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Abstract—This paper introduces BAKUP, a smart contract
design that insures decentralized finance users against the vulner-
ability risks in third-party platforms. Apart from providing an
automated claim payout, the modular structure of BAKUP brings
harmonization among three conflicting features: resilience against
vulnerabilities, flexibility of the underwritten policies, and capital
efficiency. An immutable core module performs basic accounting
while ensuring robustness against external vulnerabilities; a
customizable oracle module enables the underwriting of novel
policies, and a peripheral (optional) yield module allows users
to independently manage additional yield without interfering
with the risk management of fellow participants. User payoff
is implemented using binary conditional ERC20 tokens tradable
on automated market maker (AMM)-based exchanges.

Index Terms—smart contract, decentralized finance, decentral-
ized insurance, risk management, capital efficiency.

I. INTRODUCTION

Programmable blockchains [1]–[5] have led to an era of de-
centralized finance, or DeFi, where centralized intermediaries
are replaced by software code, also known as smart contracts,
to provide financial services. This has spawned novel financial
innovations such as automated execution, resulting in no
market downtime, and permissionless access, increasing user
inclusiveness and applications’ interoperability compared to
its traditional (TradFi) counterpart. This paradigm shift has
led to increased utilization of DeFi systems in recent years,
with several billion dollars exchanging hands daily [6].

Despite its success, DeFi is not free from risks, thus
impeding its rapid adoption [7]–[9]. These risks can generally
be classified as technical or economic [10]. Technical risks
arise from exploiting the vulnerabilities of smart contracts,
such as programming bugs and/or unintentional functional
specification inconsistencies that can lead to irreversible loss of
funds held by a DeFi protocol. The second type of risks, stems
from economic inefficiencies within a protocol. Technical and
economic exploitation, along with external factors, often lead
to unexpected behavior in DeFi parameters. This includes
fluctuations in token prices and in the liquidity of automated
market-making (AMM) pools, as well as extreme borrowing
rates in lending protocols1. Such deviations can impede the
functioning of dependent protocols [11] or result in losses
for end users. For example, the liquid staking protocol Lido
Finance [12] has a wrapped token for staked ETH (stETH),
which is expected to maintain its price stability relative to
ETH. However, if this characteristic fails due to the aforemen-
tioned reasons, stETH investors may incur unforeseen losses.

1https://finance.yahoo.com/news/defi-lenders-spooked-curve-exploit-
193953614.html

This emphasizes the imperative need for robust DeFi risk
management tools to safeguard users from such risks.

One category of solutions to the above problem involves
insurance where a set of users, known as the underwriters,
provides hedging to another, known as policyholders, in return
for a fee. However, the very nature of DeFi demands an in-
surance platform that is (a) automated, ensuring instantaneous
claim payout; (b) permissionless in access to achieve inter-
operability; (c) resilient against both technical and economic
vulnerabilities, as it is the last resort for financial adversities;
(d) flexible to underwrite policies; and (e) capital-efficient, i.e.,
any locked capital should be capable of earning yield.

An insurance platform with end-to-end implementation on
smart contracts, i.e. no off-chain dependencies, achieves the
first two properties, viz., automation and permissionless access.
However, the latter three merits — resilience, flexibility, and
capital-efficiency — inherently compromise the objectives of
each other. For instance, a high level of resilience in contract
design implies high immutability, which in turn hinders the
underwriting flexibility derived from adaptability or upgrad-
ability. Similarly, the resilience of the smart contract platform
may not align well with capital efficiency, as yield generation
often involves interactions with and dependencies on third-
party protocols that are susceptible to vulnerabilities.

