
Learning Support Sets in IC3 and Quip:
the Good, the Bad, and the Ugly

Ryan Berryhill
Dept. of ECE

University of Toronto
Toronto, Canada

ryan@eecg.toronto.edu

Alexander Ivrii
IBM Research
Haifa, Israel

alexi@il.ibm.com

Neil Veira
Dept. of ECE

University of Toronto
Toronto, Canada

neil.veira@mail.utoronto.ca

Andreas Veneris
Depts. of ECE and CS
University of Toronto

Toronto, Canada
veneris@eecg.toronto.edu

Abstract—In recent years, IC3 has enjoyed wide adoption
by academia and industry as an unbounded model checking
engine. The core algorithm works by learning lemmas that,
given a safe property, eventually converge to an inductive
proof. As such, its runtime performance is heavily dependent
upon “pushing” (or “promoting”) important lemmas, possibly
by discovering additional supporting lemmas. More recently,
Quip has emerged to be a complementary extension behind the
reasoning capabilities of IC3 as it allows it to target particular
lemmas for pushing. This also raises the following question: which
lemmas should be promoted? To that end, this paper extends the
reasoning capabilities of IC3 and Quip using special SAT queries
to find support sets that represent fine-grained information on
which lemmas are required to push other lemmas. Further, this
paper presents an IC3-based algorithm called Truss (Testing
Reachability Using Support Sets) that uses support sets to identify
sets of lemmas that may be close to forming an inductive proof.
The set is targeted for promotion as a cohesive unit. If any of
the lemmas cannot be promoted, the entire set is abandoned
and a new set excluding that lemma is found. In the presented
framework, there are two reasons why a lemma cannot be
promoted: either because it blocks a known reachable state (in
which case, the lemma is permanently marked as bad), or because
lemma promotion exceeds a specified amount of effort (in which
case the lemma is temporarily marked as ugly). Intuitively, the
proposed approach allows the algorithm to construct a proof
more quickly by focusing on the important yet easily-pushed
lemmas. Experiments on the HWMCC’15 benchmark set show
a significant improvement against existing practices. Compared
to Quip, our algorithm solves 17 more problem instances and it
offers an impressive 1.77x speedup.

I. INTRODUCTION

Formal verification remains one of the fastest growing seg-
ments in verification [1]. Unbounded model checking, which
determines if particular states are reachable in a circuit, is
a problem of fundamental importance in this area. IC3 [2],
[3] has established itself as a state-of-the-art unbounded
model checker and has seen wide adoption in industry [4].
More recently, the closely related technique of Quip [5]
has emerged with better run time performance and greater
reasoning capabilities. Any improvements to IC3 or Quip can
therefore have wide-reaching impact in formal verification.

Both Quip and IC3 aim to construct an inductive invariant
proving a given safety property. They share similar core
functionality. A Boolean Satisfiability (SAT)-based procedure
is used to detect states that can reach a property violation,
which are referred to as counter-examples-to-induction (CTIs).
When a CTI is detected, the algorithm tries to learn a lemma
that explains why the state is not reachable in a bounded

number of steps called the lemma’s level. Through this pro-
cedure, the algorithm learns and refines a sequence of over-
approximations of the states reachable at each level. This se-
quence is known as the inductive trace, and the approximation
at each level is called a frame. An additional pushing step
promotes lemmas from one level to the next if their current
frame is strong enough. The run time performance of these
algorithms is dependent on their ability to learn and promote
relevant lemmas.

This paper presents an algorithm called Truss (Testing
Reachability Using Support Sets) that leverages the features of
modern incremental SAT solvers to compute lemma supports
and the reasoning capabilities of Quip to encourage the
promotion of highly relevant lemmas that are easy to promote.
In a nutshell, special SAT queries are used to identify a set of
lemmas that participate in a bounded proof of the property, and
thus may potentially appear in a safe inductive invariant. This
set is targeted for promotion as a cohesive unit. If any lemma
in the set fails to promote, the entire set is abandoned and one
or more lemmas are temporarily or permanently blacklisted
from appearing in future sets. A new set is found and targeted
for promotion. This process repeats until it can be determined
that no such set is available, at which point the algorithm falls
back to the usual recursive blocking approach used in Quip.

More specifically, a special SAT query identifies a set of
lemmas sufficient to support the promotion of a particular
lemma or the property itself, called its support set [6]. The
query is similar to the one normally used to check for relative
induction, but requires the addition of a unique activation
literal for each lemma. When the property is being promoted to
a new level, a support set is computed from the frame one level
below the property. If one is found, the algorithm attempts
to promote the supporting lemmas first. This is accomplished
by recursively computing their support sets, and attempting to
promote those lemmas, and so on. Lemmas at the bottom level
do not have support sets; they are promoted using the usual
recursive blocking method.

When supporting lemmas cannot be promoted, the algorithm
is allowed to expend a configurable amount of effort to
promote the lemma with recursive blocking. If a lemma still
cannot be promoted, it is marked as ugly and is temporarily
blacklisted from appearing in support sets. As is the case
in Quip this process can reveal reachable states. When a
lemma blocks a known reachable state, it is marked as bad.
Bad lemmas are permanently blacklisted, as they can never

appear in an inductive invariant. Similarly to Quip, absolute
invariant lemmas are classified as good. Not all lemmas are
classified, some are left in the category of unknown. Ugly
lemmas also fit into the unknown class as it isn’t known
whether they are good or bad. Hence the algorithm partitions
lemmas into classes containing the unknown, the good, the
bad, and the ugly lemmas. This contrasts with the work of [6],
where support sets are used to compute heuristic functions for
each lemma. A special step after pushing attempts to learn new
lemmas in order to promote those that have high heuristic
values. Effort limits are not used and the heuristics require
support sets for every lemma, making the approach presented
in that work computationally expensive.

