
Towards Verifiable-by-Design Smart Contracts:
A Declarative Limit Order Books Implementation

Srisht Fateh Singh
Electrical & Computer Engineering

University of Toronto
Toronto, Canada

srishtfateh.singh@mail.utoronto.ca

Jeffrey Klinck
Electrical & Computer Engineering

University of Toronto
Toronto, Canada

jeffrey.klinck@mail.utoronto.ca

Zissis Poulos
School of Information Technology

York University
Toronto, Canada
zpoulos@yorku.ca

Andreas Veneris
Electrical & Computer Engineering

University of Toronto
Toronto, Canada

veneris@eecg.toronto.edu

Mohammad Fawaz
Independent Researcher

Toronto, Canada
mohammadfawaz89@gmail.com

Simon Roberts
Essential

Montreal, Canada
simon.roberts@essentialcontributions.com

Abstract—We present a declarative approach to on-chain
limit order books (LOBs) that prioritizes formal verification
over raw throughput. Unlike automated market makers, LOBs
offer granular control and capital efficiency but are difficult to
verify when implemented imperatively in Solidity. Using Pint, a
declarative domain-specific language, we encode LOB matching
logic, price-time priority, partial fills, and asset conservation,
as first-order constraints. Off-chain solvers compute valid state
transitions, while the blockchain performs lightweight constraint
verification. We implement eight LOB predicates and evaluate
performance using real-world transaction traces. Our declarative
LOBs achieve 141 predicates/s for simple operations and 11
predicates/s for complex settlement with 1,000 accounts. Per-
formance correlates strongly with state access patterns rather
than constraint complexity. Critically, our approach eliminates
verification challenges that make imperative smart contracts
hard to formally verify, such as unbounded loops, recursion,
cross-contract/function calls, and complex control flow. This en-
ables correctness-by-construction through constraint satisfaction,
removing the need to prove implementation conformance to
specifications. This work demonstrates the first practical evidence
that declarative LOBs achieve reasonable performance while
providing superior verification guarantees for DeFi protocols.

Index Terms—Limit Orderbooks, Declarative, Blockchain,
Smart Contract, DeFi, Pint

I. INTRODUCTION

The introduction of smart contract blockchains, such as
Ethereum [1], in the last decade has led to the rise and
adoption of decentralized finance (DeFi), where traditional
financial intermediaries are replaced with autonomous and
public protocols. Prominent DeFi protocols routinely manage
and safeguard assets worth hundreds of millions of dollars,
yet high-value smart contract failures remain endemic in the
DeFi ecosystem. Between 2018 and 2025, cumulative losses
exceeding $3 billion have been caused by smart contract logic
bugs, oracle manipulation, and re-entrancy attacks [2]–[4]. To
this extent, regulators now flag smart contract correctness as
a critical barrier to institutional adoption. Institutions such as
the Bank for International Settlements and the International
Organization of Securities Commissions call for formally
demonstrable safeguards before large asset managers can
participate in DeFi [5], [6]. Thus, in the DeFi space, smart

contract correctness and verifiability have now been elevated to
first-order design goals rather than optional retroactive audits.

A fundamental application in any financial market is the
ability to exchange one asset for another at the underlying ex-
change rate. In DeFi markets, this is achieved using one of the
two protocol categories: automated market makers (AMMs)
and limit orderbooks (LOBs). AMMs dominate today’s on-
chain trading volume by achieving simplicity of the underlying
smart contract design at the expense of forgoing the trader’s
expressiveness and precision that are common in conventional
exchanges [7], [8]. LOBs, on the other hand, are the canonical
engine of traditional markets and provide the expressiveness
missing in AMMs [9]–[11]. However, as expressive trading
primitives amplify the need for correctness and verifiability,
previous on-chain LOB attempts were thwarted by both execu-
tion cost and the difficulty of auditing program execution [12],
[13]. Consequently, no fully on-chain LOB today offers the
same formal safety guarantees as simpler DeFi primitives.

We approach the above problem from a declarative per-
spective. In a declarative smart contract design, the developer
specifies constraints that must hold between the current state
and the new state post-transaction. On the other hand, off-
chain agents, known as solvers, search for compliant state
transitions and propose them to blockchain validators. These
validators merely check the satisfaction of constraints using
the proposed new state values. Languages such as FINDEL and
DECON have shown that many financial contracts naturally fit
this paradigm [14], [15]. However, they have not tackled the
full complexity of an LOB exchange.

To close this gap, we leverage a new declarative blockchain
architecture introduced by Essential that supports constraint-
based execution through a custom virtual machine and domain-
specific language (DSL) called Pint [16]. In this model, smart
contracts define permissible state transitions through logical
predicates. We design a constraint system for LOB settlement
in which fundamental properties such as order validity, price-
time priority, and order matching consistency are enforced as
declarative rules. Execution is delegated to off-chain solvers
that submit candidate state updates, e.g., matched trades.
Therefore, a single predicate can confirm dozens of order

matches, while the on-chain verifier validates those predicates.
The underlying virtual machine guarantees termination and
supports efficient constraint evaluation, sidestepping the gas-
metered, step-by-step execution model of traditional impera-
tive virtual machines such as the EVM.

As part of our design, we represent resting trade orders us-
ing sorted linked lists indexed by price level, enabling efficient
off-chain traversal and order matching while preserving deter-
ministic ordering for on-chain verification. This decoupling
allows the order state to reside off-chain (e.g., in mempools)
and excludes adversarial executions by construction, thereby
guaranteeing correctness by design. While our implementation
targets the Essential chain and its declarative virtual machine,
the underlying programming logic is execution-agnostic. It
enables LOB semantics to be expressed and verified via
constraints. The declarative abstraction that we introduce is
portable in principle and could be instantiated in any execution
environment that supports predicate-based block validation.
Essential serves here as a reference implementation.

