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Abstract

The dramatic performance improvements of SAT solvers over the past decade have
increased their deployment in hardware verification applications. Many problems that were
previously too large and complex for SAT techniques can now be handled in an efficient
manner. One such problem is reachability analysis, whose instances are found throughout
verification applications such as unbounded model checking and trace reduction. In circuit-
based reachability analysis important circuit information is often lost during the circuit-
to-SAT translation process. Observability Don’t Cares (ODCs) are an example of such
information that can potentially help achieve better and faster results for the SAT solver.
This work proposes to use the ODCs to improve the quality and performance of SAT-
based reachability analysis frameworks. Since ODCs represent variables whose values do
not affect the outcome of a problem, it is possible to satisfy a problem with fewer assigned
variables. This in turn leads to more compact solutions and thus fewer solutions to cover
the entire solution space. Specifically, this work presents an efficient way to identify ODCs,
proves the correctness of leaving ODC variables unassigned, and develops a reachability
analysis platform that benefits greatly from the ODCs. The advantages of using ODCs in
reachability analysis is demonstrated through extensive experiments on unbounded model
checking and trace reduction applications.
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1. Introduction

In today’s VLSI design cycle, verification is a major bottleneck as it often consumes over
70% of the design effort [26]. Due to the ever-increasing size and complexity of designs,
the effort and costs associated with verification are continuously increasing. Despite the
countless advancements in the field, new verification methodologies and techniques are
required to alleviate some of the pain.

Reachability analysis is a popular procedure employed by verification applications such
as model checking and trace reduction [20, 31]. The efficiency of a reachability analysis
engine directly impacts the end application. Informally, reachability analysis determines
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whether a given state can be reached by another state in a circuit. Traditionally, Binary
Decision Diagram (BDDs) have been the underlying engine of choice for reachability anal-
ysis. However, for certain problems, building and manipulating the BDDs require excessive
memory which sometimes makes the overall approach inviable. Recent improvements of
SAT algorithms offer a competitive alternative for such problems [20, 15].

A slight derivative of the conventional SAT solver, namely the all-solution SAT solver,
is found to be an effective engine for reachability analysis because it finds many reachable
states in one iteration [9]. As the name implies, all-solution SAT solvers find all the satisfying
solutions to a SAT problem. The main challenge of all-solution SAT solvers is to find
satisfying solutions comprised of few variable assignments, also known as small solutions
cubes [20]. A small solution cube has unassigned variables whose exact values do not affect
the outcome of a problem. As such, a single solution cube can effectively represent multiple
larger solution cubes. For all-solution SAT solvers, small solution cubes require less memory
for storage as well as demanding a smaller aggregate run time for the overall problem. Thus
the efficiency of an all-solution SAT solver and the reachability analysis engine is directly
related to the ability of finding small solution cubes in a timely manner.

This work proposes an improved SAT-based reachability analysis engine which makes
use of the inherent circuit Observability Don’t Cares (ODCs) of a given problem '. ODCs
are widely used in CAD algorithms such as circuit synthesis and test to improve the quality
and efficiency of the overall tools [1, 6]. They provide extra degrees of freedom by not
constraining certain variables to any particular logic value.

For the majority of circuit-based SAT problems, extracting the ODCs from the circuit
can be performed with relative ease during the circuit-to-SAT translation process. Once
available, this information can be used dynamically during the SAT solving process to
prevent logic value assignments to ODC variables, which do not affect the outcome of the
SAT problem. Subsequently, solutions to the SAT problem will contain unassigned variables
thus leading to small solutions cubes.

To demonstrate the correctness of the proposed approach, this work proves that leaving
ODC variables unassigned does not affect the outcome of the problem. Furthermore, a
novel decision-making procedure is proposed that takes advantage of the ODCs to find even
smaller solution cubes. Finally, the benefits of the observability don’t cares are demon-
strated within reachability analysis as well as two end applications, namely Unbounded
Model Checking (UMC) and trace reduction.

The effectiveness of ODCs for reachability analysis applications are demonstrated using
a set of different applications. First, the performance of the all-solution SAT solver is an-
alyzed in isolation of the end application to demonstrate the effectiveness of the proposed
procedures. Next, a UMC framework is used to show the effect of ODCs on the end appli-
cation. Finally, the proposed techniques are evaluated on trace reduction problems. The
experiments overwhelmingly demonstrate that ODCs are beneficial for these applications,
with performance improvements of approximately 4x over previous approaches for UMC
and orders of magnitude greater for trace reduction.