Experiments on HWMCC’15 circuits demonstrate the ef-
fectiveness of Truss. Compared to Quip, it offers a 1.77x
speedup on the HWMCC’15 benchmark set and solves 17
more problem instances. Further, while Truss processes a
similar number of must-proof obligations, it processes only
one third as many may-proof obligations as Quip. This comes
with the cost of additional overhead to compute support sets,
which is found to represent less than 5% of the total runtime.

The rest of this paper is organized as follows. Section II
presents notation and background material on unbounded
model checking. Section III presents the technique used to
compute support sets. Section IV presents the main algorithm.
Section V presents an empirical evaluation of the approach.
Section VI examines alternative approaches and related work.
Finally, section VII concludes the paper.

II. PRELIMINARIES

A. Notation
The following terminology and notation is used throughout

this paper. A literal is either a variable or its negation. A cube
is a conjunction of literals. A clause is a disjunction of literals.
A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. A clause or a cube can be treated as
a set of literals, and a CNF formula as a set of clauses. For a
CNF formula F , c ∈ F means that the clause c appears in F .
Similarly l ∈ c means that the literal l occurs in c.

Consider a finite transition system, and let V be the state
variables of the system. The primed versions V ′ = {v′|v ∈ V}
represent the next-state functions. That is, for each v ∈ V , v′
is a binary function of the current state and input defining
the next state for v. For any formula F over V , the primed
version F ′ represents the same formula with each free variable
v ∈ V replaced by v′. A model checking problem is a tuple
P = (Init, T , Bad) where Init(V) and Bad(V) are CNF
formulas over V representing the initial states and the unsafe
states, respectively. States that are not unsafe are called safe
states. The transition relation T (V,V ′) is a CNF formula over
V ∪ V ′. It is encoded such that T (~v,~v ′) is satisfiable iff state
~v can transition to state ~v ′. States are called i-step reachable
if they can be reached in i or fewer steps from an initial state
under T . States that are i-step reachable for some value of i
are reachable.

For any formula F over V , a state ~v that satisfies F (i.e.,
F (~v) = 1) is called an F -state. Given two formulas F (V) and
G(V), F is inductive relative to G if:

G(~v) ∧ F (~v) ∧ T (~v,~v ′)⇒ F (~v ′)

If F is inductive relative to itself, it is simply inductive.
A problem instance P is UNSAFE iff there exists a natural

number N such that the following formula is SAT:

Init(~v0) ∧
(N−1∧

i=0

T (~vi, ~vi+1)
)
∧Bad(~vN) (1)

A problem instance P is SAFE iff there exists an inductive
formula Inv(V) that also meets the following conditions:

Init(~v)⇒ Inv(~v ′) (2)

Inv(~v)⇒ ¬Bad(~v) (3)

A formula satisfying Eq. 2 satisfies initiation, meaning that
it contains all initial states. An inductive formula that satisfies
initiation contains all reachable states and is called an inductive
invariant. A formula satisfying Eq. 3 is safe, meaning that
it represents a superset of the safe states. A safe inductive
invariant represents a superset of the reachable states and a
subset of the safe states. Each of these properties can be
checked using a single query to a SAT solver, so a safe
inductive invariant is a proof that P is SAFE.

B. Overview of Quip
This section gives an overview of Quip [5], which is itself

based on IC3 [2], [3]. Given an unbounded model checking
problem, it either returns an inductive invariant proving the
property or a counter-example trace that reaches an unsafe
state. It works by maintaining a sequence of CNF formulas
F0, F1, ... called the inductive trace. Each Fi is a frame, and
its index i is called its level. Each clause c ∈ Fi is called
a lemma. The frame F0 is identical to Init. The algorithm
maintains two invariants for all i ≥ 0:

Fi ∧ T ⇒ F ′i+1

Fi+1 ⊆ Fi

That is, each frame is inductive relative to the frame below
it and each frame contains a subset of the lemmas in the
frame below it. These invariants imply that Fi is an over-
approximation of the i-step reachable states. The algorithm
also maintains a special frame F∞ containing lemmas that
over-approximate all reachable states. In addition, Quip main-
tains a set R of known reachable states, which is used in
various optimizations.

Algorithm 1 presents pseudocode for the top-level proce-
dure of Quip. Certain bookkeeping details are omitted for
succinctness, including the details needed to construct counter-
example traces. Line 2 checks if any initial states are unsafe,
as the main loop does not handle this case. Lines 3 through 7
contain the main loop. The loop calls the recursive blocking
procedure on line 4, which strengthens the inductive trace such
that ¬Bad is inductive relative to Fk−1. After handling all
proof obligations, line 5 performs the pushing procedure. For
each non-bad lemma ϕ in each non-empty Fi, the algorithm
checks if Fi ∧ T ⇒ ϕ′. If so, the lemma is promoted to
level i + 1. If at any point Fi = Fi+1 for some value of i
then Fi is inductive and can be added to F∞. Finally, line 6
checks if F∞ ⇒ ¬Bad. If this holds, F∞ is a safe inductive

Algorithm 1 Quip (Init, T , Bad)
1: R = ∅, F0 = Init, k = 1
2: if SAT? (F0 ∧Bad) then return UNSAFE

3: loop
4: if ¬Quip_Block(k) then return UNSAFE

5: Quip_Push()
6: if ¬SAT?(F∞ ∧Bad) then return SAFE

7: k = k + 1

Algorithm 2 Quip_Block (k)
1: Q = ∅
2: Add(Q, 〈Bad, k,must〉)
3: while ¬Empty(Q) do
4: 〈m, i, p〉 = Pop(Q)
5: if (i = 0) ∨ Match(R,m) then
6: if p = must then return false
7: else AddReachable(R)

8: else if SAT?(Fi−1 ∧ T ∧m′) then
9: u = Predecessor(m)

10: Add(Q, 〈Lift(u), i− 1, p〉)
11: Add(Q, 〈m, i, p〉)
12: else
13: (ϕ, g) = Generalize(¬m, i)
14: AddLemma(ϕ, g)
15: if g < k − 1 then Add(Q, 〈¬ϕ, g + 1,may〉)
16: return true

invariant and the algorithm terminates, otherwise the algorithm
continues to the next iteration.

