool

Fig. 1. StockTokenContract class conforming with ERC-20 standard

3 TOKENIZING STOCK SECURITIES

The proposed solution allows stocks to be represented and traded on the blockchain, tapping into the resources
and liquidity available on-chain and enabling investors to take advantage of DeFi efficiencies and decentralization.
Meanwhile, the solution does not sacrifice a stock’s real-world properties such as the holding rights with which
it is associated, nor does it compromise the tokenized stock’s usability on-chain. The solution is designed to be
low in gas cost, generalizable to different securities types, DeFi-compatible, and adaptable/flexible. This section
presents the proposed solution in detail in its three parts: the Stock Token Contract, the Off-Chain Accounting
procedure, and the Rights Redemption Contract.'*

3.1 Stock Token Contract

The Stock Token Contract, deployed by the issuer, extends the OpenZeppelin ERC20 token smart contract,
enabling compatibility with DeFi protocols described in Section 2.4. While standard ERC-20 tokens have just a
name and symbol, this contract also includes a stockname and stocksymbol, which can be updated to allow for
changes in the stock’s name and symbol. The contract class is depicted in Figure 1.

3.2 Off-Chain Accounting

Accounting share ownership at a block (called the cutoff block) is done by querying the blockchain’s events
off-chain. First, each shareholder’s wallet balance at the cutoff block is calculated by querying the Stock Token’s
logged Transfer events, which are emitted upon transfer of any ERC20-compatible token, up to the cutoff
block. The wallet balance is the net of incoming and outgoing transfer amounts of that wallet address. Next,
the shareholders’ balances held in liquidity pools must be accounted for. These tokens may be held in lending
pools or uniform liquidity AMMs (uniform liquidity pools), or CLAMMs. To do this, the issuer will determine the
proportion of total liquidity that each shareholder can withdraw from the pool at the cutoff block. The issuer
maintains a whitelist of valid liquidity pools in each category by keeping a list of addresses of these pools, and
performs accounting for these pools.

3.2.1 Uniform Liquidity Pools. For each lending pool and uniform liquidity AMM, the issuer first calculates the
pool’s Stock Token balance at the cutoff block by querying the Stock Token’s logged Transfer events and netting
the transfers involving the pool. Then, for each shareholder, the issuer determines the shareholder’s balance of
the liquidity pool’s token, this time querying the liquidity pool token’s Transfer events. Finally, the amount of

14The contracts can be found at https://github.com/reinali07/tokenization.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

https://github.com/reinali07/tokenization

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:7

Stock Tokens attributed to each shareholder is their proportion of liquidity pool tokens, multiplied by the pool’s
Stock Token balance. This procedure is summarized in Algorithm 1.

Algorithm 1 Procedure for calculating attributed Stock Token for a uniform liquidity pool.

1: B « pool’s Stock Token balance

2: for each shareholder, i do

3. L; « i’s liquidity pool token balance
4: end for

5. L « Zi L;

6: for each shareholder, i do

7 result; « %B

8: end for

3.2.2 CLAMMs. Calculating shareholder pool proportions is more complicated in CLAMMs. In CLAMMs, each
position may have a different rate of conversion from liquidity to tokens, depending on the position’s tick interval.
Thus, dealing with CLAMMs requires more exchange-specific information than the previous case, which was
easily generalized. First, the issuer must include in its whitelist the address of the NFT position manager associated
with each CLAMM, as well as the factory contract (wherein one can lookup pools by token pairs and specified
fee). Next, we require knowledge of the pool’s invariant functions, g, h in Equations (1) and (2). Finally, we require
that shareholders report, before the cutoff block, their address, the liquidity pools they contribute to, and the
corresponding tokenId of any concentrated liquidity positions they hold.

The issuer first confirms the ownership of each on-chain shareholder’s reported NFTs by querying the NFT
contract’s Transfer events, which are emitted upon transfer of any ERC721-compatible NFT, and confirming
that the latest transfer of the NFT prior to the cutoff block is to the shareholder. The issuer then calls the NFT
contract’s positions() method to determine the tick interval of the position. The positions() method also
returns the token@ and token1 address, and the pool fees, which allows the issuer to call the pool factory
contract’s getPool () method to confirm the NFT corresponds to the reported pool. It also allows the issuer to
determine whether the Stock Token is token@ or token1 in the pool. Note that calling the positions() method
requires that the shareholder does not burn their NFT before the accounting is completed. This constraint does
not affect the shareholder, as positions can be closed out without burning their associated NFT. Then, the issuer
determines the NFT’s liquidity by querying the NFT contract’s IncreaseLiquidity and Decreaseliquidity
events for the tokenId, which are emitted upon liquidity position updates, and netting these updates.

Next, the issuer determines the pool’s tick, i, at the cutoff block. To do this, it will query the Pool contract’s
Swap events to find the last swap prior to the cutoff block, which contains the tick after the swap. Then, for
each NFT, the issuer uses Equation (1) or Equation (2) (if token® or token1 is the Stock Token, respectively) to
determine the number of Stock Tokens attributed to the on-chain shareholder. The procedure for accounting for
one shareholder’s concentrated liquidity position is summarized in Algorithm 2.

3.3 Rights Redemption Contract

On-chain shareholders are attributed the same rights as their off-chain counterparts, which they can redeem
or exercise on-chain. Rights on-chain can be tokenized and thus represented by different token types. In this
work, we consider three types of tokens: native tokens (e.g. Ether), ERC20 tokens (e.g. cryptotokens), and NFTs
(e.g. DAO membership). A discussion on the use cases of rights represented by these token types is provided in
Section 6.2.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

0:8 « Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

Algorithm 2 Procedure for calculating attributed Stock Tokens for a on-chain shareholder’s concentrated
liquidity position.

: Confirm position NFT ownership

: tokeno, tokenl, fee, ij, i, < NFTContract.positions(nft)
: Check pool == PoolFactory.getPool(token0,token1,fee)
L « position liquidity

: i. « tick before cutoff

. if Stock Token is token0 then

result — max(h(max(p(ic), p(in)), L) - h(p(iy), L), 0)
. else if Stock Token is tokenl then

result — max(g(min(p(ic), p(iu)), L) - g(p(ir), L),0)
: end if

=
(=]

ETHMessage
RedemptionMessage A
+ messageld : uint256 ERC20Message
* holder : address =" |+ erc20Token: address
+ value : uint256
+ signature : bytes D

NFTMessage

+ nftData: abstractStruct

Fig. 2. Signed redemption message data structures for ETH, ERC20 tokens, and NFTs.

The Rights Redemption Contract allows on-chain shareholders to redeem the rights they are owed after their
share ownership is accounted off-chain by the issuer (Section 3.2). The contract extends the OpenZeppelin
EIP-712 contract and the data structure being signed depends on the type of token being distributed. The base
Rights Redemption Contract allows shareholders to redeem tokens by providing a message with a valid ECDSA
signature. The message is constructed and signed by the issuer after accounting, and distributed to on-chain
shareholders off-chain on a public channel. The message data structure is shown in Figure 2, where the value is
the amount of the tokenized rights the shareholder can claim. In the case of native tokens, no additional data is
required. ERC20 token redemption requires messages to include the address of the ERC20 token in which the
right is denominated. For NFT-denominated rights, the message can also include additional structured data.

The base contract is depicted in Figure 3. It keeps track of messages that have been redeemed by mapping
unique message IDs to their redemption status to ensure that a message cannot be redeemed more than once. This
replaces the single incrementing nonce typically used in ECDSA contracts as message IDs allow the issuer to issue
indefinitely many messages at once that may be redeemed in any order. When a message is being redeemed, the
contract first checks that the message’s ID has not yet been redeemed. It then uses the message and the signature
to recover the signer address and verifies that it belongs to the issuer. This recovery procedure also confirms
the correct redeemer and signature domain. Upon successful signature verification, the contract transfers the
recipient the tokens specified by the message. The implementation of the redeem() and verify() methods are
depicted in Figure 4. The signature is passed into the redeem() method as its components v, r, and s. The ellipses
represent the possibility of including other data in the signed message, as required.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:9

<<abstract>> <<abstract>>
EIP712 Ownable

<<abstract>>
RightsRedemptionContract

+ messages : mapping(messageld : uint256 => Message)
- messageTypeHash : bytes32

+ redeem(message : RedemptionMessage) : bool
- verify(message: RedemptionMessage) : bool

- releaseTokens(message : RedemptionMessage) : bool
T

v

struct Message

+ redeemed : uint256

Fig. 3. Base RightsRedemptionContract class

function redeem(
uint256 messageld,uint256 value,...,uint8 v, bytes32 r, bytes32 s
) external {
verify(messageld,value,...,v,r,s);
releaseTokens (msg.sender,value,...);
3
function verify(
uint256 messageld,uint256 value,...,uint8 v, bytes32 r, bytes32 s
) internal {
Message storage message = messages[messageld];
require(message.redeemed == 0,"Already redeemed");
message.redeemed = 1;
bytes32 structHash =
keccak256 (abi.encode(messageTypeHash ,messageld,msg.sender,value,...));
bytes32 h = EIP712._hashTypedDataV4(structHash);
address signer = ECDSA.recover(h,v,r,s);
require(signer == owner,"Invalid Signature");
3

Fig. 4. RightsRedemptionContract’s redeem() and verify() methods.