This paper proposes BAKUP, a design for a modular, policy-
flexible, and capital-efficient smart contract platform that uses
binary conditional tokens to provide insurance. BAKUP allows
users and developers to independently balance between re-
silience, flexibility, and capital efficiency by comprising three
distinct modules: a core module for basic capital accounting
to ensure no defaults, an oracle module for underwriting
policies, and a yield module on the periphery of the above
two for capital management. The core module is immutable,
while the oracle module can be created unrestrictedly with
a custom developer-defined logic, which can range from im-
mutable to highly customizable. Simultaneously, the peripheral
yield module operates independently from the main protocol,
making it optional for users to engage in yield-generation
activities. Interestingly, this optional feature doesn’t pose any
risk to the capital of users who choose not to participate,
allowing users—both underwriters and policyholders—with
varying risk preferences to interact simultaneously on the same
platform without imposing risks on others.

Here, we first present the design of the core module,
followed by a description of the oracle module. Thereafter, we
present the yield module’s design along with the user incentive
mechanism for the module’s healthy functioning. Lastly, we
evaluate the divergence loss of liquidity providers on AMMs
provisioning liquidity for the insurance policies, implemented



as a binary conditional ERC20 token. Results show that the
above risk can be reduced by over 36% using conservative
parameter tuning.

This paper is organized as follows. Section II gives protocol
overview, Section III presents the design of the various mod-
ules, Section IV evaluates divergence loss, Section V discusses
related works, and Section VI concludes this work.

II. STUDY MOTIVATION AND NOTATIONAL CONVENTIONS

A. Protocol Overview
Consider an example where our protocol creates an insur-

ance mechanism for the event of stETH de-pegging in which
the price of stETH relative to ETH falls below 0.95. In its
simplest version, it creates two tokens: a policy token P and
an underwriting token U for a predetermined period, e.g., 1
year. The payoffs of these tokens depend on the occurrence
of the underlying event: if the price falls below 0.95 before
the deadline, P pays $1, while U pays $0. Otherwise, after
the deadline passes, P pays $0, while U pays $1. For P -
holders, it creates a hedging mechanism for the de-pegging
event during the specified period, whereas U -holders provide
hedging in return for a premium. Although the actual payoffs
of P and U in BAKUP are slightly different from the above
description, the underlying motivation remains the same. The
subsequent subsection describes a generalized framework to
model financial adversities.

B. Binary Event
We define a binary event as a tuple (a, t, s) consisting of:
• Assertion a: A binary event is defined by an immutable

assertion a. For the previous example, the assertion is
defined as the price of stETH relative to ETH, pstETH/ETH,
being less than 0.95 and represented as pstETH/ETH < 0.95.

• Expiration period t: This denotes the time duration since
the inception of a binary event during which it remains
valid. In the previous example, this was 1 year.

• State s: A binary event can be in either of the two states:
True or False. By default, an event is in the False state. If
the underlying assertion holds at any instance before the
event’s expiration, the state shifts to True and becomes
immutable. Moreover, the state does not change once the
event expires.

Therefore, for an adverse effect modeled as a binary event,
the occurrence of the True state signifies an insurance claim.

Modelling complex adversities: A binary event only captures
a discrete incident. However, in reality, adversities can have
varying degrees of damage. To address this, our protocol
requires an adversity to be modeled as a collection of n ∈ N
binary events, where the ith event is represented as (ai, t, si),
with all of them having a common expiration.

For instance, a model of continuous incident of stETH de-
pegging consists of the following three assertions:

1) a1 : pstETH/ETH < 0.99.
2) a2 : pstETH/ETH < 0.98.
3) a3 : pstETH/ETH < 0.95.

In the above example, if only a1 holds by the deadline,
i.e., (s1, s2, s3) = (True, False, False), it corresponds to
a mild de-pegging incident; if both a1 and a2 hold, i.e.,
(s1, s2, s3) = (True, True, False), it represents a moderate
de-pegging incident; and lastly, if all the three assertions
hold, i.e., (s1, s2, s3) = (True, True, True), it represents an
extreme de-pegging incident. Therefore, the final state values
together signify the degree of damage.

Mint()

Burn()

ReedemP()

RedeemU() RedeemU()

Always

ReedemP()

, post-expiration

Fig. 1: Interaction between user and core module.