The recursive blocking procedure is described in detail in
Algorithm 2. Quip maintains a queue of proof obligations of
the form 〈m, i, p〉, where m is a cube over V or m = Bad, i
is a level, and p ∈ {must,may} is the type of obligation. A
must-proof obligation represents a cube that must be blocked
in order for the problem to be SAFE. A may-proof obligation
represents a cube that may be useful to block, but its failure
does not necessarily imply the problem is UNSAFE. Line 2
initializes the queue to contain the obligation to block all
unsafe states at level k.

At each step, the algorithm attempts to discharge an obliga-
tion 〈m, i, p〉 with the lowest level by proving that no m-state
is i-step reachable (i.e., blocking m at level i). This process
has three potential outcomes.

The first (lines 5–7) occurs when either i = 0 or R contains
an m-state. In this case, the obligation cannot be discharged
and a counter-example is found (if p = must) or new reach-
able states are discovered. The AddReachable procedure
called on line 7 adds any newly-discovered reachable states to
R by traversing the chain of obligations that includes 〈m, i, p〉.
All lemmas in the inductive trace are checked against R at this
point, and any lemma that blocks a reachable state is marked
bad.

A second possibility (lines 8–11) occurs when Fi−1∧T 6⇒
¬m′, meaning that m has a predecessor state u in Fi−1. The
obligation 〈m, i, p〉 is returned to the queue and 〈u, i−1, p〉 is
added. The Predecessor procedure called on line 9 extracts
a predecessor state u of m from the SAT solver. A proof

Algorithm 3 Support (F, T , ϕ)
1: Fen = ∅, assumps = ∅, Γ(ϕ) = ∅
2: for all ci ∈ F do
3: li = ActivationLit(ci)
4: assumps = assumps ∪ {¬li}
5: cen = ci ∪ {li}
6: Fen = Fen ∪ {cen}
7: Φ = Fen ∧ T ∧ ¬ϕ′
8: if SAT?(Φ, assumps) then return NULL
9: conflicts = ConflictAssumptions(Φ)

10: for all (¬li) ∈ conflicts do
11: Γ(ϕ) = Γ(ϕ) ∪ {ci}
12: return Γ(ϕ)

obligation for u is added on line 10. However, in practice, u
is lifted to a smaller cube that represents more states, all of
which are predecessors of m. This is handled by the Lift
procedure.

The final possibility (lines 13–15) occurs when Fi−1∧T ⇒
¬m′. In this case, the obligation is successfully discharged and
the algorithm learns a new lemma ϕ such that Init⇒ ϕ, ϕ⇒
¬m, and ϕ ∧ Fi−1 ∧ T ⇒ ϕ′. The lemma over-approximates
the i-step reachable states and demonstrates why m is not i-
step reachable. It is added to all frames Fj for j ≤ i. When
blocking m, the lemma ϕ = ¬m is sufficient. However, key
to the performance of Quip and IC3 is the Generalize
procedure on line 13, which may find a stronger clause that
is inductive relative to Fg−1 for some g ≥ i. The generalized
lemma is added at level g on line 14. In addition, on line 15 a
new obligation 〈¬ϕ, g + 1,may〉 can be added to the queue.
This forces the algorithm to push ϕ forward, thereby blocking
m at higher levels.

III. COMPUTING SUPPORT SETS

Computing support sets, first introduced in [6], is an integral
aspect of this work. This section defines the concept and
describes a method to compute them as a matter of practical
interest.

A support set for a lemma ϕ is a set of lemmas relative
to which ϕ is inductive. IC3 and Quip use this concept
implicitly when executing SAT queries of the form SAT?(Fi∧
T ∧¬ϕ′) relative to various frames Fi. This query asks if ϕ is
inductive relative to Fi, or equivalently, if Fi is a support set
for ϕ. In practice, it is often the case that only a small subset
of Fi is actually needed to support ϕ [6]. Various methods can
be used to compute small support sets, but in this work only
one method is considered. It takes as input a CNF formula
F , a transition relation T also given in CNF, and a clause ϕ.
It returns a subset of F relative to which ϕ is inductive. In
other words, it returns a support set Γ(ϕ) ⊆ F . Note that the
support of ϕ is not necessarily unique.

The basic version of the method is shown in Algorithm 3.
In that description, ActivationLit(c) is a procedure that
returns a new activation literal unique to clause c. A unique
activation literal is added to each clause of F to construct
a new formula Fen. A SAT query is constructed from the
following formula:

Fen ∧ T ∧ ¬ϕ′
∧

ci∈F
¬li

where li is the activation literal for clause ci. The clauses
forcing the activation literals to 0 are passed to the solver
as assumptions. If the formula is satisfiable, then F is not a
support set for ϕ and the algorithm returns NULL. Otherwise,
the activation literals in the conflicting assumption set are
mapped back to their corresponding clauses, each of which
is added to Γ(ϕ). Intuitively, this is equivalent to intersecting
a clausal UNSAT core of Fi ∧ T ∧ ¬ϕ′ with Fi. However,
Algorithm 3 is useful in practice as it may offer better
performance and can be applied when using SAT solvers
without support for efficient generation of clausal cores.