We implement eight LOB predicates whose constraint de-
sign enforces LOB specifications and benchmark these pred-
icates on Essential’s virtual machine using real-world LOB
transaction traces. Our results show that single-threaded exe-
cution achieves throughput of 141 predicates/s for the simplest
operation, deposit, and 11 predicates/s for the most complex,
settle market orders1 when the address space comprises
1, 000 accounts. Throughput decreases non-linearly with state
size and correlates strongly with storage access patterns, while
the number of logical constraints shows minimal impact on
performance. Importantly, our declarative approach eliminates
several verification challenges that plague imperative smart
contracts, including unbounded loops, recursion, and cross-
contract/function calls, which render formal verification com-
putationally expensive or undecidable. This design achieves
correctness-by-construction at modest throughput cost, pro-
viding the first practical evidence that purely declarative,
constraint-verified orderbooks can deliver reasonable perfor-
mance while offering superior verification guarantees com-
pared to traditional imperative implementations.

The paper is organized as follows: Section II discusses
related work, Section III provide background on the Pint
language, Section IV decribes the underlying LOB model used
in this work, along with the model properties, Section V de-
scribes the smart contract design and specifications enforcing
the model properties, Section VI benchmarks the performance
of the Pint smart contracts on Essential’s virtual machine,
and lastly, the paper is concluded in Section VII.

II. RELATED WORK

Early decentralized exchanges such as EtherDelta, 0x, and
IDEX stored orders on Ethereum but matched them off-
chain, re-introducing trust assumptions and limiting compos-
ability [12]. Subsequent designs moved execution off chain
with on-chain verification. Optimistic rollups (e.g., Arbitrum)
formalized the pattern of off-chain computation plus on-chain
fraud/validity checks [17]. Layer-two (L2) designs exhibit
distinct security/latency trade-offs: channels require online

1This is amortized throughput where each call processes one order.

counterparties and locked collateral, plasma/commit chains
weaken data availability via operator assumptions, whereas
rollups inherit L1 security, incurring challenge delays for
optimistic rollups or prover overhead for validity rollups [18].
Production DEXs then adopted validity rollups. For instance,
Loopring uses zkSNARK-based proofs within a zk-rollup to
attest correct matching and settlement [19], while dYdX v3
employs zkSTARK proofs and an off-chain order book and
matcher [20], [21]. Despite these gains, ordering remains a
critical concern. Transaction sequencing can create extractable
value and fairness violations [22] and most rollups still rely
on a centralized sequencer whose ordering policy is not pub-
licly enforceable, motivating ongoing work on decentralized
sequencing [23]. An alternative line of work relies on high-
throughput L1s. Serum, for example, operates a fully on-
chain LOB on Solana by exploiting sub-second blocks, yet
it offers no static correctness guarantee beyond traditional
code review [24]. Across all these architectures, a general,
developer-level method for proving LOB invariants is missing.

AMMs circumvent explicit matching by enforcing a single
algebraic invariant. Concentrated-liquidity variants, including
Uniswap v3 [25] and Curve v2 [26], allow liquidity to be
placed in price bands, partially emulating order-book depth.
Nevertheless they lack discrete order types and time priority,
and formal reasoning is limited to arithmetic soundness.

Declarative and logic-based smart-contract languages seek
stronger assurances. FINDEL encodes derivative payoffs as
pure expressions [14], and DECON models token contracts as
Datalog-style rules [15]. Both ultimately compile to Solidity,
so the resulting bytecode must still be audited. Industrial tools
such as Certora translate each control-flow path in a Solidity
function into a proof obligation, a logical formula that must
be satisfied by an SMT solver [27]. Consequently, the number
and size of these obligations grow with every additional loop
iteration and branch in the code, so verification effort scales
roughly with loop depth and branching complexity rather
than with the simpler, post-state constraint we check in our
declarative design. Our work differs by keeping execution and
specification unified: order-matching logic is expressed as first-
order constraints whose on-chain verification cost is constant
in the number of matched orders.

III. Pint OVERVIEW

We implement the LOB as a declarative smart contract in
Pint [16], a custom declarative programming language with
its own virtual machine runtime. In the following sections, we
first give a brief overview of the Pint suite, followed by the
motivation for choosing Pint.

A. Pint Declarative Language

Pint is an open-source, content-addressable language for
declarative programming, a programming paradigm that ex-
presses computational logic without specifying control flow.
Therefore, declarative smart contracts focus on what the
program should accomplish, rather than how to accomplish
it. On the other hand, imperative programs explicitly define
the sequence of operations and control flow structures, such
as loops and conditional statements, that dictate how computa-
tional goals are achieved. This fundamental difference makes

1 // addresses mapped to internal balances
2 storage {
3 balances: (b256 => int),
4 }
5 // predicate arguments
6 predicate deposit(addr: b256 , amount: int)
7 {
8 // mutable state
9 let bal: int = mut storage :: balances[addr];

10 // constraint 1
11 constraint amount >= 0;
12 // constraint 2
13 constraint (bal == nil && bal0 ’ == amount) || (bal ’

== bal0 + amount);
14 }

Listing 1: Illustration of a simple Pint declarative contract.

declarative contracts more amenable to formal verification and
parallel execution. Pint contracts consist of three components
viz. Storage, Predicates, and Solution.
Storage: This defines all persistent variables in the smart
contract, that is, variables that reside in the chain’s persistent
state. These include hash mappings and common data types
such as 64-bit integers (int), booleans (bool), and addresses
(represented as [int; 4] and aliased as b256). Lines 2–4 of
Listing 1 show an example illustrating the storage element of
the address–balance mapping.
Predicates: These are statically declared smart contract com-
ponents analogous to function declarations in imperative smart
contracts. However, instead of explicitly defining the state
transition logic, predicates consist of the following subcom-
ponents:

• Address: Each predicate is content-addressable with a
unique 256-bit predicate address.

• Mutable State: A subset of contract storage variables
that can be assigned new values during predicate execu-
tion. These variables must be explicitly declared within
the predicate.

• Arguments: Similar to function parameters in imperative
smart contracts, these are input values to a predicate that
serve as local variables. These values may be used to
define the predicate’s logic, including constraints.