3.3.1 Native Tokens and ERC20 Token. When shareholder rights are distributed in the form of native tokens or
ERC20 tokens, no additional functionality is required for the Rights Redemption Contract. However, for native
tokens, the contract must include an empty receive() function to receive native tokens so that it can eventually
distribute them. The messageTypeHash for these contracts are:

keccak256 ("Redeem(uint256 messageld,address holder,uint256 value)")

and,
keccak256 ("Redeem(uint256 messageld,address holder,uint256 value,address erc20Token)")

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

0:10 - Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

for native tokens and ERC20 tokens, respectively.

3.3.2 NFTs. When shareholder rights are distributed in the form of NFTs, the Rights Redemption Contract
also extends the Openzeppelin ERC721 contract. Additionally, it may have data members that map NFTs to
structured data. It may also implement additional methods for the usage of the NFT. An example of such is given
in Section 6.2. The messageTypeHash for these contracts is:
keccak256 ("Redeem(uint256 messageld,address holderAddress,uint256 value,abstractStruct
nftData)")
where the nftData is optional NFT data of type abstractStruct.

4 TOKENIZING BONDS

A bond traditionally has two components: the principal (face value), F, and the coupons, measured by the coupon
rate c of the face value, C = ¢ - F. A person who holds the bond between two coupon dates (the coupon period)
accrues a claim on the latter coupon payment based on the fraction of time in that period that they hold the bond.
This claim is referred to as accrued interest [7]. When the bond trades between coupon payments, the buyer has
to pay the seller the price for the bond and pass on the accrued interest to the seller. Formally, when the length of
the time between two coupon payments is T and the bond changes hands after ¢t < T time since the last coupon
payment, the accrued interest is %C.

In a simple peer-to-peer sale, the buyer of a bond pays the purchase price and the accrued interest, £C, to the
seller. However, if the bond is not traded over-the-counter, but rather with a liquidity pool, there may be issues,
as existing liquidity pool contracts cannot, to the best of our knowledge, handle the accrued interest portion of
the trade.

Our tokenization procedure provides an alternate solution that can accommodate DeFi trading. Namely, the
blockchain keeps track of all bond trades, and the issuer allocates the respective claims once the coupon itself has
been paid, based on each owner’s holding horizons in the coupon period. This approach implies that all interim
owners can claim their portion of the coupon (or, rather, their accrued interest) only when the coupon payment
occurs, but the net payment is identical to that in the traditional approach. More broadly, this approach allows for
what economists call the expansion of the contract space: in addition to handling the institutional arrangements
for traditional bond trading, our process can also accommodate novel arrangements for asset payments. For
instance, our process would allow firms to issue dividends or voting rights based on holding period horizons. In
principle this allows our approach also to be applied to other assets than bonds and equities such as structured
notes.

An additional advantage of this approach is that a potential default risk for a coupon payment is shared between
the coupon claimants. In traditional bond sales, the buyer passes on the accrued interest prior to receiving the
coupon payment. If the bond issuer defaults on the coupon payment, the seller is unaffected, but the buyer is
not compensated for the amount it passed on to the seller. In our approach, it is the issuer that effectively pays
out accrued interest, so any buyers and sellers bear the same risk. Furthermore, the process also allows for the
aggregation of multiple payments when a bond changes hand back and forth multiple times, simplifying the
bond sale process.

This section describes a modified version of the Off-Chain Accounting procedure detailed in Section 3.2 to
accommodate this novel approach for coupon payments. In this section, we refer to the token, identical to the
Stock Token described in Section 3.1, as the Bond Token. The ownership of Bond Tokens in a coupon period is
calculated as the time-weighted average of the bondholder’s balance of the bond token over the period, including
the assets held both in the bondholder’s wallet and in liquidity pools.

Before we outline the formal procedure, we first provide several illustrative examples.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:11

Table 1. Average Wallet Balance Example

Time Txn Amount Time A Balance

30 s +100 100
100 s Start of period 10s 100
110s -40 50s 60
160 s +20 40s 80
200s End of period

Average period balance: 72

Table 2. Average Uniform Liquidity Pool Balance Example

LP Bond Pool Total LP LP
Time Token Txn Token Txn Time A Balance Tokens Balance
100 s Start of period 30s 100 100 10
130 s -50 (Swap) 10s 50 100 10
140's -5 -5 (LP) 20's 45 95 5
160 s +5 +5 (LP) 40 s 50 100 5

200 s End of period
Average period balance: 4.97

4.1 Coupon Period Accounting Example

Table 1 shows a sample transaction history for an address transacting the Bond Token in a coupon period from
time 100 seconds to 200 seconds. At each transaction, the balance is the running sum of transaction amounts. The
final amount of Bond Tokens attributed to the wallet is the time-weighted average balance over the 100-second
coupon period.

Table 2 shows a sample transaction history for a liquidity provider (LP) of a Bond Token uniform liquidity
pool. For simplicity, the transactions in the pool occur as though liquidity pool tokens (LP tokens) are one-to-one
with Bond Tokens, although this is often not the case with real liquidity pools. Three transactions occur here: at
130 s, a user swaps 50 Bond Tokens out of the pool; at 140 s, the LP withdraws 5 Bond Tokens from the pool,
burning 5 LP tokens; and at 160 s, a different LP deposits 5 Bond Tokens to the pool, minting 5 LP tokens. The
Bond Tokens attributed to the LP is the time-weighted average of the LP’s share of the liquidity pool, calculated
as the ratio of the LP Balance column to the Total LP Tokens column, times the pool’s Bond Token balance, shown
in the Pool Balance column.

Finally, Table 3 shows a sample transaction history for a liquidity position in a Bond Token CLAMM. Two
transactions occur here: at 120 s, the LP increases its position liquidity by 30; and at 150 s, a swap occurs, updating
the pool’s tick to 1010. At each of these updates, either Equation (1) or Equation (2) (if token® or token1 is the
Bond Token, respectively) is applied, and the time-weighted average of the result is the amount of Bond Tokens
attributed to the position. In this example, suppose token® is the Bond Token, p(i) = 1.0001%, h(p,L) = \/%, and

the liquidity position’s price interval is (p(1000), p(1010)) = (1.1052,1.1063). Then, Equation (1) becomes

Ax = ma L L 0 3)
= X —
max{p(i;), 1.1052} 1.1063’

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

0:12 « Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

Table 3. Average CLAMM Balance Example

Time Liquidity A Tick Update Time A Liquidity Latest Ticki. p(i.) Ax (Eq(3))

100 s Start of period 20s 20 1000 1.1052 0.0180
120 s +30 30s 50 1000 1.1052 0.0450
150 s 1010 50s 50 1010 1.1063 0

200 s End of period
Average period balance: 0.0171

4.2 Coupon Period Accounting Procedure

We now specify the detailed accounting procedure, starting with wallet balances. To account for the bonds
held in the bondholder’s wallet, the issuer begins by querying all Bond Token Transfer events up to the end
of the period. For each address, all transactions are netted up to the beginning of the period to determine the
beginning-of-period wallet balance. Then, the wallet balance over the period is calculated as the running sum of
transactions. The issuer also calculates the time difference between one transaction and the next for each address.
Finally, the weighted average of the balances over the period is taken, with the time differences as weights. The
procedure is summarized in Algorithm 3. Then, the issuer must also perform accounting for bond tokens held in
liquidity pools, which is described next.

Algorithm 3 Procedure for calculating attributed Bond Token for wallet balances.