In the context of Truss, Algorithm 3 is used to compute
supports of various lemmas in the inductive trace. Given a
lemma ϕ ∈ Fi+1 for some i, we need to compute its support
relative to a subset of lemmas in frame Fi. More precisely, on
each invocation we may also have a set B ⊂ Fi of blacklisted
lemmas, and a call to Support (Fi \ B, T , ϕ) asks if Fi

contains a support set for ϕ consisting only of non-blacklisted
lemmas.

Furthermore, the SAT queries in Algorithm 3 can be exe-
cuted incrementally. To this end, each time AddLemma(ϕ, g)
is called, ϕ is also added to the incremental solver with
its unique activation literal. When constructing assumps in
Algorithm 3, each activation literal corresponding to a lemma
in Fi \B is added with negative polarity. Those corresponding
to all other lemmas are added with positive polarity, effectively
removing the corresponding clause from the resulting formula.

When ϕ ∈ Fi+1 has a support Γ(ϕ) ⊆ Fi \ B, what we
will really need is the critical part of the support set, defined
as Γ(ϕ) ∩ (Fi \ Fi+1). This critical part of the support set
represents lemmas that would be sufficient to promote in order
to promote ϕ. In particular, when Γ(ϕ)∩ (Fi \Fi+1) is empty,
ϕ can be immediately added to a higher frame. In practice
we do not introduce activation literals for lemmas in F∞, as
in our algorithm these lemmas are never blacklisted and will
never be part of a critical support set.

IV. SAFETY CHECKING WITH SUPPORT SETS

This section presents the Truss algorithm, which solves
the safety checking problem using support sets to guide its
search for an inductive proof. We first explain the classifica-
tion of lemmas into categories of good, bad, and the novel
classification of ugly. We then present the algorithm itself.
Finally, its strategy is contrasted against Quip and IC3.

A. Classifying Lemmas

A key aspect of the algorithm is its classification of lemmas
into the categories of unknown, good, bad, and ugly. This sub-
section explains the criteria that lead to these classifications.
The next subsection explains the algorithm and how it treats
lemmas based on their classification.

The first three categories are also present in Quip, and we
briefly describe them here. Unknown is the default classifica-
tion, and simply means that the lemma is not known to belong
to the other categories. Good lemmas are those that have been
promoted to the frame F∞. They are intuitively good because

the algorithm terminates when ¬Bad is inductive relative to
F∞.

On the other hand, bad lemmas are those that are known
to be non-inductive. This is detected through the discovery
of reachable states. Letting the cube r represent a known
reachable state, a lemma ϕ is marked bad if the formula ϕ∧r is
unsatisfiable, which indicates that ϕ does not over-approximate
the set of reachable states. These lemmas are undesirable for
the algorithm. It is forced to spend time pushing them despite
the fact that they cannot appear in a proof. As mentioned
earlier, non-inductive lemmas may also make it harder for the
algorithm to discover a proof. In Quip and in our approach,
no attempt is made to push bad lemmas forward.

The novel classification used in Truss is ugly. Unlike good
and bad, which are applied to a lemma permanently, ugly may
be a temporary classification. In that sense, ugly is a sub-class
of unknown, since ugly lemmas are also not known to be good
or bad. Informally, an ugly lemma is one that appears difficult
to push to higher levels. This could happen if the lemma
is non-inductive, or if the algorithm simply needs to learn
more supporting lemmas to push it forward. A lemma ϕ may
be marked as ugly when considering a may-proof obligation
of the form 〈¬ϕ, i,may〉. If promoting ϕ to level i requires
adding more than one lemma to Fi−1, it appears difficult to
push and is therefore ugly. Different criteria could be applied
instead. This criterion ignores many aspects of the true cost
of supporting ϕ, but is simple to implement and works well
in practice.

In addition, an ugly lemma may be reclassified into any
of the other classifications. If the lemma is promoted to F∞,
it is marked as good. If it is found to exclude a reachable
state, it becomes bad. Finally, if it is pushed forward during
Quip_Push, it ceases to be ugly and becomes unknown.
Intuitively, this is because the lemma was marked ugly as a
result of insufficient support at its current level. The fact that
it was successfully pushed indicates that the algorithm has
learned enough supporting lemmas.

B. The Algorithm
This subsection describes the Truss algorithm. It uses

the outer loop from Quip as described in Algorithm 1. It
also uses a similar pushing procedure, the only difference
being the re-classification of ugly lemmas as noted in the
previous subsection. However, it uses a novel blocking proce-
dure Truss_Block that discharges proof obligations using
support sets where possible. This section describes the new
blocking procedure.

As is the case for Algorithm 2, Truss_Block takes as
input a natural number k representing the level at which to
block all unsafe states. As mentioned earlier, it identifies a
set of lemmas that could be close to forming a safe inductive
invariant. This is accomplished by computing a critical support
set for the property, and then computing critical support sets
for the supporting lemmas, and so on. This continues until
reaching lemmas for which no suitable support set can be
found. Those lemmas are promoted using an approach similar
to that used by Quip_Block. When a lemma cannot be
promoted, the set is abandoned and a new one identified.