• Constraints: These are the central components of a
predicate that define logical conditions. They constrain
current state values, post-state values, and local variables,
including predicate arguments. These constraints must be
satisfied for a proposed post-state to be considered valid.

Lines 6–14 of Listing 1 show an example of a simple deposit
predicate that increases the balance of the specified address by
amount. The predicate consists of two arguments (Line 6), one
mutable state (Line 9), and two constraints. The first constraint
checks for a positive value of the amount argument (Line 11).
The second constraint checks for the appropriate post-value of
the user’s balance (Line 13-14).
Solution: Each block in Pint-based blockchains, such as
Essential, consists of a single state transition with corre-
sponding pre-state and post-state values. In the below, pre-
state variables are represented without prime notation, while
post-state variables use prime notation (e.g., state variable v
becomes v′ in the post-state). Agents known as solvers propose
solutions that satisfy predicate constraints.

A solution with n predicate arguments and m mutable states
consists of the following fields:

{predAddr, (a1, a2, . . . , an), (k1, v
′
1), (k2, v

′
2) . . . (km, v′m)}

Here, predAddr represents the predicate address, ai denotes
the i-th predicate argument, ki represents the key of a mutable
storage variable, and v′i represents the corresponding post-state
value. For example, in Listing 1, a solver produces a solution
containing: the predicate address, predicate arguments (user
address addr and deposit amount amount), and the key-value
pair for the user’s updated balance (balances[addr]’s key and
its new value).

B. Motivation for Pint

Although there are numerous smart contract programming
languages, we chose Pint because it offers several key advan-
tages over alternatives.

Formal Verification: Pint smart contracts are statically
deterministic at compile time, unlike Solidity contracts [28],
which exhibit dynamic, runtime-dependent behavior. This
static nature makes Pint contracts more amenable to formal
verification methods, particularly for cross-contract interac-
tions. This is discussed in detail in Section VI-C. Furthermore,
since contracts consist of constraint sets, they are inherently
well-suited for formal verification techniques.

Enhanced Security: Historically, reentrancy attacks on
Solidity smart contracts have caused losses exceeding hun-
dreds of millions of dollars. Pint’s declarative structure makes
reentrancy attacks impossible. Additionally, all state variables
within a predicate are immutable by default, unless explicitly
declared mutable. This restriction on state access significantly
reduces contract vulnerability to attacks exploiting unexpected
state modifications.

Optimized for Parallelization: Pint is specifically opti-
mized for declarative programming, unlike general-purpose
languages such as Solidity. Notably, Pint can parallely val-
idate multiple predicates with a common state transition. In
contrast, functions in imperative languages, which serve as the
equivalent of predicates, cannot be executed in parallel due to
their sequential control flow requirements.

IV. LIMIT ORDERBOOK MODEL

This section describes the underlying model for limit or-
derbooks upon which our smart contract design is based. We
present both the underlying state representation of an LOB and
the properties that must be satisfied during state transitions.

A. State Representation

We consider a limit orderbook for the token pair token 0,
token 1, where token 0 represents the principal asset (such as
BTC or ETH) and token 1 represents the numeraire (such as
USDC). Our model consists of the following state components,
including derived states represented as function mappings.

User Balances: We consider a set of user addresses A and
denote an individual address as a ∈ A. For each address
a, we represent its token 0 and token 1 balances using
functions B0(a) and B1(a), respectively, where both balances
are positive integers.

Limit Orders: We represent limit orders, which are quotes
to buy or sell token 0 for token 1, as tuples (p, amt, t)
where p denotes the order price, amt denotes the unfilled order
amount, and t denotes the order’s posting time, all represented
as integers. A limit order quoting a buy is referred to as a bid,
while one quoting a sell is referred to as an ask. An order is
considered active if its posting time t is less than the current
time.

Order Indexing: We index the set of all limit orders using
indices i and j. The ith bid is represented using function
Bid(i), which maps i to the tuple (pi, amti, ti). Similarly,
the jth ask is represented using function Ask(j), which maps
j to tuple (pj , amtj , tj).

B. Model Properties
The following properties must be enforced during state

transitions to ensure correct orderbook behavior.

Property 1 (Token Balance Invariant). The total amounts of
token 0 and token 1 across all users cannot increase during a
valid state transition. This ensures that tokens are not created
during trading operations. Mathematically, this constraint on
balances B0 and B1 for tokens 0 and 1, respectively, is
expressed as: ∑

a∈A
B0(a) ≥

∑
a∈A

B′
0(a)∑

a∈A
B1(a) ≥

∑
a∈A

B′
1(a).

(1)

Property 2 (Order Settlement Invariant). This property en-
sures that when orders are executed, user balances and order
amounts change consistently, preserving the conservation of
tokens during trades.

For a bid order at index i executed by address a:

B0(a) + amti = B′
0(a) + amt′i

B1(a)− pi · amti = B′
1(a)− pi · amt′i

This means the user gains token 0 tokens and loses token 1
tokens proportional to the filled amount.

Similarly, for an ask order at index j by address a:

B0(a)− amtj = B′
0(a)− amt′j

B1(a) + pj · amtj = B′
1(a) + pj · amt′j

This means the user loses token 0 tokens and gains token 1
tokens proportional to the filled amount.

Property 3 (Price Priority). This property ensures that limit
orders with better prices are executed with priority over those
with worse prices. Formally:

• If a bid order with index i is executed, then in the post-
state, there is no active bid order with index j that has a
higher price (pj > pi) and a positive amount (amt′j > 0).

• If an ask order with index i is executed, then in the post-
state, there is no active ask order with index j that has a
lower price (pj < pi) and a positive amount (amt′j > 0).

Property 4 (Time Priority). This property ensures that when
multiple orders have the same price, the order that arrived
first is prioritized. Formally, if a limit order (either bid or

ask) with index i is executed, then there does not exist an
order with index j in the post-state that has a positive amount
(amt′j > 0), the same price as order i (pi = pj), and arrived
before order i (tj < ti).