1: A « total number of seconds in coupon period
2: B « blocks with Bond Token transfer events up to end of period
3: for each bondholder i do
4: B; < blocks in B with transactions involving i in period (sorted by timestamp)
5. for (start of period and) each transaction b in B; do
6 6 « seconds between b and next block in B; or end of period
7: T; < i’s balance after b
8 result; « result; + T; - %
9: end for
10: end for

4.2.1 Uniform Liquidity Pools. For each lending pool and uniform liquidity AMM, the issuer queries all relevant
events up to the end of the period:

e Bond Token Transfer events involving the pool, indicating the pool’s Bond Token balance updates, and
o The liquidity pool token’s Transfer events involving any address (except for the 0x@ address and the pool
itself), indicating liquidity pool supply updates.

At every block in the period with an update (as well as at the start of the period), the issuer calculates the
bondholder’s liquidity pool token balance at that block by maintaining a running sum of the liquidity supply
updates involving that address. We divide this balance by the total liquidity supply across all liquidity providers at
that block. Then, this ratio is multiplied by the pool’s Bond Token balance at that block, which is the running sum
of all Bond Token balance updates. Finally, the weighted average of these resulting values is computed over the
period, using the time difference between consecutive update blocks as weights. This procedure is summarized in
Algorithm 4.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:13

Algorithm 4 Procedure for calculating attributed Bond Token for a uniform liquidity pool.

1: A « total number of seconds in period

2: B «— blocks with pool Bond Token balance updates or liquidity supply updates up to end of period
3: for (start of period and) each block b in B in period do

4: 0 « seconds between b and next block in B or end of period

5. T « pool Bond Token balance after b

6: for each bondholder, i do

7: L; « i’s liquidity pool token balance after b
8: end for

9: L Zi L;

10 for each bondholder, i do
11: result; « result; + % -T- %
12: end for

13: end for

4.2.2 CLAMMSs. As in Section 3.2.2, the issuer must have knowledge of each CLAMM pool’s NFT position
manager, factory contract, and invariant functions. Bondholders are required to report the liquidity pools they
contribute to and the corresponding tokenId of the positions they hold. For each position, the issuer uses the NFT
contract’s positions() method to determine the position’s tick interval and the factory contract’s getPool()
method to confirm the associated liquidity pool. The issuer retrieves all relevant events for the tokenId up to the
end of the period:

e IncreaselLiquidity and DecreaselLiquidity events from the NFT position manager contract,

e Transfer events from the NFT position manager contract indicating ownership changes of the position’s
NFT, and

e Swap events from the liquidity pool contract, indicating tick updates.

These events mark the updates to the bondholder’s Bond Token holdings. At each block in the period with
an update (as well at the start of the period), the issuer calculates the position’s liquidity by maintaining a
running sum of the IncreaseLiquidity and Decreaseliquidity events’ values. Additionally, the bondholder’s
ownership of the position’s NFT is determined by tracking the net effect of the NFI’s Transfer events up to
that block. For blocks where the bondholder does not own the NFT, the position’s liquidity is taken to be 0. The
issuer also determines the pool’s latest tick up to that block, using the Swap event data. Based on the position
liquidity and tick value, the issuer applies Equation (1) or Equation (2) (if token® or token1 is the Bond Token,
respectively) to calculate the bondholder’s holdings at that block. Finally, the weighted average of these holdings
is computed over the period, using the time difference between consecutive update blocks as weights. This
procedure is summarized in Algorithm 5.

5 EVALUATION

The performance of the proposed solution is evaluated against the four metrics/properties introduced at the
beginning of Section 3: gas cost, the ability to generalise to stocks with arbitrary holding rights, the ability to
operate seamlessly with general DeFi protocols without disruption, and the ability to adapt to arbitrary accounting
methods. We also measure the time required to run the accounting procedure.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

0:14 « Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

Algorithm 5 Procedure for calculating attributed Bond Token for a CLAMM position.

1: A « total number of seconds in period

2: token0, tokenl, fee, ij, i, «— NFTContract.positions(nft)
3: Check pool == PoolFactory.getPool(token0,token1,fee)
4: B « blocks with liquidity updates, nft transfers, or tick updates up to end of period (sorted by timestamp)
5: if Bond Token is token0 then
o fLi)

7 — max(h(max(p(ic). p(in)), L) — h(p(iu), L), 0)

8: else if Bond Token is tokenl then

9: f(L, ic)

10: max(g(min(p(ic), p(iu)), L) = g(p(ir), L), 0)

11: end if

12: for (start of period and) each block b in B in period do

13: § « seconds between b and next block in B or end of period
14: T « 1if bondholder owns position nft after b,

15: otherwise 0

16: L « position’s liquidity after b

17: i, « latest tick up to b

18: result « result + f(L,i.) - T - %

19: end for

5.1 Gas cost

The gas cost of the proposed solution is realized in the on-chain components: the Stock/Bond Token Contract and
the Rights Redemption Contract. The costs are the same for both the tokenized stock use case and the tokenized
bond use case as the use cases differ only in the off-chain component. The gas costs are measured by deploying
the contracts on a local Ethereum network. The Stock/Bond Token Contract is an extension of ERC20 and the
gas costs associated with calling its methods are equal to the standard ownable and burnable ERC20 contract.
Deployment of the Stock/Bond Token Contract costs 400k more gas as it implements one extra function and two
extra data members.

Table 4 summarizes the gas cost for the Rights Redemption Contract’s deployment, redeeming a message,
and reverted redemption attempts. The order of operations is checking (and updating) whether a message has
already been redeemed, verifying the message signature, and finally, releasing tokens. Based on this order, Table 4
indicates, roughly, that checking and updating whether a message has been redeemed costs 26-27k gas, verifying
a signature costs 28k gas, and releasing tokens takes 9k, 18k, and 62k gas for ETH, ERC20, and NFTs respectively.
In comparison, transferring ETH costs 21k gas, transferring standard ERC20 tokens costs 30k gas, and minting
standard mintable ERC721 NFTs costs 57k.

5.2 Generalizing to arbitrary holding rights

The proposed solution is able to handle any holding rights that can be represented as ETH, ERC20 tokens, or NFTs.
This includes rights such as dividend payments, coupon payments, and voting in shareholder meetings, which
are discussed in Section 6.2. Moreover, it is possible to extend the Rights Redemption Contract to accommodate
rights that come in other forms, as long as they can be represented as on-chain tokens that may be transferred or
minted by the Rights Redemption Contract to the shareholder.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:15

Table 4. Gas used for token redemption

Contract Token Type
action ETH ERC20 NFT
Deployment 1,187k 1,168k 2,735k
Redeem 63k 73k 116k

Failed: already redeemed 26k 27k 26k
Failed: invalid signature 54k 55k 54k

L 1.1%
e 11 %
31%
] Aave [] Spark Uniswap []Balancer
L] Compound L] Sushiswap
[[IMorpho Fluid [[]Bancor Pancakeswap
Fig. 5. Compatible lending protocols by TVL, 95.6% of total. Fig. 6. Compatible AMMs by TVL, 91.5% of total.

5.3 Operability with DeFi

The Stock/Bond Token Contract implements the ERC20 API, making it operable with DeFi protocols using ERC20
tokens. The accounting procedure is also flexible in its operability as the off-chain nature allows it to be upgraded
to maintain compatibility with potential new DeFi liquidity pool logic. As it is, both the procedures in Section 3.2
and Section 4.2 are compatible with the top DeFi liquidity pools. The top five DeFi protocols on Ethereum by total
volume locked (TVL) in the lending category and the AMM category are shown in Figures 5 and 6, respectively.'
These protocols are compatible with the accounting procedure as they are lending pools, uniform liquidity AMMs,
or CLAMM:s. They make up 95.6% of lending pools and 91.5% of AMMs by TVL. These are not exhaustive in
terms of compatibility—for instance, other protocols forked from Uniswap are also compatible due to the liquidity
pool logic.

5.4 Adapting to arbitrary accounting methods

The off-chain nature of the two accounting procedures allow them to adapt to accommodate evolving regulations
or decisions regarding the ownership accounting of tokenized stocks or bonds. For instance, if it is decided that
on-chain shareholders/bondholders do not own any tokens they contribute to liquidity pools, the accounting

15From https://defillama.com/protocols/Lending/Ethereum and https://defillama.com/protocols/Dexes/Ethereum (accessed May 11, 2024).