This procedure is integrated with the proof obligation pro-
cessing scheme. Before explaining the algorithm, we first

Algorithm 4 Truss_Block (k)
1: Q = ∅
2: E[ϕ] = 0 ∀ lemmas ϕ
3: Add(Q, 〈Bad, k,must〉)
4: while ¬Empty(Q) do
5: 〈m, i, p〉 = Pop(Q)
6: if (i = 0) ∨ Match(R,m) then
7: if p = must then return false
8: else
9: AddReachable(R)

10: Q = {〈Bad, k,must〉}; continue
11: Ind = ¬SAT?(Fi−1 ∧ T ∧m′)
12: if (i > 2) ∧ ¬Ind ∧ IsEligible(〈m, i, p〉) then
13: Γ(¬m) = Support(Fi−2 \ (B ∪ U), T ,¬m)
14: if Γ(¬m) 6= NULL then
15: for all ϕ ∈ (Γ(¬m) \ Fi−1) do
16: Add(Q, 〈¬ϕ, i− 1,may〉)
17: Add(Q, 〈m, i, p〉); continue
18: else
19: if p = may ∧ E[¬m] ≥ 1 then
20: U = U ∪ {¬m}
21: Q = {〈Bad, k,must〉}; continue
22: E[¬m] = E[¬m] + 1

23: if ¬Ind then
24: u = Predecessor(m)
25: Add(Q, 〈Lift(u), i− 1, p〉)
26: Add(Q, 〈m, i, p〉)
27: else
28: (ϕ, g) = Generalize(¬m, i)
29: AddLemma(ϕ, g)

30: return true

introduce two different methods by which proof obligations
are processed in Truss. The first is the fallback behavior.
When processing an obligation using the fallback behavior,
the algorithm behaves identically to Algorithm 2, except that
it does not add may-proof obligations i.e., line 15 is not
executed. Alternatively, an obligation can be processed using
support sets. In this case, the obligation 〈m, i, p〉 is processed
by computing a support set Γ(¬m) and enqueuing may-proof
obligations 〈ϕ, i − 1,may〉 for all ϕ ∈ Γ(¬m). If a suitable
support set cannot be found, then the obligation is processed
using the fallback behavior.

For some obligations, the algorithm skips the support set
computation and proceeds directly to the fallback behavior.
Obligations that are processed using support sets are called
eligible. Different eligibility criteria could be considered, and
one alternative is discussed in Section VI-C. In this section,
eligible obligations are 〈Bad, k,must〉 and may-proof obliga-
tions 〈¬ϕ, i,may〉 where ϕ is a lemma already present in the
inductive trace.

Pseudocode for the procedure is shown in Algorithm 4.
Truss_Block is only called at level k when ¬Bad is in-
ductive relative to Fk−2. The algorithm’s goal is to strengthen
Fk−1 until ¬Bad is inductive relative to that frame. It begins
by processing the obligation 〈Bad, k,must〉, which is added
on line 3. We discuss the handling of this obligation first,

and later move on to general obligations. The first step is to
check if ¬Bad is already inductive relative to Fk−1 (line 11).
If so, lines 28–29 are executed, adding a lemma ¬Bad at
a level g ≥ k, and the algorithm terminates. Otherwise, it
tries to compute a critical support set Γ(¬Bad) from Fk−2,
excluding any blacklisted (i.e., bad or ugly) lemmas (line 13).
This may not succeed, as the property may be supported by
those lemmas. In this case, the algorithm uses the fallback
behavior, which results in adding a new must-proof obligation
at level i− 1 (lines 24–26).

Now, assume a support set is found. The algorithm adds
obligations 〈¬ϕ, k−1,may〉 for each ϕ ∈ Γ(¬Bad) (lines 15–
16). The original obligation is also returned to the queue.
Note that, since the lemmas in Γ(¬Bad) are in Fk−2, they
are inductive relative to Fk−3. Since the obligations are
enqueued at level i = k − 1, each ϕ is inductive relative to
Fi−2. The added may-proof obligations at level i are handled
similarly, by computing a support set from Fi−2 and enqueuing
obligations at level i−1. This is the reasoning behind Lemma 1
below.

Lemma 1 In Truss, for every proof obligation 〈¬ϕ, i, p〉
with i ≥ 2, ϕ is inductive relative to Fi−2.

Proof: For 〈Bad, k,must〉, the proof is trivial. For
obligations added on line 25, the proof follows from the
properties of Quip and IC3. For obligations added on line 16,
the obligation 〈¬ϕ, j,may〉 is added at level j = i − 1. We
have ϕ ∈ Fi−2 by the behavior of Support. Since ϕ ∈ Fi−2
it is inductive relative to Fi−3 i.e., Fj−2. The lemma follows
immediately.

We now describe the processing of an eligible obli-
gation 〈¬ϕ, i,may〉. Note that must-proofs other than
〈Bad, k,must〉 are not eligible, so the obligation is assumed
to be a may-proof. The first step on lines 6–10 is to check if
the obligation fails. This step is the same in Quip_Block
and is also part of the fallback behavior. The next step is to
check if ϕ is inductive relative to Fi−1 (line 11). If so, the
obligation is successfully discharged. Otherwise, by Lemma 1,
ϕ is inductive relative to Fi−2. The algorithms tries to compute
a support set for ϕ of the form:

Γ(ϕ) ⊆ Fi−2 \ (B ∪ U) (4)

where B and U represent the set of bad and ugly lemmas,
respectively. This occurs on line 13.

If a support set is found, obligations are added for the
supporting lemmas on lines 15–16. Note that due to the
subtraction of Fi−1 on line 15, only the lemmas in the critical
support set are added.

Conversely, if a support set is not found, the algorithm tries
to learn new lemmas to support ϕ. The rationale behind this
behavior comes from the following corollary of Lemma 1.

Corollary 1 If no support set of the form from Eq. 4 exists,
all support sets Γ(ϕ) ⊆ Fi−2 include some lemma in B ∪ U .