V. DECLARATIVE LIMIT ORDERBOOK DESIGN

In this section, we describe the design of Pint smart
contracts for the LOB model presented above. We begin with a
design overview, followed by contract specifications based on
LOB model properties, and conclude with detailed predicate
designs.

A. Limit Orderbook Design Overview
To enforce Properties 3 and 4, we maintain submitted bid

and ask orders as two separate linked lists ordered by price-
time priority. Although insertion and deletion in a linked list
requires O(n) operations (where n is the list size), verification
of these operations requires only O(1) operations. Since
declarative contracts only validate proposed solutions rather
than computing them, the execution cost of insertion and
deletion predicates is O(1). However, the computational cost
for off-chain solvers to generate solutions remains O(n).

Beyond insertion and deletion, we implement limit order
settlement, where solvers match and settle groups of bid orders
with groups of ask orders. In this settlement predicate, the
solver provides the order indices to be matched as predicate
arguments. The predicate’s constraints validate Properties 1
and 2 from Section IV-B. Additionally, the solver can post a
single bid and ask order as part of the arguments, enabling the
solver to act as a market maker, as illustrated in Figure 1.

Figure 1a shows the non-overlapping arrangement of bid
and ask limit orders at block b, where the market price
lies between the highest bid price and the lowest ask price.
Figure 1b illustrates the subsequent block b + 1, where the
market price increases above the lowest ask price. In this
scenario, the solver posts a bid order that matches the lowest
ask order and simultaneously settles both orders.

Finally, we implement market orders, which are similar to
limit orders but lack a specified execution price and require
immediate settlement. To execute a bid (ask) market order
predicate, the solver provides the corresponding ask (bid) limit
orders from the linked list as predicate arguments.

B. LOB Smart Contract Specifications
We outline the specifications of the LOB smart contract,

followed by predicate designs that include constraints to
enforce these specifications.

Specification 1 (Token Pair Uniqueness). The contract is
uniquely defined for a single pair of tokens (token 0, token 1)
and does not support trading of other token pairs.

Specification 2 (Custodial Balance Management). The smart
contract maintains custody of all token 0 and token 1 tokens
involved in trading. Users must deposit tokens into the contract
before trading and can withdraw their remaining balances
after trading activities conclude.

Specification 3 (Price-Time Priority Ordering). Limit orders
are stored as two separate linked lists (bids and asks), each
ordered by price-time priority:

Market Price

Bid-Order 0

Bid-Order 1

Bid-Order 2

Ask-Order 0

Ask-Order 1

Ask-Order 2

Price

(a) Bid and Ask orders maintained as linked lists.

Market price
goes up

Bid-Order 0

Bid-Order 1

Bid-Order 2

Ask-Order 0

Ask-Order 1

Ask-Order 2

Solver posts bid
order and settles
atomically

(b) When the market price rises, the solver posts a new order that settles
immediately in the same block.

Fig. 1: Design overview of limit orderbooks on declarative smart contracts.

• Bid list: Each bid order points to the subsequent bid with
lower price. The highest-priced bid is at the head of the
list.

• Ask list: Each ask order points to the subsequent ask with
a higher price. The lowest-priced ask is at the head of
the list.

• Time priority: For orders with identical prices, earlier-
arriving orders point to later-arriving orders.

Specification 4 (Settlement Invariants). During the settlement
of multiple bid and ask orders, the following must hold:

• Token balance invariant (Property 1).
• Order settlement invariant (Property 2).
• Price-time priority is respected (Properties 3 and 4).

Specification 5 (Solver Market Making). During settlement
execution, solvers may post exactly one bid order and one ask
order that are settled alongside existing orders.

Specification 6 (Market Order Execution). Market orders are
executed as follows:

• Bid market orders match with the highest-priority
(lowest-priced) ask orders

• Ask market orders match with the highest-priority
(highest-priced) bid orders

• Multiple market orders in the same block receive identical
average execution prices

• All settlement invariants (Property 1 and 2) are enforced

Specification 7 (Order Lifecycle). Orders can be inserted,
partially filled, completely filled, or cancelled. Partially filled
orders retain their original priority position with updated
amounts.

C. LOB Smart Contract Design
In this section, we describe the design of the declarative

smart contract that implements the specifications outlined
above for limit orderbooks. We detail the key components
of the declarative contract structure: the storage state and
the predicates, including their arguments, mutable state, and
constraints.

1) Storage State: To implement Specification 1, the smart
contract operates exclusively on a unique pair of tokens,
token 0 and token 1, per contract instance.

1 predicate deposit(amount0: int , amount1: int , addr:
b256){

2 let bal0: int = mut storage :: balances_0[addr];
3 let bal1: int = mut storage :: balances_1[addr];
4 constraint amount0 >= 0;
5 constraint amount1 >= 0;
6 constraint (bal0 == nil && bal0 ’ == amount0) ||
7 (bal0 ’ == bal0 + amount0);
8 constraint (bal1 == nil && bal1 ’ == amount1) ||
9 (bal1 ’ == bal1 + amount1);

10 }

Listing 2: Simplified design of the deposit predicate.

For Specification 2, the contract maintains two mappings:
balance 0 and balance 1, which map user addresses to their
internal balances of token 0 and token 1, respectively.
Users must deposit these tokens before interacting with the
orderbook contract and can withdraw their remaining tokens
after completing their interactions, as detailed in the predicate
design section.

To implement Specification 3, the contract stores two key
mappings: bid list and ask list. These mappings asso-
ciate each order index i with a tuple (pi, amti, j), where
pi represents the order’s price, amti represents the unfilled
amount, and j represents the index of the next order in
the linked list structure. Additionally, the contract maintains
first bid index and first ask index to identify the head
of each linked list. The specific ordering of these lists to
enforce price-time priority is detailed in the following section.