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

https://defillama.com/protocols/Lending/Ethereum
https://defillama.com/protocols/Dexes/Ethereum

0:16 « Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

Table 5. Accounting procedure running time

Wallet balances Uniswap V2 Uniswap V3
Number of users 380k! 3k? K3
Time per user 0.02 ms 2.67 ms 35t
Total time 6s° 8 st 3000 s

1 From https://etherscan.io/token/0x1f9840a85d5af5bf1d1762f925bdaddc4201f984 (accessed May 11, 2024).
2From https://etherscan.io/token/0xd3d2E2692501A5¢9Ca623199D38826¢513033a17 (accessed May 11, 2024).
3 From https://dune.com/queries/4710117.

4 From https://dune.com/queries/3715137.

5 From https://dune.com/queries/3713463.

® From https://dune.com/queries/3708748.

procedure can simply skip the accounting for liquidity pools. Furthermore, the modularity means that updates
to the accounting procedure or redeployment of the Rights Redemption contract leave the Stock/Bond Token
Contract itself unaffected.

5.5 Running time

The time required to perform accounting, taking the Uniswap token (UNI) as the stock token, is summarized
in Table 5. The running time is measured as the time to retrieve the necessary event logs and perform the
calculations to account for the wallet balances of the holders of UNI, the liquidity providers of a Uniswap V2
UNI/ETH pool, and the liquidity positions of a Uniswap V3 UNI/ETH pool. The log queries are done using Dune
SQL’s free tier. The results present a slight improvement in speed compared to [21] due to optimizations in
the SQL queries. The work in [21] employed repetitive and nested Select queries, which fetch and process the
same data multiple times. Meanwhile, the results here use With queries in order to reuse processed data from
sub-queries, rather than repeating the sub-query. These queries serve only as demonstrations, as Dune SQL’s
free tier is not optimized for query performance. Using other APIs or storing and querying the data locally may
result in better performance.

For dividend payments, the record date, the date at which the shareholders’ holdings are recorded for payment,
is typically several weeks prior to the actual payment [6]. For shareholder voting, the record date is on or before
the day that notice of a meeting is issued, which typically occurs several weeks prior to the meeting [11, 17]. As
the accounting for each pool takes less than an hour in the most complex case (Uniswap V3), there is more than
enough time to complete accounting.

Furthermore, we summarize the running time for the modified, more complex accounting (detailed in Section 4.2)
required to manage accrued interest payments for tokenized bonds in Table 6. These running times tend to be
longer than the stock accounting case because it requires block-by-block data and calculations. Depending on the
length of a coupon-period and the amount of activity in liquidity pools (such as trades, borrowing and lending
operations), the running time can become significant. However, because coupon payments occur on scheduled
dates, the issuer can perform accounting in parts. For instance, if a coupon is paid yearly, the issuer can perform
accounting quarterly and save the results, aggregating them at the end of the year.

6 DISCUSSION AND USE CASES

This section presents a discussion on the trust assumptions related to off-chaining calculations and details
how our solution is applied in four use cases: dividend payments, coupon payments, shareholder voting, and
mergers/acquisitions.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

https://etherscan.io/token/0x1f9840a85d5af5bf1d1762f925bdaddc4201f984
https://etherscan.io/token/0xd3d2E2692501A5c9Ca623199D38826e513033a17
https://dune.com/queries/4710117
https://dune.com/queries/3715137
https://dune.com/queries/3713463
https://dune.com/queries/3708748

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:17

Table 6. Accounting procedure running time for tokenized bonds in quarter-year coupon period 2024-01-01 to 2024-04-01

Wallet balances Uniswap V2 Uniswap V3
Number of users 380k 3k 1k
Time per user 0.02 ms 60 ms 45!
Total time 6 s 3 min® 4000 s

1 From https://dune.com/queries/4585810.

2 From https://dune.com/queries/4598320.

3 The query performs accounting for 1/8th of a year (2024-01-01 to 2024-02-15) in 1 minute. Dune SQL’s free tier
allows a maximum runtime of 2 minutes, but we estimate a 2-3 minute runtime for a quarter-year period. From
https://dune.com/queries/4585561.

6.1 Trust Assumptions

Our proposed approach has trade-offs. The accounting process introduces centralization, but has lower cost
because payout calculations are performed off-chain, and only calculation results are entered on-chain through
a signed message. The centralization manifests itself in the token issuer’s control over redemption, allowing
them to refuse a shareholder their rights by refusing to provide a signed message. In an on-chain-only solution,
depending on the implementation, the rights redemption process would typically be governed by a transparent
smart contract over which the token issuer has less fine-grain control. However, even on-chain smart contracts
are not necessarily fully decentralized. Smart contracts can include provisions for their owners to arbitrarily
amend access parameters. For example, the stablecoins USDT and USDC allow their respective issuers—Tether
for USDT and Circle for USDC—to blacklist specific blockchain addresses, blocking their access to the respective
coins.'® This means users must trust Tether and Circle to adhere to their policies of blacklisting addresses only in
accordance with regulations.

That being said, in our proposed solution, the token issuer’s actions are auditable. An individual shareholder
can verify the issuer’s accounting results by simply redoing the calculation. This is possible as the procedure for
one’s accounting requires only publicly available blockchain data and knowledge of one’s own CLAMM positions.
Similarly, third parties can also verify and audit the calculations (provided with shareholders’ CLAMM positions)
if required for regulatory purposes. Therefore, since off-chain calculations can be verified by other parties, any
tampering or mistake by the issuer is evident.

Most importantly, in the case of securities tokenization, the issuer is already inherently a point of centralization
with a host of formal legal requirements and regulatory obligations. For instance, the issuer has custody of the
physical shares, is responsible for relaying holding rights from the security issuer to the on-chain shareholders,
and administers the token smart contracts. In any tokenization solution, such an issuer will be regulated to ensure
it performs its duties fairly and correctly and regulatory recourse must be available for shareholders. Hence, it is
fair to assume that the issuer is trusted and there is a fair, centralized system off-chain that regulates and oversees
the issuer, regardless of whether the solution is fully on-chain. Arguably, since issuer actions and ownership
attribution are auditable, our solution signifcantly improves and expands upon traditional procedures, making
frauds like the German Cum/Ex scandal impossible.

Finally, the results of off-chain accounting are uploaded faithfully to the blockchain. The Rights Redemption
contract uses the issuer’s signature to ensure that messages are not forged by the shareholder, are not reused,
and are redeemed by the correct shareholder.

16Both issuers have exercised this authority; see https://cointelegraph.com/news/tether-freezes-27-million-usdt-sanctions-garantex-russia
and https://www.theblock.co/post/162172/circle-freezes-usdc-funds-in-tornado-cashs-us-treasury-sanctioned-wallets.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

https://dune.com/queries/4585810
https://dune.com/queries/4598320
https://dune.com/queries/4585561
https://cointelegraph.com/news/tether-freezes-27-million-usdt-sanctions-garantex-russia
https://www.theblock.co/post/162172/circle-freezes-usdc-funds-in-tornado-cashs-us-treasury-sanctioned-wallets

0:18 « Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

6.2 Use Cases

6.2.1 Dividend Payments. For a dividend-paying stock, the issuer deploys, along with the Stock Token Contract,
a dividend Rights Redemption Contract, in which the issuer will deposit the dividends as ETH or ERC20 tokens
to be redeemed by on-chain shareholders.

(1) The company declares a future dividend payment.

(2) The issuer notifies on-chain shareholders of the accounting cutoff, e.g. the first block after the record date.

(3) On-chain shareholders report, off-chain, a list of pools and NFTs, as in Section 3.2, prior to the cutoff.

(4) After the cutoff, the issuer accounts for each on-chain shareholder using the procedure in Section 3.2,
multiplying the result by the dividends per share.

(5) The issuer writes, signs, and sends (off-chain) to each shareholder a message with the amount of dividends
to pay and the shareholder’s address. If the dividend is paid in ERC20 tokens, the message also contains the
address of that ERC20 token.

(6) When the issuer receives the dividends from the company, it deposits the dividends to the Rights Redemption
Contract.

(7) The shareholder passes the message to the dividend Rights Redemption Contract to claim their dividends.

6.2.2 Coupon Payments. For a coupon-paying bond, the issuer deploys, along with the Bond Token Contract, a
coupon Rights Redemption Contract, in which the issuer will deposit the coupons as ETH or ERC20 tokens to be
redeemed by on-chain bondholders. This case is almost identical to the case of dividend-paying stocks, with the
difference being the accounting procedure used (Section 4.2 in this case) and that bonds have regular coupon
payments, meaning the issuer and bondholders can anticipate future accounting cutoffs. Bondholders, similar to
shareholders, also report their pools and NFTs prior to the accounting cutoff which could, in this case, be set to
the first block on the upcoming coupon payment’s record date.