III. BAKUP PROTOCOL DESIGN

The protocol design is modular, with key components
divided into the core, oracle, and yield modules. Each of these
components will be explained next.

A. Core Module
For an adversity modeled as a collection of n binary events,

a separate core module contract is created, which in turn
creates n pairs of ERC20 tokens Pi, Ui with i ∈ {1 . . . n}.
Each core contract is characterized by a base currency C (eg.,
ETH, USDC) in which claims are disbursed. The following
module methods can be invoked for each binary event from
the inception of the module to perpetuity. Here f represents a
constant fee such that f ∈ [0, 1).

• Mint(i): A user depositing k(1+f) units of C, where
k > 0, receives k units each of Pi and Ui. Here, kf
units of C get deposited as fees (incentive) in the feeTo
address specified by the core module’s creator.

• Burn(i): A user depositing k units of Pi and Ui
receives k units of C.

These methods are depicted in the left part of Figure 1 and
they enforce the following two invariants:

Invariant 1. (1 + f) · C ⇒ Pi + Ui

Invariant 2. Pi + Ui ⇒ C

Next, we describe methods to redeem the above tokens in
exchange for C based on the state of a binary event. At any
point in time, ∀i s.t. si = True, Pi and Ui can be redeemed
for the following:

Pi : (1− ϵ) · C, Ui : ϵ · C (1)

Here ϵ is a constant set by the module creator and is generally
close to zero, i.e., 0 < ϵ ≪ 1. The reason for a non-zero choice
of ϵ relates to the risks faced by LPs on AMMs as discussed
in Section IV. After the events expire, the module tokens can
be redeemed for binary events with False state as well, i.e.,
∀i s.t. si = False, Pi and Ui can be redeemed for:

Pi : ϵ · C, Ui : (1− ϵ) · C (2)

Note that the above payoff values satisfy Invariant (2) since
the sum of payoffs of 1·Pi and 1·Ui is always 1·C, regardless
of the event’s state. The redemptions are implemented using
the RedeemP(i) and RedeemU(i) methods, respectively,
which are depicted in the middle and right parts of Figure 1.

User Incentive Justification: Let pPi
, pUi

be the prices of
Pi, Ui in terms of C. Then, a policyholder purchasing 1 · Pi
from the market is effectively paying a one-time premium of
pPi

to obtain an insurance coverage of (1− ϵ) ·C. This gives
a coverage-to-premium ratio of the policy to be (1− ϵ)/pPi

.



On the other hand, a user will underwrite a policy only if
there is sufficient incentive for them. One such scenario is
when the price of the policy token Pi increases significantly.
This is because Invariants (1),(2) imply:

1 ≤ pPi + pUi ≤ 1 + f (3)

as one can always acquire 1 · Pi + 1 · Ui for (1 + f) · C and
dispose the same for 1·C directly from the core contract using
Mint() and Burn() respectively. Therefore, if the market
price of the policy token increases by more than f + ϵ, the
following holds:

f + ϵ+ pUi
< pPi

+ pUi
≤ 1 + f (4)

Hence, the price of the underwriting token becomes less than
1− ϵ. This incentivizes underwriters to acquire Ui at a lower
price from the market and later redeem it using RedeemU()
for (1−ϵ)·C if the assertion does not hold, with the difference
(1−ϵ)·C−pUi

representing the earned premium. In summary,
the immutability of the core module and an invariant-based
redemption guarantee zero risk of default, thereby ensuring
the robustness of the BAKUP protocol.

B. Oracle Module
The oracle module is an externally deployed contract with

a custom-defined logic. This logic takes input values from
external data sources and executes the logic of the assertion
for each event. A user willing to create a core contract on
BAKUP specifies an oracle contract address to associate with
it. This is because the core module consists of a Trigger(i)
function for the ith event that executes a callback function
OTrigger(i) in the oracle contract. OTrigger(i) exe-
cutes the logic of the ith assertion and returns a boolean value
back to Trigger(i) in the core contract. This is presented
as a flowchart diagram in Figure 2.