2) Predicate Design: The smart contract consists of eight
predicates:

deposit: This predicate addresses specifications 1 and 2,
and is used to deposit either token into the contract. Listing 2
shows the simplified design. Its arguments are the depositor’s
address and the deposit amounts of token 0 and token 1,
respectively. The mutable state comprises only the two balance
slots of the sender (lines 2–3), while all other storage remains
immutable. Constraints enforce (i) positive deposit amounts
(lines 4–5) and (ii) the correct update of the pre- and post-
state balances (line 6− 9), optionally including a cross-call to
a token contract in a full implementation.

withdraw: Complementing deposit, this predicate lets a user
withdraw tokens and also satisfies specifications 1 and 2. The

1 predicate add_bid(lead_key: int , trail_key: int ,
new_order: order , new_index: int){

2 // mutate storage
3 let new_slot = mut storage :: bid_list[new_index];
4 let lead_order_next: int = mut storage :: bid_list[

lead_key]. next_key;
5 let first_index: int = mut storage ::

first_bid_index;
6 ...
7 // verify solver gave empty slot
8 constraint new_slot == nil && new_slot ’ ==

new_order;
9 // update leading order

10 constraint lead_order_next == trail_key;
11 constraint lead_order_next ’ == new_index;
12 // verify order info
13 ...
14 // verify the user has enough balance
15 ...
16 // verify and update the first order pointer
17 if (lead_key == 0) {
18 constraint first_index ’ == new_index;
19 constraint first_index == trail_key;
20 }else{// first order index is not changing
21 constraint first_index ’ == first_index;
22 }
23 // verify correct price -time priority order
24 constraint new_order.price <= lead_order_price;
25 constraint new_order.price > trail_order_price;
26 }

Listing 3: Simplified design of the add bid predicate.

arguments and mutable state mirror those of deposit, however,
the balance constraints now decrease the post-state balances,
and ensures the user has sufficient funds before withdrawal.

add bid: Listing 3 implements the logic for inserting a new
bid order while preserving price-time priority (Specification 3).
The predicate receives the keys of the leading and trailing
orders (lead key and trail key), the new order tuple, and
its storage index as arguments. Mutable state includes the
candidate slot for the new order, the next key of the leading
order, and the global pointer first bid index. Constraints
(i) guarantee the chosen slot is empty (line 8), (ii) patch the
linked list by redirecting the leading order’s next key to point
to the new order (lines 10-11), (iii) perform sanity checks on
the new order and verify the order owner has sufficient balance
(lines 13-15), (iv) update first bid index if inserting at
the head (lines 17-22), and (v) verify the new order’s price
maintains price-time priority relative to its neighbors (lines 24-
25). The strict inequality in line 25 enforces time priority
among orders with identical prices, i.e. plead ≥ pnew > ptrail.

remove bid: Listing 4 removes an existing bid order iden-
tified by mid index. The mutable state includes the order
being removed, the next key of the leading order, and the
first bid index pointer. Constraints ensure (i) the target
slot is cleared in the post-state (line 7), (ii) the linked list is
properly spliced by connecting the leading order directly to the
trailing order (lines 9-10), (iii) the removed order’s neighbors
match expected values (lines 13), and (iv) the head pointer is
updated when removing the first order (lines 15-20).

add ask: Symmetric to add bid, this predicate inserts a
new ask order into ask list, enforcing ascending price-time
priority for asks. Its structure, mutability pattern, and con-
straint set mirror those in Listing 3, with the change that prices
are compared in the opposite direction (plead ≤ pnew < ptrail).

1 predicate remove_bid(lead_key: int , trail_key: int ,
mid_index: int){

2 // mutate storage
3 let mid_slot = mut storage :: bid_list[mid_index];
4 let lead_order_next: int = mut storage :: bid_list[

lead_key]. next_key;
5 let first_index: int = mut storage ::

first_bid_index;
6 // verify solver updated the middle order to zero
7 constraint mid_slot ’ == nil;
8 // update leading order
9 constraint lead_order_next ’ == trail_key;

10 constraint lead_order_next == mid_index;
11 // verify order info
12 constraint mid_index > 0; //0 index is nil order
13 constraint mid_slot.next_key == trail_key;
14 // verify and update the first order pointer
15 if (lead_key == 0) {
16 constraint first_index == mid_index;
17 constraint first_index ’ == trail_key;
18 }else{// first order index is not changing
19 constraint first_index ’ == first_index;
20 }
21 }

Listing 4: Simplified design of the remove bid predicate.

remove ask: This predicate is the ask-side counterpart of
remove bid. It unlinks an ask order from the linked list,
updates first ask index when required, and validates that
all pointer rewrites, including first index pointer are correct.

settle limit orders: This predicate, as shown in list-
ing 5, matches and settles a batch of highest-priority (highest-
priced) bid orders with highest-priority (lowest-priced) ask
orders until the terminal indices provided by the solver are
reached. Its arguments include the unfilled remainders of
terminal orders (last amnt bid, last amnt ask), their in-
dices (last bid id, last ask id), arrays of fully-matched
order indices (bid ids, ask ids), and two virtual bridging
orders provided by the solver (solver orders), addressing
Specification 5.

The mutable state comprises every order slot referenced in
the two ID arrays (set to nil once cleared), the two partially
filled terminal orders (whose max amnt fields are reduced by
the remainder arguments), and the solver’s and order owners’
token 0 and token 1 balances. The predicate instantiates four
internal variables that count the total inflow and outflow of
each token.

The constraints first perform sanity checks on every supplied
ID, then enforce two token balance-conservation equalities that
include the solver’s bridging orders, according to Inequality (1)
(line 10 − 11). Lastly, the solver’s post-state balances are
updated accordingly and constrained to remain non-negative
(line 13− 14).

settle market orders: This predicate simultaneously
clears a batch of market orders against the current highest-
priority limit orders at solver-quoted average prices. Its ar-
guments include the same four terminal parameters as the
above predicate, arrays of incoming market orders (bid mos,
ask mos), which are a tuple of user address and order size,
the IDs of limit orders that are fully filled during the process
(bid ids, ask ids), and the solver’s average-price quotation
for each side (avg price bids and avg price asks).