6.2.3 Shareholder Voting. For common stock, the issuer deploys, along with the Stock Token Contract, a voting
Rights Redemption Contract, which mints voting NFTs to on-chain shareholders and acts as a general purpose
voting contract.

(1) The company announces a shareholder’s meeting.

(2) The issuer notifies on-chain shareholders of the accounting cutoff, e.g. the first block after the record date.

(3) On-chain shareholders report a list of pools and NFTs (Section 3.2) prior to the cutoff.

(4) After the cutoff, the issuer performs accounting using the procedure in Section 3.2.

(5) The issuer writes, signs, and sends (off-chain) to each shareholder a message with the number of votes, the
shareholder’s address, and a vote ID specifying the vote the shareholder may partake in.

(6) The shareholder passes the message to the voting Rights Redemption Contract and is issued an NFT
containing the vote ID and the number of votes, which they can cast to the same contract (Figure 7),
emitting an event with the vote ID, choice, and number of votes cast.

(7) After the vote deadline, the issuer queries the event logs to tally the vote. This tally can be verified by any
party, including the Company holding the vote.

Votes can be conducted either on- or off-chain. For example, a public vote may be conducted on-chain for
transparency. Figure 7 depicts a simple smart contract method for vote casting, under the assumption that voting
is public and conducted on-chain.

In some cases, though, it may be necessary to have the voting be conducted anonymously, which would require
more complex smart contracts. Alternatively, for privacy preservation, it is possible to use anonymized off-chain
voting methods (e.g. secret ballots often used by national elections). To register voters off-chain, have voters
present the signed message from step (5) and cryptographically prove ownership of the keys corresponding
to the address in the message to the off-chain voting administrator. In either case, the Off-Chain Accounting

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:19

procedure is used to determine the on-chain shareholder balances and positions. The issuer’s signed messages
containing the accounting results can then be used for on-chain votes with a Rights Redemption Contract, or
used for off-chain votes to register voters as described above.

Another layer of complexity for shareholder voting arises in the translation of on-chain shareholders’ votes
to the real world, for which some extra work may be required. This is because tokens on-chain, being ERC20
compatible, may be configured to have the additional property of being divisible—shareholders can own fractions
of shares on-chain. However, physical shares often cannot be divided. This means that the expectation in the real
world is that one share can cast a single vote, which conflicts with the on-chain ability to cast fractional votes
for each fraction of a tokenized share. As such, when votes from on-chain shareholders are aggregated to be
cast off-chain, there may be the case where one share’s vote is split among different choices. In the tokenization
of a real world asset, the framework must be able to resolve this in order to translate the will of the on-chain
shareholders to the real world vote.

A practical approach is to aggregate the on-chain votes and round down (i.e, truncate) any leftover fractional
votes. In all cases, votes must be rounded down to avoid conflict and misrepresentation. For example, if votes
were rounded normally, the following unwanted scenarios may occur:

(1) Shareholder 1, with 0.5 shares, votes for option A, while shareholder 2, with 0.5 shares, votes for option B.
In this case, rounding both votes to 1 exceeds the number of votes allowed between the two shareholders.

(2) Shareholder 1, with 0.4 shares, votes for option A, while shareholder 2, with 0.6 shares, votes for option
B. Here, rounding the votes to 0 and 1 means that shareholder 1’s vote is misrepresented as option B, i.e.,
shareholder 1 is effectively forced to vote for option B.

Hence, while rounding down means that some votes are discarded, it ensures that the total number of on-chain
votes does not exceed the number of votes allowed between the on-chain shareholders and that shareholders are
not misrepresented due to having smaller fractional ownership. Furthermore, as rounding down occurs after
aggregation, at worst, only one vote per option is discarded, preserving the integrity of the voting outcome while
accommodating the limitations of translation to real-world systems.

Moreover, although discarding fractional voting rights may appear heavy-handed, such an approach is not
without precedent: when two firms merge, a so-called “hold-out” who seeks to block a deal may be “frozen out™:
the firm performs a reverse split of the outstanding shares (e.g. 10 shares become 1) until the hold-out’s shares
are fractional, at which point this party loses their ability to block the merger.

The voting aggregation problem may not arise when a stock is issued natively on-chain or when the vote
is conducted entirely on-chain, as fractional votes can be allowed without the need to match physical share
certificates to votes. In some cases, real-world voting rules may also permit fractional votes. Even blockchain
voting, however, has a maximum decimal precision. The smallest representable unit effectively becomes the
smallest voting unit, making the question one of unit scale rather than indivisibility. The accounting results must
be truncated accordingly, rounding down for the same reasons described above.

6.2.4 Mergers and Acquisitions. When a merger occurs, there are several possibilities: shareholders are paid out
for their shares, shareholders exchange their shares of the old stock with shares of the new stock, or a mix of the
two [5]. If shareholders exchange their shares, the issuer’s physical holdings will be swapped. The issuer will
then invoke the rename () function of the Stock Token Contract, updating the stockname and stocksymbol in
Figure 1. However, this information may not be updated on blockchain explorers, such as Etherscan. To avoid
confusion, the Stock Token Contract’s name and symbol can be initially set to a unique identifier instead of the
stock’s actual name and symbol. If, instead, shareholders are paid out, on-chain shareholders send their tokens to
a burning contract, which transfers them ETH or ERC20 tokens for every Stock Token it burns. In the case of a
mixture of swapping and payout, the Stock Token can be renamed and the dividend payment process takes place
to execute the payout.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

0:20 - Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

function castVote(uint256 tokenId, uint256 value, uint8 choice) public {
VotingNFT storage vote = tokenData[tokenId];
require(owners[tokenId] == msg.sender, "Unauthorized voter");
require(value <= vote.value,"Not enough votes");

vote.value = vote.value - value;
emit Voted(vote.voteld, choice, value);

Fig. 7. Implementation of simple vote casting for shareholder voting.

7 RELATED WORK

The tokenization of securities has been explored both in the literature, the blockchain community, and in the
financial industry. The literature to date focuses on regulatory compliance and dividend distribution, but provides
inadequate consideration for the feasibility of dividend distribution in terms of gas costs, the accounting of
tokens held in DeFi protocol liquidity pools, and the potential for other types of holding rights. The blockchain
community engages in standardization, compliance and identity integration, and expanding asset classes. While
these efforts touch on holding rights, they are inadequate in the face of DeFi. The commercial projects focus
on regulatory compliance and cost efficiency, but have the same shortcomings as the works in the literature.
Furthermore, these commercial projects are opaque and provide little detail on technical implementation or
empirical results.

7.1 Literature Review

The authors of [18] propose a blockchain-based solution for tokenizing revenue-generating real estate. This
work uses a token to represent shares of a special purpose vehicle setup to own real estate property. Regulatory
compliance and user validation are embedded in the token smart contract, although the details are not provided.
The distribution of dividends to the token holders is executed by a smart contract that loops through every token
holder, calculates their dividend as their balance multiplied by the dividend per token, and adds the dividend
amount to the token holder’s balance. Crucially, this loop scales linearly with the number of token holders,
causing the dividend transaction to easily exceed the Ethereum block gas limit and fail. The authors leave the
implementation of other functionalities such as voting or other holding rights to future work.

The work in [35] describe an asset tokenization system for dividend-paying assets. This work implements
regulatory compliance, focusing on the Swiss jurisdiction, by requiring token holders to have undergone KYC
certification by an approved KYC certificate provider, and enabling whitelisting and blacklisting. This work
employs a user-initiated dividend distribution mechanism, wherein a user invokes a smart contract method that
calculates its dividend payout and transfers the tokens to the user accordingly, mitigating the block gas limit
issue. The solution is designed for dividend payments, and while it could be modified for other holding rights,
this is not discussed in the paper and the lack of implementation details (code) makes it difficult to speculate. The
authors estimate dividend redemption to cost 100k gas. The key innovation in [35] is a dividend payout based on
users’ holding durations, eliminating the sharp price drop observed ex-dividend. It does this by implementing
balance accumulators in its smart contract, which are updated on each token transfer. This effectively performs
the coupon bond accounting for wallet balances described in Section 4.2. However, our proposed solution’s gas
cost is agnostic to the complexity of the Off-chain Accounting procedure used and thus remains cheaper for
coupon bonds. A simplified version of the solution from [35] without holding-time based calculations may reduce
its costs, but without the author’s code, this cannot be verified.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:21

Table 7. Comparison of solutions

Automatic Homemade Zhitomirskiy Our

dividends dividends et al. solution
Arbitrary holding rights X X X v
DeFi operability X v X v
Adaptable accounting X X X v
Gas cost per shareholder X! 127k? 100k 73k

! Automatic dividend distribution for 380k holders costs >100B gas, which exceeds the Ethereum block gas limit of 30M (see
https://ethereum.org/en/developers/docs/gas/), making the distribution transaction fail.
% Average gas used for Uniswap V3’s exact input single swap method from https://dune.com/queries/3694112.