Proof: Immediate from Lemma 1.
Corollary 1 does not imply that ϕ is non-inductive. How-

ever, promoting ϕ to level i−1 requires promoting blacklisted
lemmas or learning new ones. The former is undesirable, so

the algorithm uses its fallback behavior to learn new lemmas
(lines 23–29). However, an effort limit is applied that restricts
the algorithm to learn only one new lemma towards the goal
of supporting ϕ. When a support set cannot be found, line 19
checks if the effort limit for ϕ has been exceeded. If so, the
entire obligation queue is abandoned and ϕ is marked as ugly
(lines 19–21). In other words, the second time 〈¬ϕ, i,may〉 is
popped from the queue, if ϕ is not inductive relative to Fi−1
then ϕ is marked as ugly and the queue is abandoned.

Throughout this procedure, obligations may not be dis-
charged due to a counter-example or due to effort limits.
Consider the case where an obligation intended to push a
lemma ψ ∈ Γ(ϕ) forward is abandoned. The algorithm has
no reason to continue pushing the other lemmas in Γ(ϕ)
either, since Γ(ϕ) \ {ψ} is not necessarily a support set
for ϕ. Intuitively, the corresponding obligations should be
abandoned. However, it may also be the case that ϕ has no
suitable support set, since ψ is now blacklisted. This means
ϕ should be abandoned. These cascading failures can end up
requiring a large number of obligations to be abandoned.

Rather than checking each individual obligation, the al-
gorithm simply abandons all may-proof obligations when
any one of them cannot be discharged. This leaves only
〈Bad, k,must〉 in the queue. The algorithm simply repeats all
of the steps of computing support sets for the property, then for
the supporting lemmas, and so on. In practice, re-computing
support sets would be costly, so the most recently-computed
support set for each lemma is cached. When the computations
are repeated, the cached result is used unless it contains a
blacklisted lemma. Therefore, only the support sets that have
been invalidated are re-computed.

A corner case occurs when i < 2, as Fi−2 does not exist.
The algorithm resorts to the fallback behavior in this case.
Additionally, for performance reasons, the fallback behavior
is used when i = 2. This is because F0 represents the
initial states, and as such contains lemmas that are given as
input rather than learned by the algorithm. These lemmas
are expected to be non-inductive, so pushing them forward
is undesirable. Therefore, the fallback behavior is used when
i ≤ 2. Note that in this case proof obligations are not subjected
to effort limits.

C. Comparison with Quip and IC3
Quip, IC3, and Truss all repeatedly attempt to discharge

〈Bad, k,must〉 for increasing values of k. This represents an
obligation to construct a bounded proof of the property at level
k. All three algorithms repeat this process until converging to
an inductive proof.

The algorithms differ in the additional reasoning they ap-
ply to accelerate convergence. In IC3, when an obligation
〈m, i,must〉 is discharged, 〈m, i+ 1,must〉 may be returned
to the queue. This ensures that the CTI represented by m is
blocked at higher levels, but causes the algorithm to expend
effort learning multiple lemmas to block the same CTI. In
Quip, upon discharging the same obligation by learning a
lemma ϕ, a new obligation 〈¬ϕ, i + 1,may〉 may be added
to the queue. This forces the algorithm to try to promote ϕ to
block m at higher levels, even if it requires learning additional
lemmas to support ϕ. This can be an expensive process and
may only result in the algorithm discovering reachable states

instead of blocking m at higher levels. The algorithms apply
these consistently without regard to the particular lemmas or
CTIs being considered.
Truss instead uses support sets to guide these decisions.

Rather than consistently trying to push forward every lemma,
support sets are used to identify a set of lemmas that might
be close to forming an inductive invariant. In fact, the set
of lemmas identified represents a portion of a bounded proof
excluding any bad or ugly lemmas. It may be the case that
this set of lemmas is only useful together i.e., if one cannot
be promoted, the entire set is not useful. Therefore, when a
targeted lemma is not promoted, the algorithm detects and
abandons obligations that are only valuable in conjunction
with that lemma. In essence, the algorithm tries to identify
the portion of the existing bounded proof that is likely to be
inductive and support it until it becomes inductive. However,
effort limits are used to limit this procedure.

All of these algorithms are forced to construct bounded
proofs at higher and higher levels in order to “escape” the non-
inductive lemmas they have learned and to learn new lemmas
to replace them. In IC3, once a lemma is learned, no effort
will ever be made to learn new lemmas to support it and push
it forward. It will only be pushed forward if such lemmas are
learned by chance. In Quip, an effort is made immediately
upon learning a lemma to learn its supporting lemmas using
may-proof obligations. However, after that process finishes,
no further effort is made. Truss is able to identify important
lemmas and then learn new lemmas to support them at any
time. We believe this represents a significant extension of the
algorithm’s reasoning capabilities.

V. EXPERIMENTAL RESULTS

All results presented in this section are executed on a single
core of a Linux workstation with an i5-3570K 3.4 GHz CPU
and 16 GB of RAM. We provide an experimental evaluation
of IC3, Quip, and Truss. We have implemented both
Quip and Truss1 in IImc [7], [8]. For all algorithms, the
backend SAT solver is Glucose [9], [10] as it was found to
give a substantial runtime improvement over the other solvers
available in IImc. Experiments are timed out after one hour.

We present results for problem instances in the HWMCC’15
benchmark set, excluding the proprietary circuits from Intel.
The 126 benchmarks that were not solved by any solver in the
competition are not considered, leaving 387 circuits. A further
122 circuits that were not solved by any of the evaluated
algorithms are excluded. After pruning those circuits, the
benchmark set contains 265 circuits.