The mutable state touches every order object referenced
by any of those arrays, the global head pointers of both

1 predicate settle(last_amnt_bid: int , last_amnt_ask:
int , last_bid_id: int , last_ask_id: int , bid_ids:
int[], ask_ids: int[], solver_orders: order [2]){

2 // mutable storage
3 ...
4 // perform sanity checks on bid and ask orders
5 ...
6 let sum_all_zero_bids: int = ...;
7 let sum_all_one_bids: int = ...;
8 let sum_all_zero_asks: int = ...;
9 let sum_all_one_asks: int = ...;

10 constraint -sum_all_zero_bids + sum_all_zero_asks
- solver_orders [0]. max_amnt * solver_orders
[0]. price + solver_orders [1]. max_amnt *
solver_orders [1]. price <= 0;

11 constraint sum_all_one_bids - sum_all_one_asks +
solver_orders [0]. max_amnt - solver_orders [1].
max_amnt <= 0;

12 // Verifying order settlement invariant for solver
13 constraint solver_bal0 ’ == solver_bal0 -

solver_max_amnt0 * solver_price0 +
solver_max_amnt1 * solver_price1;

14 constraint solver_bal1 ’ == solver_bal1 +
solver_max_amnt0 - solver_max_amnt1;

15 constraint solver_bal0 ’ >= 0;
16 constraint solver_bal1 ’ >= 0;
17 }

Listing 5: Simplified design of the settle predicate.

books, and the user’s balances. In addition to the above pred-
icate, it declares two local variables sum bid market orders
and sum ask market orders that aggregate the sizes of the
market-order arrays (lines 3− 4).

Its constraints (i) verify that the solver’s quoted average
prices correctly reflect the weighted average of matched limit
orders (lines 12-13), (ii) ensure total market order volume
matches total limit order volume (lines 15-16), and (iii) dis-
tribute fills pro-rata using the @distribute market orders *
macros at the quoted average price. Note that the above con-
straints on ensuring the correct average price, equal market and
limit order sizes, and distribution at average prices implicitly
enforce the token balance-conservation invariant (1). Overall,
the predicate implements the market order specification (6).

VI. EVALUATION

In this section, we evaluate and benchmark the performance
of the Essential virtual machine that executes the limit order-
book smart contracts. Essential provides an open-source Rust
language suite for executing Pint declarative smart contracts.
Our experiments attempt to answer the following questions: i)
What is the LOB throughput? ii) What is the state requirement,
and how does throughput depend on it? iii) How do constraints
scale, and what is their effect on throughput?

A. Methodology
All experiments are run on a 12-core Apple M2 Pro

(ARM64) machine with 16 GB RAM and a 1 TB SSD, running
macOS 15.5 (Darwin 24.5). All code is compiled with Rust
1.85 using the default --release profile. The implementations
of the pint source code and Rust-based solver are publicly
available. 2

We fund 10k addresses with 1012 units of each token to
create the experimental trace. For benchmarking the deposit

2The code can be found at: https://github.com/fateh321/Declarative-LOB.

1 predicate settle_market_orders(last_amnt_bid: int ,
last_amnt_ask: int , last_bid_id: int , last_ask_id:
int , bid_mos: market_order [], ask_mos:

market_order [], bid_ids: int[], ask_ids: int[],
avg_price_bids: int , avg_price_asks: int){

2 // sum all market orders
3 let sum_bid_market_orders: int = ...;
4 let sum_ask_market_orders: int = ...;
5 //sum all limit orders and verify updated balances
6 ...
7 let sum_all_zero_bids: int = ...;
8 let sum_all_one_bids: int = ...;
9 let sum_all_zero_asks: int = ...;

10 let sum_all_one_asks: int = ...;
11 // verify average prices given by solver
12 constraint sum_all_zero_bids/sum_all_one_bids ==

avg_price_bids;
13 constraint sum_all_zero_asks/sum_all_one_asks ==

avg_price_asks;
14 // verify market orders are getting fair price
15 constraint sum_ask_market_orders ==

sum_all_one_bids;
16 constraint sum_bid_market_orders ==

sum_all_one_asks;
17 //pro -rata market orders distribution
18 @distribute_market_orders_bids(avg_price_asks; ˜

bid_market_orders);
19 @distribute_market_orders_asks(avg_price_bids; ˜

ask_market_orders);
20 }

Listing 6: Simplified design of settle market orders.

and withdraw predicates, we average the measurements over
this set of addresses. For benchmarking the remaining
predicates viz., add bid, remove bid, add ask, remove ask,
settle limit orders, and settle market orders, we gen-
erate an input trace from real-world LOB data for the
ETH–USDC pair on the Kraken exchange [29] as follows.

Every ∆ = 15 seconds, we first fetch the mid-price, defined
as the average of the highest bid and lowest ask. Using
this price, we settle bid orders priced above it, ask orders
priced below it, and any solver orders supplying the remaining
counter-orders, as illustrated in Figure 1. We settle a batch
of 10 bid and ask orders per predicate. In the second step,
we retrieve the number of market orders from the exchange
and settle the same number of market orders in the smart
contract. In the third step, we fetch a snapshot of the limit-
order book (LOB) containing the bid and ask lists. We bin
these limit orders by aggregating orders within a $0.1 price
range and compare the current snapshot with the previous
one. Depending on whether the volume in a bin increases or
decreases, we add or remove limit orders, respectively, in the
linked list. In each round, we call each of the six predicates
and amortize the measurements over the entire run for that
predicate.