7.1.1 Comparison. For context, we provide a comparison of our proposed solution with the work in [18], the
solution described in Section 2.5, and the work in [35], each of which are dividend-paying stock tokenization
solutions. Specifically, the solutions are qualitatively assessed in terms of their ability to generalize to arbitrary
holding rights, operatibility with DeFi liquidity pools, and adaptability to arbitrary accounting methods, which
are the criteria explored in Section 5 that our proposed solution is designed around. The gas costs per token holder
for receiving dividend payments is also measured based on 380k holders, the number of holders of UNI. The
results are summarized in Table 7, which shows that no other solution performs adequately against the metrics,
despite being more costly than our proposed solution, with Zhitomirskiy et al’s solution being the cheapest at
27k more gas per shareholder compared to our solution.

The solutions in both [18] and [35] are designed for dividend payments, and leave other types of entitlements
such as voting to future work. Furthermore, they only account for shareholders’ wallet balances, and not liquidity
pool contributions. The authors of [35] acknowledge that distributing dividends to liquidity providers requires
additional non-trivial logic. Moreover, both of these solutions employ smart contract-embedded, non-modular
dividend mechanisms, making these solutions difficult to adapt to new accounting rules.

The solution described in Section 2.5 accumulates reinvested yield towards the redemption value of the stock
token, while not requiring any action to be taken on-chain. As a result, it is fully DeFi compatible. However,
it is only suitable for dividends or interest and lacks flexibility. Furthermore, if token holders wish to receive
dividends as cash (e.g. stablecoins), they must bear the cost of swapping on an exchange like Uniswap V3, which
costs 127k gas on average.

Although our proposed solution meets the criteria while achieving a lower gas cost, it is important to consider
that it does this by off-chaining important calculations. A drawback of this is its vulnerability to key theft. If the
issuer’s private key is stolen, messages can be forged, allowing malicious users to redeem rights to which they
are not entitled. The off-chain solution can also be slower, as the issuer needs to perform the calculations for all
users, whereas in on-chain solutions, shareholders only need to wait for their own redemption transaction to
execute. This may not be a problem as long as the off-chain calculations are completed before rights are actually
distributed. Furthermore, the implications of off-chaining on centralization and trust are explored in Section 6.1.

7.2 Token Standards

ERC3643 is a standard for permissioned tokens that integrates on-chain identity management, programmable
transfer rules, and compliance enforcement at the smart contract level [19]. It leverages a customizable and
modular architecture for its compliance enforcement to allow flexible and jurisdiction-specific logic. The standard

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

https://ethereum.org/en/developers/docs/gas/
https://dune.com/queries/3694112

0:22 .« Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

uses ONCHAINID' to allow users to manage their identities and claims about their identities, which can be
part of the criteria set out by the applicable compliance rules—for example, as part of the jurisdictional KYC
requirements—for permissioned transfers and ownership.

On the other hand, the ERC1400 security token standard takes a different approach by off-chaining its identity
and compliance enforcement [13]. It requires an authorized entity to validate transactions off-chain, before
providing a signed certification to allow the transaction to execute on-chain. This off-chain-to-signed-message
approach is not unlike the proposed Rights Redemption mechanism in our solution and ensures compliance
without bloating the smart contract with complex on-chain logic, while introducing a level of centralization.

CMTAT is another smart contract framework with functionality for transaction validation without on-chain
identity integration [10]. It is tailored to the Swiss regulatory context but is customizable and upgradeable to other
jurisdictions. It employs a modular framework to implement functionalities, where specific implementations
can choose which modules to include, as well as customize functionalities for its regulatory and functional
requirements. For example, a dividend-paying stock can implement the CMTAT snapshot module to keep track
of user balances at the record date and distribute dividends proportionally to the snapshot balances. However,
this can be expensive due to the duplication of on-chain data, requires further implementation details for the
dividend distribution, and remains incompatible with DeFi liquidity pools,

Unlike ERC3643, ERC1400 and CMTAT also allow issuers to attach documents such as offering documents
or notices to the token contract, which can be helpful for transparency. All three standards extend the ERC20
interface to support forced transfers, pauses, freezes, and account recovery mechanisms. These standards and
protocols are designed to address the legal requirements of securities tokens, and do not consider or implement
functionality such as the distribution of holding rights.

ERC2222 [28], a draft Funds Distribution Token (FDT) standard, addresses the distribution of future cash flows,
such as dividends, coupons, or royalties, and is often used in conjunction with other security token standards. It
extends ERC20 by a mechanism wherein users withdraw their revenue claims asynchronously, avoiding gas limit
issues associated with automatic distributions. The standard requires that implementations guarantee users are
able to withdraw past claims to cash flows, even after transferring away their FDT. This makes the ERC2222
standard somewhat DeFi-compatible, as it does not require users to withdraw their liquidity pool deposits in
order to claim their revenue. However, unlike our proposed framework, a user has no claim on the revenue
generated by their tokens after they have contributed them to a liquidity pool.

Other implementations of interest-bearing assets include Ondo Finance’s OUSG and rOUSG.!'® OUSG is an
accumulating token where interest is reinvested into the underlying asset, increasing the redemption value of the
token over time, as in Section 2.5. rOUSG is a rebasing token, where the token maintains a constant redemption
value while yield is paid out by applying a factor to each user’s balance. These approaches are lightweight but
have the same limitations as Section 2.5.

7.3 Commercial Projects

Several projects for the tokenization of securities or other real-world assets helmed by major banks, securities
trading firms, and regulatory bodies are in the works. A collaboration named Project Guardian between policy-
makers UK’s FCA, Switzerland’s FINMA, Japan’s FSA, and Singapore’s MAS and commercial groups including
JP Morgan, Citibank, and HSBC, aims to develop and pilot the policies and technologies necessary for secure,
interoperable, and innovative asset tokenization [25]. The project’s focus thus far has been on identity and trust
management, regulatory innovation, payment automation, and portfolio management [22]. It wrapped up its first
pilot program for the trading of tokenized bonds and foreign exchange against permissioned liquidity pools in

7ONCHAINID is a decentralized identity system. Its documentation can be found at https://docs.onchainid.com/.
180ndo’s OUSG token documentation can be found at https://docs.ondo.finance/qualified-access-products/ousg.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

https://docs.onchainid.com/
https://docs.ondo.finance/qualified-access-products/ousg

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:23

2022 [26]. Swiss securities firm Taurus provides a platform for the tokenization of assets, and was approved by the
FINMA to offer tokenized securities of unlisted Swiss firms to retail investors in January 2024 [3]. Private Swiss
bank Cité Gestion, along with a handful of other firms used the Taurus platform to tokenize its own shares to be
available to professional investors in 2023 [29]. In 2022, Hamilton Lane announced it would be tokenizing three
of its funds using Securitize, another firm offering asset tokenizaton services [12]. In 2022, UBS launched a digital
bond that is tradeable on the blockchain, as well as in traditional exchanges [32]. The BIS, along with the Swiss
National Bank and the World Bank announced in 2024 Project Promissa, a pilot initiative for the tokenization of
promissory notes [8]. HSBC, partnering with Goldman Sachs and the EIB, has launched in 2023 a digital bond that
uses the blockchain as a record of ownership [20]. These projects are limited in scope, as they focus on specific
types of assets, such as bonds and notes. Moreover, while they aim for efficiency gains through blockchain’s
accessibility and automation, they do not consider the potential arising from inter-operability with DeFi, as they
either require limitations on compatible DeFi protocols or do not address DeFi compatibility at all.

8 CHALLENGES AND FUTURE DIRECTIONS

While our solution provides a flexible framework for tokenization, several challenges remain, motivating directions
for further work on this topic. First, although the gas cost of our solution is lower than the alternatives studied in
Section 7.1, further gas optimizations in the Rights Redemption Contract should be performed. Currently, reading
and writing the message redemption status are expensive operations that could be improved by, for instance,
using different data types, structures, or signature schemes. Furthermore, while we have shown a simple voting
scheme using NFTs, some use cases may require greater levels of voter privacy, requiring more complex smart
contracts and cryptographic guarantees. Other types of rights not discussed in this paper may also need specific
peripheral utilities.