The returned value False is ignored; however, in the other
case, the following occurs:

1) si transitions to True and becomes immutable.
2) The RedeemP(i), and RedeemU(i) methods are set

to exchange as per (1).
When the contract deadline passes, the following occurs:
1) The Trigger() method is rendered invalid.
2) si becomes immutable for all events.
3) The RedeemP(i) and RedeemU(i) functions be-

come valid for events with a False state, redeeming
tokens based on Relation (2).

Custom developer-defined logic enables extensive function-
alities. Simultaneously, a modular structure ensures that the
accounting performed by the core module remains unaffected
by the execution and vulnerabilities of the oracle module.
This allows users to reconcile platform resilience and policy
flexibility simultaneously.

C. Yield Module
The BAKUP protocol enables the deployment of custom

peripheral yield modules where P - and U -holders have the
option to earn yield on their locked C. The key idea is to utilize
the perpetual nature of the Mint() and Burn() methods of
the core module, along with the trustless execution of smart
contracts. Below, we present methods for a module design that
delegates yield generation to a third-party protocol Y , earning
yield on C. Figure 3 depicts the sequence of the following
methods.

1) Deposit(): P - and U -holders willing to earn yield
on platform Y deposit their tokens in the yield module.

Event 
expired?

No

Yes

Execute Oracle 
Trigger Callback

Output
False

True

 Resume Core Trigger

End Core Trigger

 

Start Core Trigger

Fig. 2: Flow of Trigger execution using Oracle module.

Let there be kP units of P and kU units of U and let
us define λ as min(kP , kU ).

2) Invest(): Since one can only burn equal quantities
of the two tokens, the yield module burns λ units of P
and U to obtain λ units of C and invests this capital
on platform Y . Observe that for maximum utilization of
the tokens, the two tokens need to be equal.

3) Divest(): Here, we assume that yield is earned for a
fixed duration of time. After its expiration, the module
divests its position from platform Y to obtain λ′ units
of C. Generally, λ′ is greater than λ due to accrued
interest. However, there is also the scenario where the
risk exposure of Y leads to an overall loss. In such a
case, λ′ is less than or equal to λ.

4) Distribute(): The yield contract mints λ′/(1+ f)
units of P and U and distributes them, along with the
unburnt tokens, uniformly among depositors.

Without loss of generality, let kP ≥ kU making λ = kU
and let k′U = λ′/(1+f). Then, in the scenario of a successful
(profitable) divesting, k′U−kU units of P and U are uniformly
distributed as yield to their holders. Thus, the holder of 1 · U
receives a yield fraction of (k′U − kU )/kU while the holder
of 1 · P receives a yield fraction of (k′U − kU )/kP , which
is kU/kP times the yield earned per unit of U . Therefore,
if there are more policyholders than underwriters, kU/kP
becomes smaller, attracting fewer additional policyholders
than underwriters until kU/kP returns to 1. This serves as a
negative feedback mechanism that tends to maintain an equal
number of P and U depositors.

Since the yield module operates at the periphery, it does not
affect the logic of the core module. Thus, a user investing in a
different platform Y ′ has an independent risk exposure from
the above user. Therefore, such a design strategy allows users
to manage their risk individually.