B. Result Summary

Smart-Contract Throughput: Figure 2 plots the single-
thread validation throughput measurements for the LOB pred-
icates when the address space equals 1k, 4k, 7k, and 10k,
respectively. For every predicate, the throughput decreases
non-linearly as the state size increases, however, the same
degradation trend is observed for all the predicates. The
simplest predicate, deposit, achieves 141.64 predicates/s at the
1k state size and drops to 43.99, 26.52, and 18.71 for 4k, 7k,

1k 4k 7k 10k
State Size (k)

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut

deposit
withdraw
add_bid
remove_bid
add_ask
remove_ask
settle_limit_orders
settle_market_orders

Fig. 2: Throughput degradation vs. increasing state size.

de
po

sit

with
dra

w ad
d
bid rem

ov
e
bid ad

d
ask rem

ov
e
ask set

tle
lim

it

ord
ers set

tle

mark
et

ord
ers

Predicates

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (1

k
st

at
e)

(141.6, 0, 2)
(129.9, 0, 2)

(27.8, 3, 3)(27.5, 2, 3)(27.3, 3, 3)(25.9, 2, 3)
(12.6, 9, 8)(11.2, 9, 12)

Fig. 3: Monotonic throughput decline vs. state access.

with
dra

w
de

po
sit

set
tle

mark
et

ord
ers

ad
d
bid ad

d
ask set

tle
lim

it

ord
ers rem

ov
e
bid rem

ov
e
ask

Predicates

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (1

k
st

at
e)

(129.9, 6.0)
(141.6, 8.0)

(11.2, 8.7)

(27.8, 9.0) (27.3, 9.0)

(12.6, 10.7)

(27.5, 13.0)(25.9, 13.0)

Fig. 4: Weak throughput correlation vs. constraint count.

and 10k addresses, respectively. Conversely, the most complex
predicate, settle market orders, reaches only 11.23, 3.33,
1.98, and 1.27 predicates per second per order. This trend is
further explained by the relationship between throughput and
state access, which is discussed next.
Predicate State Access: Figure 3 plots the throughput at
1k state size along with the number of state writes (mu-
table accesses) and reads per predicate, shown in paren-
theses. Simple predicates such as deposit and withdraw
touch only two state slots, whereas settle limit orders
and settle market orders perform, on average, 16.8 and
20.6 read–write accesses per order, respectively. Across all
predicates, validation throughput decreases monotonically as
total state accesses increase, confirming that state access is the
primary bottleneck.
Predicate Constraints: Figure 4 plots throughput along
with the number of logical constraints that each predicate
evaluates, in parentheses. Unlike state size or access, this
metric shows little correlation with validation throughput.

TABLE I: Verification Complexity Features.

Operation Imperative LOB Declarative LOB
(Solidity) (Pint)

Unbounded Loops ✓ ×
Recursion ✓ ×
Cross-function Calls ✓ ×
External Contract Calls ✓ ×
Dynamic Memory Access ✓ ×
Dynamic Gas Calculation ✓ ×
Conditional Statements ✓ ✓

Exception Handling ✓ ✓

Time-dependent Behavior ✓ ✓

For example, deposit executes eight constraints yet attains
the highest throughput, whereas add bid executes roughly
the same number (nine) but runs four times slower, and
settle limit orders averages 10.7 constraints while still be-
ing an order of magnitude slower. These observations confirm
that throughput is dominated by on-chain state access rather
than constraint complexity, with implications for designing
scalable declarative smart contracts. Note that these measure-
ments represent single-threaded performance on the Essential
VM. Parallel execution could yield higher throughput.

C. Program Analysis Cost

Formal correctness of smart contracts can be broken down
into two distinct stages. The first stage converts domain
requirements into a set of formal invariants (e.g., price–time
priority and balance conservation for an LOB). This specifica-
tion step is paradigm-agnostic; both imperative and declarative
designs must first state what must hold true. The second
stage proves that the executable contract never violates those
invariants. This is where the two paradigms diverge. In an
imperative Solidity implementation the developer leverages
program features such as unbounded loops, external con-
tract calls, dynamically allocated memory, and gas-dependent
control flow, which significantly hinder verification efforts.
Formal methods like SMT solvers and model checkers struggle
with the undecidable nature of features like recursion and
unbounded iteration [30]. Consequently, industry tools often
impose constraints, such as bounding loops or simplifying con-
ditionals, to make verification tractable. These compromises
may lead to incomplete, inaccurate, or overly conservative re-
sults, especially in complex DeFi protocols. On the other hand,
a declarative smart contract eliminates this second stage: the
constraints written in the specification constitute the executable
contract itself. Off-chain solvers propose state transitions, and
the blockchain checks a single first-order formula whose size
is independent of internal loops or data-structure traversals.
The costly second stage disappears and verification reduces to
constraint satisfaction at runtime.

Table I demonstrates that Pint eliminates most computation-
ally expensive verification challenges present in Solidity. Most
notably, Pint’s declarative nature removes unbounded loops,
recursion, cross-function and external contract calls (both
statically verifiable), dynamic memory access, and dynamic
gas calculations that render verification undecidable or compu-

tationally intractable. However, both languages face challenges
with conditional statements (though Pint’s conditionals are
statically bounded and lack complex control flow compared to
Solidity’s dynamic branching), exception handling, and time-
dependent behavior, indicating that some verification complex-
ity is inherent to smart contract logic rather than the pro-
gramming paradigm. The elimination of six major complexity
sources significantly reduces the verification burden, enabling
correctness-by-construction through constraint satisfaction.

VII. CONCLUSION AND FUTURE WORK

This paper presents the first practical implementation of a
fully declarative limit orderbook that prioritizes formal verifi-
cation over raw throughput. By leveraging Pint’s constraint-
based programming paradigm, we shift verification from post-
hoc auditing to correctness-by-construction, demonstrating
that complex financial protocols can be expressed as first-
order constraints while maintaining practical performance
levels. The implications extend beyond orderbooks to other
financial primitives such as derivatives, lending protocols,
and complex DeFi applications where traditional imperative
implementations struggle with formal verification. Future work
includes: (i) formalizing LOB specifications using first-order
logic with automated theorem proving for complete cor-
rectness verification, (ii) implementing more complex LOB
features such as Immediate-or-Cancel (IOC) and Fill-or-Kill
(FOK) orders, stop-limit orders, iceberg liquidity, and fee
tiers, though the verification advantages over imperative im-
plementations would persist due to Pint’s declarative structure,
(iii) comparing declarative constraint verification against zero-
knowledge proof approaches where each predicate is imple-
mented as a ZK circuit with solver-generated proofs for state
transition verified on-chain, particularly analyzing trade-offs in
verification cost, scalability, and implementation complexity,
(iv) enhancing throughput through hybrid architectures that
store order metadata off-chain while maintaining constraint
verification on-chain, and (v) optimizing Pint’s virtual ma-
chine through parallel constraint evaluation and improved
state access mechanisms to reduce the performance gap with
imperative implementations.