In order to demonstrate that the “baseline” Quip approach
is reasonable, it is compared against the IC3 implementation
provided by IImc, referred to as IImc-IC3. However, we
disable several features that are not present in our implemen-
tations, including expansion of the initial states using forward
Binary Decision Diagrams [11], equivalence propagation, and
counter-examples to generalization [12]. All of the disabled
features are applicable to Quip and Truss, but are not
present in our implementation. These features are disabled so

1Source code and detailed results for each circuit are available at:
ryanmb.bitbucket.io/truss

TABLE I
SUMMARY OF RESULTS

SAFE SAFE UNSAFE UNSAFE TOTAL TOTAL
SOLVED TIME SOLVED TIME SOLVED TIME

IImc-IC3 175 (6) 77632 66 (5) 30131 241 (11) 107765
Quip 174 (3) 83450 56 (1) 66067 230 (4) 149517
Truss 183 (8) 57394 64 (5) 44147 247 (13) 101541

Quip Time (s)

Tr
us

s
T

im
e

(s
)

0.1 10 1000

0.
1

10
10

00

Fig. 1. Runtime comparison of Quip and Truss

as to limit the impact that the unrelated optimizations present
in IImc-IC3 have on the results.

A summary of the results is shown in Table I. The columns
SAFE SOLVED and UNSAFE SOLVED show the number
of safe and unsafe instances solved by each algorithm, re-
spectively. The number in parenthesis shows the number of
unique instances solved. The TOTAL SOLVED column shows
the total number of instances solved by each algorithm. The
SAFE TIME and UNSAFE TIME columns show the total
time spent by each algorithm on safe and unsafe instances
respectively. The TOTAL TIME column shows the total time
spent processing all instances. All times are in seconds.

The experiments show that our Quip implementation, while
weaker in comparison to IImc-IC3, is competitive and rep-
resents a reasonable baseline for comparison. Since Quip is
expected to outperform IC3 in typical cases, we expect this is
due to other unrelated optimizations present in IImc-IC3 that
could not readily be disabled. The experiments demonstrate
that Truss offers a substantial improvement over Quip for
both SAFE and UNSAFE instances. It also outperforms the
highly-tuned IImc-IC3 implementation, especially on SAFE
instances where it achieves a 1.35x speedup. Out of 265
circuits, Truss solves 247 instances compared to the 230
solved by Quip and processes the entire set 1.47x faster. Not
counting the 11 instances uniquely solved by IImc-IC3, the
speedup increases to an impressive 1.77x.

Figure 1 shows a detailed comparison of the runtime for
each approach. It plots the runtime of Truss versus that
of Quip for each of the benchmark circuits on a log-log
scale. The blue marks indicate SAFE instances while the
black marks indicate UNSAFE instances. It includes the 254
circuits that were solved by at least one of Quip or Truss.
Points under the solid line indicate that Truss is faster,
while points above it indicate that Quip is faster. It can be
seen that Truss is faster than Quip in most cases. Indeed,
145 of the 254 points fall below the line. However, this

Quip Proof / Truss Proof

Q
ui

p
T

im
e

/ T
ru

ss
 T

im
e

0 1 2 3 4 5

0
1

2
3

4
5

Fig. 2. Speedup versus reduction in proof size for challenging instances

significantly understates the benefits offered by Truss, as
it truly shines on the more challenging problem instances.
The benchmark sets contains 139 “easy” instances that were
solved by both algorithms in under 12 seconds. Excluding
the easy instances, Truss outperforms Quip on 81 out of
115 of the remaining “challenging” instances. Apparently,
Truss introduces overhead for easy benchmarks, but pays
off substantially for challenging ones.

The intuition behind Truss is that by promoting important
lemmas, the algorithm is able to more quickly discover a proof.
Naturally, it is expected to learn smaller proofs as a result. It
may not always do so, as random factors can significantly
impact the runtime and change the final proof. For instance,
Quip may learn a very important lemma by chance that
Truss never learns due to having a different inductive trace.
Truss does not address the problem of learning better ones,
so this problem is unavoidable.

To examine the relationship between runtime and proof
size, Figure 2 plots the speedup for Truss versus the proof
size reduction. It includes the 49 SAFE instances in the
challenging set that were solved by both algorithms. The solid
line indicates a 1:1 correlation between the two axes. Across
these 49 instances, Truss finds proofs that are an average
of 73.3% as large as those found by Quip. It can be seen
that higher speedups tend to occur when Truss computes
smaller proofs than Quip. This is unsurprising, as Truss
tends to find a smaller proof by processing fewer obligations
for more important lemmas.

To further examine this point, Table II reports the runtime
of various operations for Quip and Truss. It considers the
83 challenging instances solved by both algorithms. The first
column reports the total runtime. The PUSH TIME, MAY
TIME, MUST TIME, and SUPPORT TIME columns report the
time spent pushing, processing may-proofs (excluding calls
to Support), and processing must-proof obligations, and
computing support sets, respectively. The MAY PROOFS and
MUST PROOFS columns report the number of may-proof and
must-proof obligations processed, respectively. The SUPPORT
CALLS column reports the number of calls to Support.