IV. DIVERGENCE LOSS EVALUATION

Divergence Loss is defined as the opportunity cost for an LP
to provide token reserves as liquidity compared to just holding
them. In this section, we assess the divergence loss of LPs in
uniform liquidity provision. Here, we assume an AMM pool
of the pair Pi/Ui and that an LP mints 1 unit of Pi and Ui
and creates a liquidity position with an entry price pi = p. If
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Fig. 3: Sequence of methods in the yield module with arrows
indicating direction of token flow.
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(b) Catastrophic scenario

Fig. 4: Divergence loss in uniform liquidity provision in
scenarios without and with catastrophes.

there is no liquidity provision, the value of these tokens at the
conclusion of the contract is always 1 unit of C (enforced by
Invariant (2)). To evaluate the divergence loss, we calculate
the total value of the tokens held by the LP at the conclusion
of the contract and represent it as a fraction of 1 · C. We
use four equally-spaced values for ϵ : {0.01, 0.07, 0.13, 0.19}
and do not consider any further higher values since ϵ ≪ 1.
For plotting, we take the natural logarithm of the x-axis, for
the price interval [ ϵ

1−ϵ ,
1−ϵ
ϵ ] (extreme of possible prices at

conclusion), and then min-max normalize it to the range [0, 1].
If there is no catastrophe, i.e., the underlying assertion does

not hold, the LP ends up with only Pi. Their 1·Ui is exchanged
for an average price of

√
ϵp
1−ϵ . Therefore, the LP ends up with

1 +
√

1−ϵ
ϵp units of Pi each worth ϵ · C, thus a total value of

ϵ+
√

ϵ(1−ϵ)
p units of C.

When there is a catastrophe, the LP ends up with only Ui.
As above, their 1 · Pi is exchanged for an average price of√

(1−ϵ)p
ϵ , giving them a total of 1 +

√
(1−ϵ)p

ϵ units of Ui.
Since Ui is worth ϵ ·C, they receive a value of ϵ+

√
pϵ(1− ϵ)

units of C.
The above two cases are shown in Figure 4a & 4b, re-

spectively. We can observe that when the normalized entry
price is closer to 0(1), the divergence loss is higher for the
catastrophic(non-catastrophic) scenario. Also, for a given p,
the divergence loss is lower at higher values of ϵ. The worst
loss (at p= ϵ

1−ϵ or 1−ϵ
ϵ ) can be reduced from 0.98 to 0.62 by

varying ϵ from 0.01 to 0.19. Lastly, if ϵ = 0, LPs incur a
divergence loss of 100% underscoring the lower bound on ϵ.

V. RELATED WORK

There have been several designs proposed for smart
contract-based decentralized insurance for DeFi. Nexus Mu-
tual [13] and inSure [14] are the largest of them and are
inspired by the design of mutual insurance [15]. Unlike
BAKUP, they do not support permissionless policy listing or
optional yield generation. Rather, a fraction of the pooled
capital is invested in yield-generation protocols, transferring
risk to all members. These decisions and others, like claim
assessment, are done via voting using governance tokens.

Other protocols, including ours, are based on Peer-to-Peer
decentralized insurance [16] where individuals pool their in-
surance premiums and use these funds to mitigate individual
damages. Some of them including Risk Harbour [17], Opium
Protocol [18], cozy.finance [19], and Etherisc [20] facilitate
automated underwriting done via smart contract while others
like Unslashed Finance [21], Nsure [22], and Cover [23] have
a voting-based claim assessment. Moreover, some of them
including [18], [19] allow permissionless listing. In contrast
to BAKUP, none of the above protocols give their users the
optional ability to manage yield on their capital. Instead,
either the protocol offers no yield, or the yield management is
performed by governance or delegated to a third party [24]. On
the other hand, BAKUP disjoints the core, oracle, and yield
modules and allows users to manage yield on their staked
capital while having a permissionless policy creation.

VI. CONCLUSION

A robust risk management system for the emerging area
of DeFi requires a primitive platform (building block) with
minimal external dependencies. This is successfully achieved
in the BAKUP protocol presented in this paper through a
modular approach. At the same time, the incentive alignment
between participants, including module creators, underwriters,
policyholders, and yield bearers, is studied. Possible future
work in this direction includes studying the incentives and
risks of liquidity providers provisioning liquidity for the con-
ditional tokens on AMM, as well as extending the conditional
tokens from binary to n-ary with n states to reduce the number
of ERC20 tokens per adversity.
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