REFERENCES

[1] V. Buterin, “Ethereum: A next-generation smart contract and decentral-
ized application platform,” 2014, https://ethereum.org/en/whitepaper/.

[2] S. Werner, D. Perez, F. Tramer, and A. Gervais, “Sok: Decentralized
finance (defi),” in Proceedings of the IEEE Symposium on Security and
Privacy. IEEE, 2021, pp. 1048–1064.

[3] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (SoK),” in Proceedings of the 6th International Confer-
ence on Principles of Security and Trust (POST), ser. Lecture Notes in
Computer Science, vol. 10204. Springer, 2017, pp. 164–186.

[4] L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais, “Sok: Decentralized
finance (defi) attacks,” in 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 2023, pp. 2444–2461.

[5] International Organization of Securities Commissions, “Policy recom-
mendations for decentralized finance (defi): Consultation report,” https:
//www.iosco.org/library/pubdocs/pdf/IOSCOPD744.pdf, 2023.

[6] Bank for International Settlements, “The financial stability risks of
decentralised finance – executive summary,” https://www.bis.org/fsi/
fsisummaries/defi.pdf, 2023.

[7] J. Milionis, C. C. Moallemi, and T. Roughgarden, “Complexity-
approximation trade-offs in exchange mechanisms: Amms vs. lobs,” in
Financial Cryptography and Data Security, 2023.

[8] A. Park, “The conceptual flaws of decentralized automated market
making,” SSRN Electronic Journal, 2023. [Online]. Available: https:
//ssrn.com/abstract=3805750

[9] T. Foucault, O. Kadan, and E. Kandel, “Limit order book as a market
for liquidity,” The Review of Financial Studies, vol. 18, no. 4, pp. 1171–
1217, 2005.

[10] K. Malinova and A. Park, “Subsidizing liquidity: The impact of
make/take fees on market quality,” Journal of Finance, 2014,
forthcoming. [Online]. Available: https://papers.ssrn.com/sol3/papers.
cfm?abstract id=1823600

[11] A. Aidov and A. Lobanova, “The relation between intraday limit order
book depth and spread,” International Journal of Financial Studies,
vol. 9, no. 4, p. 60, 2021.

[12] S. Eskandari, S. Moosavi, and J. Clark, “Sok: Transparent dishonesty:
Front-running attacks on blockchain,” in Financial Cryptography Work-
shops, 2019.

[13] S. A. Moosavi and J. Clark, “Lissy: Experimenting with on-chain order
books,” arXiv preprint arXiv:2101.06291, 2021.

[14] A. Biryukov, D. Khovratovich, and S. Tikhomirov, “Findel: Secure
derivative contracts for ethereum,” in Financial Cryptography and
Data Security Workshops (WTSC ’17), ser. Lecture Notes in Computer
Science, vol. 10323. Springer, 2017, pp. 453–467.

[15] H. Chen, G. Whitters, M. J. Amiri, Y. Wang, and B. T. Loo,
“Declarative smart contracts,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2022.
Association for Computing Machinery, 2022, p. 281–293. [Online].
Available: https://doi.org/10.1145/3540250.3549121

[16] Essential Protocol, “Pint language: Declarative smart contracts
on essential,” https://essential-contributions.github.io/pint/book/
the-book-of-pint.html, 2024.

[17] H. Kalodner, S. Goldfeder, S. M. Weinberg, and E. W. Felten, “Arbitrum:
Scalable, private smart contracts,” in 27th USENIX Security Symposium
(USENIX Security 18). Baltimore, MD: USENIX Association, 2018,
pp. 1353–1370.

[18] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“Sok: Layer-two blockchain protocols.” Berlin, Heidelberg: Springer-
Verlag, 2020, p. 201–226. [Online]. Available: https://doi.org/10.1007/
978-3-030-51280-4 12

[19] L. Protocol, “Loopring 3.0: zkrollup exchange and payment protocol,”
2021, technical documentation.

[20] dYdX Foundation, “dydx layer 2 exchange architecture overview,” 2022,
whitepaper.

[21] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in Pro-
ceedings of the 23rd USENIX Conference on Security Symposium, ser.
SEC’14. USA: USENIX Association, 2014, p. 781–796.

[22] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 910–927.

[23] S. Motepalli, L. Freitas, and B. Livshits, “Sok: Decentralized sequencers
for rollups,” arXiv preprint arXiv:2310.03616, 2023, well-cited preprint.
[Online]. Available: https://arxiv.org/abs/2310.03616

[24] D. Shuttleworth, “Serum: A decentralized on-chain
central limit order book,” https://consensys.io/blog/
serum-a-decentralized-on-chain-central-limit-order-book, Feb. 2022.

[25] Uniswap Labs, “Uniswap v3 core whitepaper,” 2021, technical whitepa-
per.

[26] Curve Finance, “Curve v2: Amm for volatile assets,” 2022, protocol
documentation.

[27] Certora, “Certora prover: Scalable formal verification of smart con-
tracts,” https://docs.certora.com/en/latest/prover/introduction.html, 2023.

[28] The Solidity Authors, “Solidity: The Smart-Contract Programming Lan-
guage,” https://docs.soliditylang.org/, 2025.

[29] Kraken, “Kraken exchange rest api documentation,” https://docs.kraken.
com/rest/, 2024.

[30] S. Amani, M. Bégel, M. Bortin, and M. Staples, “Towards verifying
ethereum smart contract bytecode in isabelle/hol,” in Proceedings of the
7th ACM SIGPLAN international conference on certified programs and
proofs, 2018, pp. 66–77.