The data explains how Truss achieves better runtime per-
formance. It spends similar amounts of time pushing lemmas
and processing must-proofs. However, it processes fewer than
one third as many may-proofs as Quip. Additionally, the
overhead of computing support sets is small, accounting for

TABLE II
TIME SPENT PER OPERATION

TOTAL PUSH MAY MAY MUST MUST SUPPORT SUPPORT
TIME TIME TIME PROOFS TIME PROOFS TIME CALLS

Quip 14000 2940 7108 1826812 2940 88983 0 0
Truss 10878 3317 3372 554233 2935 87616 517 135736

only 4.7% of the total runtime. Indeed, computing a support
set is expected to cost substantially less than processing a
proof obligation. Processing a proof obligation often results in
learning a new lemma, thereby running generalization which
may involve numerous SAT queries. Conversely, computing a
support set involves only one SAT query. Truss avoids a large
number of expensive generalization operations by performing
a smaller number of less expensive support set computations.

VI. ALTERNATIVES AND FUTURE WORK

This section presents alternative implementations of Truss
that combine the novel aspects in different ways. We also
discuss ways that the implementation could be improved and
aspects that may be applicable to other algorithms.

A. No Ugly Lemmas
An alternative version of Truss could use different criteria

to define ugly lemmas. The simplest alternative is to increase
the effort limit from 1. In the most extreme form, infinite effort
could be allowed, thereby eliminating ugly lemmas altogether.
A preliminary evaluation of this approach found it to perform
poorly. The algorithm expends much more effort pushing
forward lemmas that ultimately end up being marked as bad.
Even increasing the effort limit slightly had a similar but
less dramatic effect. Intuitively, it appears as though valuable
lemmas tend to be easy to support in most cases, since Truss
achieves better results when using a low effort limit.

B. Re-Enqueuing Obligations
Truss does not re-enqueue obligations in the manner

Quip does on line 15 of Algorithm 2. The algorithm can
be modified to accommodate this operation, though several
variations are reasonable. For instance, it’s unclear if re-
enqueued lemmas should be subject to effort limits or not. A
preliminary experimental evaluation found that several vari-
ations of this approach performed worse than Truss. One
possible explanation is that the re-enqueue operation is to
ensure important lemmas are available at higher levels. This
is exactly the same reasoning behind adding lemmas from
support sets. However, support sets contain more fine-grained
information about which lemmas are important. Therefore the
extra proof obligations from the re-enqueue operation may be
less helpful than those added by Truss.

C. Using Support Sets for Non-Lemmas
Another alternative implementation could use different eli-

gibility criteria, such as using support sets to discharge every
proof obligation. In Truss, support sets are only used when
an obligation represents a lemma in the inductive trace. How-
ever, Lemma 1 holds for every proof obligation, so it would
be a reasonable to use support sets for every proof obligation.
This procedure takes the goal of re-using of existing lemmas
rather than learning new ones to the extreme.

D. Improved Solving under Assumptions
Algorithm 3 for computing lemma supports is based on

incremental SAT solving with many assumptions, which may
significantly slow down SAT-queries, see for example [13].
However, on problems where all assumptions can be cleanly
separated into original problem literals and activation literals
various solutions are possible [13], [14]. In the future we are
planning to investigate the precise effect of assumptions on
Algorithm 3 and adjust the back-end SAT solver accordingly.
In addition, most state-of-the-art SAT solvers tend to propagate
assumptions in the order they are received and it seems a
good idea to experiment with different assumption orders. For
example, by putting the activation literals in decreasing order
of level for the corresponding lemma, the algorithm is likely
to find a smaller critical support set.

VII. CONCLUSION

This work presents an IC3-based unbounded model check-
ing algorithm called Truss. The algorithm detects a subset
of lemmas in the inductive trace that participate in a bounded
proof of the property and targeting the set for for pushing as
a cohesive unit. Experiments on HWMCC’15 designs show a
substantial speedup against the state-of-the-art.

REFERENCES

[1] H. D. Foster, “Trends in functional verification: A 2014 industry study,”
in DAC 2015, June 2015, pp. 1–6.

[2] A. Bradley, “SAT-based model checking without unrolling,” in VMCAI,
2011.

[3] N. Eén, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” ser. FMCAD 2011, Austin, TX, 2011,
pp. 125–134.

[4] A. R. Bradley, “Incremental, inductive model checking,” in 2013 Inter-
national Symposium on Temporal Representation and Reasoning, Sept
2013, pp. 5–6.

[5] A. Ivrii and A. Gurfinkel, “Pushing to the top,” in FMCAD 2015, Sept
2015, pp. 65–72.

[6] R. Berryhill, N. Veira, A. Veneris, and Z. Poulos, “Learning lemma sup-
port graphs in quip and IC3,” in Proceedings of the 2017 International
Verification and Security Workshop (IVSW) 2017, 2017.

[7] A. R. Bradley and F. Somenzi and Z. Hassan, “IImc: an
Incremental Inductive model checker.” [Online]. Available: https:
//github.com/mgudemann/iimc

[8] Z. Hassan, A. R. Bradley, and F. Somenzi, “Incremental, inductive CTL
model checking,” in CAV 2012, 2012, pp. 532–547.

[9] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Proceedings of the 21st International Joint Conference
on Artifical Intelligence (IJCAI), San Francisco, CA, USA, 2009, pp.
399–404.

[10] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT 2003,
2003, pp. 502–518.

[11] K. L. McMillan, Symbolic Model Checking. Norwell, MA, USA:
Kluwer Academic Publishers, 1993.

[12] Z. Hassan, A. R. Bradley, and F. Somenzi, “Better generalization in ic3,”
in FMCAD 2013, Oct 2013, pp. 157–164.

[13] J. Lagniez and A. Biere, “Factoring out assumptions to speed up MUS
extraction,” in SAT 2013, 2013, pp. 276–292.

[14] G. Audemard, J. Lagniez, and L. Simon, “Improving glucose for incre-
mental SAT solving with assumptions: Application to MUS extraction,”
in SAT 2013, 2013, pp. 309–317.