Second, some challenges, already identified in Section 7.1.1, arise due to the off-chain nature of the accounting
procedure. The redemption process can be vulnerable to issuer key theft and recovery mechanisms should be
implemented. Also, the accounting procedure’s runtime should be improved, perhaps by optimizing the event
log query methods. For dividend paying stocks, the speed is adequate, but as it is, if a use case requires quick
distribution, it may be necessary to consider the trade-offs of using a different solution that is more costly or less
flexible.

Third, the Off-Chain Accounting and Rights Redemption mechanism mitigates fraudulent reporting (assuming
the issuer’s keys are not compromised) in the context of DeFi liquidity pools. While the Off-Chain Accounting
procedure relies on shareholder reporting for the CLAMM portion, it handles false reports of invalid NFTs and
incorrect pool or user addresses. The CLAMM accounting algorithm checks that the shareholder’s address owns
the reported NFT," that the NFT corresponds to the reported pool address, and that the pool is a whitelisted
CLAMM for the Stock/Bond Token. Additionally, any entitlements are ultimately given to the reported address
(so long as it owns the NFT reported), so providing a false address will not give the user any benefit. However,
the accounting procedure may not be able to deal with exotic smart contracts. New algorithms can be made to
handle such smart contracts, but this needs to be developed on a case-by-base basis. The off-chain channel used
for communications between shareholders and the issuer also needs be reliable and have mechanisms in place to
prevent spam, which can hinder the issuer’s ability to perform accounting for honest CLAMM liquidity providers.

Finally, our proposed solution does not include full regulatory compliance integration. Instead, the system can
be structured to incentivize voluntary compliance participation by requiring shareholders to undergo off-chain
know-your-customer (KYC) verification in order to redeem holding rights, on-board, or off-board. For assets like
coupon bonds, receiving coupons can be a strong incentive for users to undergo KYC. Meanwhile, the regular
token operations such as transfers are unaffected, as in typical crypto-tokens. While this aligns with blockchain’s

Y0r in the case of coupons, it checks for how long the address owned the NFT.

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

0:24 .« Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris

values of incentivization over regulation, it leaves operability with real-world financial systems as an open
question. As the focus on crypto-assets grows, so does the call for compliant-by-design systems with integrated
regulatory compliance and KYC [14]. However, integrated compliance layers can be added as a modular extension
to our solution. Our solution’s Off-Chain Accounting and Rights Redemption are not directly integrated into the
Stock Token Contract on-chain and only require a token with an ERC20-compatible interface. Security token
standards with compliance integration, which are described in Section 7.2, tend to be extensions of ERC20. This
makes those standards integrable with our solution by simply replacing our Stock Token Contract with the
security token standard suite. Hence, while regulatory compliance is critical for adoption, it is beyond the scope
of this work, which focuses on the mechanics for DeFi-enabled tokenization.

9 CONCLUSION

This paper presents a stock tokenization solution that is gas-efficient, generalizes to arbitrary holding rights,
operates with DeFi without friction, and can be adapted to arbitrary accounting methods or decisions. We
find that these requirements are not adequately addressed by existing solutions. Our solution comprises three
components: a Stock Token Contract, the Off-Chain Accounting procedure, and a Rights Redemption Contract.
The Stock Token Contract is operable with DeFi by design and the Off-Chain Accounting works for lending pools,
uniform liquidity AMMs, and CLAMMs as it is designed around their liquidity provision and pool ownership
logic. Specifically, the accounting procedure is able to account for at least 90% of lending pools and AMMs, by
TVL. We demonstrate that our solution can accommodate stocks with any rights that can be represented by ETH,
ERC20 tokens, or NFTs, and give explicit use cases: dividend payments, voting rights, and mergers/acquisitions.
Furthermore, we demonstrate a modification of the proposed tokenization solution for a coupon-paying bonds
use case, which automates the calculation and payment of accrued interest in bond sales. This modification also
demonstrates the flexibility of the proposed solution with respect to the accounting procedure, as modifications
can be made in accordance with the real-world security’s contract.

REFERENCES

[1] Hayden Adams, Noah Zinsmeister, River Keefer, Moody Salem, and Dan Robinson. 2021. Uniswap v3 Core. Technical Report. Uniswap
Labs. https://uniswap.org/whitepaper-v3.pdf

[2] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 Core. Technical Report. Uniswap Labs. https://uniswap.org/
whitepaper.pdf

[3] Ian Allison. 2024. Crypto Custody Specialist Taurus Brings Tokenized Securities to Retail Customers in Switzerland. CoinDesk
(231 2024). https://www.coindesk.com/business/2024/01/23/crypto-custody-specialist-taurus-brings-tokenized- securities- to-retail-
customers-in-switzerland/

[4] Jonathan B. Berk and Peter M. DeMarzo. 2019. The Corporation and Financial Markets. In Corporate Finance (5th global edition ed.).
Pearson, UK, Chapter 1, 32-55.

[5] Jonathan B. Berk and Peter M. DeMarzo. 2019. Mergers and Acquisitions. In Corporate Finance (5th global edition ed.). Pearson, UK,
Chapter 28, 1000-1030.

[6] Jonathan B. Berk and Peter M. DeMarzo. 2019. Payout Policy. In Corporate Finance (5th global edition ed.). Pearson, UK, Chapter 17,
635-675.

[7] Jonathan B. Berk and Peter M. DeMarzo. 2019. Valuing Bonds. In Corporate Finance (5th global edition ed.). Pearson, UK, Chapter 6,
207-243.

[8] BIS Innovation Hub Swiss Centre, Swiss National Bank, and World Bank. 2024. BIS Innovation Hub, Swiss National Bank and World Bank
launch Project Promissa to test tokenisation of financial instruments. https://www.bis.org/about/bisih/topics/fmis/promissa.htm

[9] Remco Bloemen, Leonid Logvinov, and Jacob Evans. 2017. EIP-712: Typed structured data hashing and signing. https://eips.ethereum.
org/EIPS/eip-712

[10] cmtat 2024. CMTAT: Functional specifications for the Swiss law compliant tokenization of securities. Technical Report. Capital Markets
and Technology Association. https://github.com/CMTA/CMTAT
[11] Companies Act 2006 2006. Companies Act 2006: Notice of meetings. In UK Public General Acts. UK, Chapter 3, 144-146. https:

/Iwww.legislation.gov.uk/ukpga/2006/46/part/13/chapter/3/crossheading/notice-of-meetings/enacted

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper.pdf
https://www.coindesk.com/business/2024/01/23/crypto-custody-specialist-taurus-brings-tokenized-securities-to-retail-customers-in-switzerland/
https://www.coindesk.com/business/2024/01/23/crypto-custody-specialist-taurus-brings-tokenized-securities-to-retail-customers-in-switzerland/
https://www.bis.org/about/bisih/topics/fmis/promissa.htm
https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-712
https://github.com/CMTA/CMTAT
https://www.legislation.gov.uk/ukpga/2006/46/part/13/chapter/3/crossheading/notice-of-meetings/enacted
https://www.legislation.gov.uk/ukpga/2006/46/part/13/chapter/3/crossheading/notice-of-meetings/enacted

(12]
(13]
(14]
(15]
[16]
(17]

(18]

(19]
[20]

[21]

[22]

(23]
[24]
[25]
[26]

[27
[28]

—

[29]
(30]

(31]

Blockchain Meets Securities: A Scalable Tokenization Framework « 0:25

Jamie Crawley. 2022. Investment Manager Hamilton Lane to Tokenize 3 Funds Through Securitize. CoinDesk (5 10 2022). https:
//www.coindesk.com/business/2022/10/05/investment-manager-hamilton-lane-to-tokenize-3-funds-through-securitize/

Adam Dossa, Pablo Ruiz, Fabian Vogelsteller, and Stephane Gosselin. 2018. ERC-1400: Security Token Standard. https://github.com/
ethereum/EIPs/issues/1411

Darrell Duffie, Odunayo Olowookere, and Andreas Veneris. 2025. The Stablecoin Balancing Act. Finance & Development 62, 3 (Sep 2025),
32-36.

William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. 2018. ERC-721: Non-Fungible Token Standard (no. 721 ed.). https:
//eips.ethereum.org/EIPS/eip-721

Paul Frambot, Mathis Gontier Delaunay, Vincent Danos, Adrien Husson, and Katia Babbar. 2022. Morpho Optimizer: Optimizing
Decentralized Liquidity Protocols. White Paper. Morpho Labs. https://whitepaper.morpho.org/

Government of Canada Innovation, Science and Economic Development. 2023. Share structure and shareholders. https://ised-isde.
canada.ca/site/corporations-canada/en/business-corporations/share-structure-and-shareholders

Ashutosh Gupta, Jash Rathod, Dhiren Patel, Jay Bothra, Sanket Shanbhag, and Tanmay Bhalerao. 2020. Tokenization of Real Estate
Using Blockchain Technology. In Applied Cryptography and Network Security Workshops. Springer International Publishing, Rome, Italy,
77-90. https://doi.org/10.1007/978-3-030-61638-0_5

Joachim Lebrun, Tony Malghem, Kevin Thizy, Luc Falempin, and Adam Boudjemaa. 2021. ERC-3643: T-REX - Token for Regulated
EXchanges. https://eips.ethereum.org/EIPS/eip-3643

Ledger Insights. 2023. Hong Kong confirms first $100m tokenized green bond. https://www.ledgerinsights.com/hong-kong-tokenized-
green-bond/

Reina Ke Xin Li, Srisht Fateh Singh, Andreas Park, and Andreas Veneris. 2024. On Tokenizing Securities in Contemporary Decentralized
Finance Ecosystems. In 2024 6th Conf. Blockchain Res. & Appl. for Innov. Netw. and Services (BRAINS). IEEE, Berlin, Germany, 1-9.
https://doi.org/10.1109/BRAINS63024.2024.10732268

Tyrone Lobban, Dennis Cristallo, Nikhil Sharma, Keerthi Moudgal, Joe Leung, Marlee Burr, Kirsten Jones, Stephanie Lok, Christine Moy,
Jason Singer, and Vivan Sze. 2023. The Future of Wealth Management: Ultra-efficient portfolios of traditional and alternative investments
powered by tokenization. Technical Report. J.P. Morgan and Apollo. https://www.jpmorgan.com/kinexys/documents/portfolio-
management-powered-by-tokenization.pdf

Katya Malinova and Andreas Park. 2023. Learning from DEFI: Would automated market makers improve equity trading? https:
//doi.org/10.2139/ssrn.4531670

Katya Malinova and Andreas Park. 2025. Tokenized Stocks for Trading and Capital Raising. Research Policy (2025). https://doi.org/10.
2139/ssrn.4365241 forthcoming.

Monetary Authority of Singapore (MAS). 2022. Project Guardian: Exploring Asset Tokenization. https://www.mas.gov.sg/schemes-and-
initiatives/project-guardian

Monetary Authority of Singapore (MAS). 2023. Enabling Open & Interoperable Networks. https://www.mas.gov.sg/news/media-
releases/2023/mas-proposes-framework-for-digital-asset-networks

Svetlin Nakov. 2018. Digital Signatures. SoftUni (Software University). https://cryptobook.nakov.com

Johannes Pfeffer, Roger Wu, Johannes Escherich, and Tom Lam. 2019. ERC-2222 Funds Distribution Standard. https://github.com/
ethereum/EIPs/issues/2222

Asa Sanon-Jules. 2023. Swiss Bank Cité Gestion Becomes First Private Bank to Tokenize Its Own Shares. CoinDesk (24 1 2023).
https://www.coindesk.com/business/2023/01/24/swiss-bank-cite- gestion-becomes-first-private-bank- to-tokenize-its-own-shares/
SEC’s Office of Investor Education and Advocacy. 2012. Investor Bulletin: American Depositary Receipts. https://www.sec.gov/investor/
alerts/adr-bulletin.pdf

Alicia Sidik, Amit Agarwal, Artem Korenyuk, Barnaby Nelson, Chris Cox, Emma Johnson, Harsha Jethnani, Ingrid Collazo, Jolene
Han Berg, Marcello Topa, and et al. 2025. Securities Services Evolution 2025. Technical Report. Citi. https://www.citibank.com/icg/docs/
securities-services/Citi-Securities-Services-Evolution-2025.pdf

UBS AG. 2022. UBS AG launches the world’s first ever digital bond that is publicly traded and settled on both blockchain-based and
traditional exchanges. https://www.ubs.com/global/en/media/display-page-ndp/en-20221103-digital-bond.html

Fabian Vogelsteller and Vitalik Buterin. 2015. ERC-20: Token Standard. https://eips.ethereum.org/EIPS/eip-20

Zhang Yi, Xiaohong Chen, and Daejun Park. 2018. Formal Specification of Constant Product (x y = k) Market Maker Model and
Implementation. Technical Report. Uniswap Labs. https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/
uniswap/x-y-k.pdf

Efim Zhitomirskiy, Stefan Schmid, and Martin Walther. 2023. Tokenizing assets with dividend payouts—a legally compliant and flexible
design. Digital Finance 5, 3 (Dec. 2023), 563-580. https://doi.org/10.1007/s42521-023-00094-w

Distrib. Ledger Technol., Vol. 0, No. 0, Article 0. Publication date: 0.

https://www.coindesk.com/business/2022/10/05/investment-manager-hamilton-lane-to-tokenize-3-funds-through-securitize/
https://www.coindesk.com/business/2022/10/05/investment-manager-hamilton-lane-to-tokenize-3-funds-through-securitize/
https://github.com/ethereum/EIPs/issues/1411
https://github.com/ethereum/EIPs/issues/1411
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://whitepaper.morpho.org/
https://ised-isde.canada.ca/site/corporations-canada/en/business-corporations/share-structure-and-shareholders
https://ised-isde.canada.ca/site/corporations-canada/en/business-corporations/share-structure-and-shareholders
https://doi.org/10.1007/978-3-030-61638-0_5
https://eips.ethereum.org/EIPS/eip-3643
https://www.ledgerinsights.com/hong-kong-tokenized-green-bond/
https://www.ledgerinsights.com/hong-kong-tokenized-green-bond/
https://doi.org/10.1109/BRAINS63024.2024.10732268
https://www.jpmorgan.com/kinexys/documents/portfolio-management-powered-by-tokenization.pdf
https://www.jpmorgan.com/kinexys/documents/portfolio-management-powered-by-tokenization.pdf
https://doi.org/10.2139/ssrn.4531670
https://doi.org/10.2139/ssrn.4531670
https://doi.org/10.2139/ssrn.4365241
https://doi.org/10.2139/ssrn.4365241
https://www.mas.gov.sg/schemes-and-initiatives/project-guardian
https://www.mas.gov.sg/schemes-and-initiatives/project-guardian
https://www.mas.gov.sg/news/media-releases/2023/mas-proposes-framework-for-digital-asset-networks
https://www.mas.gov.sg/news/media-releases/2023/mas-proposes-framework-for-digital-asset-networks
https://cryptobook.nakov.com
https://github.com/ethereum/EIPs/issues/2222
https://github.com/ethereum/EIPs/issues/2222
https://www.coindesk.com/business/2023/01/24/swiss-bank-cite-gestion-becomes-first-private-bank-to-tokenize-its-own-shares/
https://www.sec.gov/investor/alerts/adr-bulletin.pdf
https://www.sec.gov/investor/alerts/adr-bulletin.pdf
https://www.citibank.com/icg/docs/securities-services/Citi-Securities-Services-Evolution-2025.pdf
https://www.citibank.com/icg/docs/securities-services/Citi-Securities-Services-Evolution-2025.pdf
https://www.ubs.com/global/en/media/display-page-ndp/en-20221103-digital-bond.html
https://eips.ethereum.org/EIPS/eip-20
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://doi.org/10.1007/s42521-023-00094-w

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum Request for Comment Token Standards
	2.2 Elliptic Curve Digital Signature Algorithm
	2.3 EIP-712
	2.4 DeFi Protocols
	2.5 Homemade Dividends

	3 Tokenizing Stock Securities
	3.1 Stock Token Contract
	3.2 Off-Chain Accounting
	3.3 Rights Redemption Contract

	4 Tokenizing Bonds
	4.1 Coupon Period Accounting Example
	4.2 Coupon Period Accounting Procedure

	5 Evaluation
	5.1 Gas cost
	5.2 Generalizing to arbitrary holding rights
	5.3 Operability with DeFi
	5.4 Adapting to arbitrary accounting methods
	5.5 Running time

	6 Discussion and Use Cases
	6.1 Trust Assumptions
	6.2 Use Cases

	7 Related Work
	7.1 Literature Review
	7.2 Token Standards
	7.3 Commercial Projects

	8 Challenges and Future Directions
	9 Conclusion
	References