In the next section, some related work on ODC-based SAT solvers and reachability
analysis approaches is presented with the major differences with our work outlined. Sec-

1. This work builds on top of the advancements of [27, 28, 29]
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tion 3 provides background information on image computation and observability don’t cares.
Section 4 presents Theorem 1 stating that ODC variables can be left unassigned without
affecting the outcome of the SAT problem. This theorem is then used to reduce the size of
the SAT solution cubes. Section 5 presents a decision-making procedure that can further
reduce solution cubes as required by reachability analysis problems. In Section 6, the ap-
plication domains for the experiments are presented with the results discussed in Section 7.
Finally, Section 8 concludes this paper.

2. Related Work

This paper builds on top of the ODC advancements of [27, 28, 29]. In [28], Observability and
Controllability Don’t Cares are used to improve the run time of SAT-based combinational
equivalence checkers. In [27], ODCs are applied to all-solution SAT solvers, while [29] eval-
uates ODCs for trace reduction applications. The presented work encompasses the above,
proves its correctness, and demonstrates the benefits of ODCs in general for reachability
analysis.

2.1 Incorporating ODCs with SAT Solvers

Improving the efficiency of SAT solvers with circuit observability don’t cares has been ex-
plored previously [8, 10, 35, 34, 36]. In [10], ODCs are used to mark clauses as inactive
which are removed dynamically from the CNF. The inactive clauses are identified by per-
forming a backward traversal of the CNF starting at the output variables in order to find the
ODCs. The work of [35] exploits ODCs specifically for if-then-else trees by simplifying the
resulting CNF' of the problem. This approach is very effective for microprocessor circuits
with datapaths which contain many multiplexers. The techniques introduced by [34, 8]
recognize the benefits of ODCs as it incorporates this information directly in the problem
CNF by introducing don’t care literals. The work of [36] finds and exploits ODCs during
SAT sweeping to simplify the problem representation.

The above work is a testament to the importance of considering ODCs in circuit-based
SAT problems. The presented work is considerably different from the related work in the
way ODCs are found as well as how they are exploited by an all-solution SAT solver within
reachability analysis. Here, potential ODCs in the circuit are identified through a quick
preprocessing step before the SAT solving begins. During the SAT solving process, the
active ODCs (which are pre-computed) are simply ignored thereafter by SAT procedures
such as decision-making and Boolean constraint propagation.

2.2 SAT-based Reachability Analysis

SAT solvers and all-solutions SAT solvers are found to be beneficial for certain model
checking problems [9, 11, 13, 15, 18, 20]. Both [15] and [20] develop all-solution SAT
frameworks without significantly modifying the internal SAT engines. In [20] an implication
graph rooted at the primary inputs is used to generate small blocking clauses, while [15]
uses traditional justification procedures [1]. Justification procedures use circuit information
to determine the necessary gate assignment in order to justify other circuit assignments [1].
In [11], a reduction algorithm is developed to determine the necessary input assignments by
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performing a forward traversal of the circuit from primary inputs to the outputs. In [9], the
main contribution is the use of cofactoring to reduce the solution cubes for UMC problems
while using the SAT solver from [10] which is aware of ODCs. A new all-solution SAT
solver for UMC application is proposed in [18] with many specific contributions in the form
of algorithms and data structures based on ATPG to help quantify primary inputs and prune
the solution space. A hybrid SAT solver is proposed in [13] where the conflict analysis and
implication routines are performed on the circuit and the CNF to achieve smaller blocking
clauses. There is also dedicated work on reducing the size of solutions cubes or blocking
clauses for solution enumeration. These work use techniques to generate blocking clauses
that cover as much of the solution space as possible through the use of heuristics such as
variable lifting (i.e., removal of variables that are irrelevant to the SAT problem for given
variable assignment) [14, 22].

As discussed above, most of the related work on all-solution SAT solvers is concerned
with reducing the size of the blocking clauses or the solution cubes. It should be noted that
all solution cube reduction techniques implicitly make use of the problem’s don’t care space
to achieve smaller cubes. In contrast, the proposed work is concerned with using a SAT
solver that is explicitly aware of ODCs and makes decisions on the fly to take advantage of
the ODCs. The result is a SAT solver that inherently finds small solution cubes even before
applying the reduction techniques. Moreover, the proposed technique can incorporate many
of the related work to provide further performance gains.

3. Preliminaries

This section provides some background on image and pre-image computation as well as
circuit observability don’t cares. It is assumed that the reader is familiar with SAT solving
algorithms and their terminology [19].

3.1 Image and Pre-image Computation

Given a sequential circuit with current state variables V' and next state variables V', a set
of current states and a set of next states are labeled by Q(V') and Q(V”’) respectively. The
transition relation from a set of state variables V' to V' denoted by T(V,V’), is true for
each pair of Q(V') and Q(V’) if and only if Q(V”) is reachable from Q(V) in one clock cycle.
Given the above, the image and pre-image of a circuit are defined as follows:

IMAGE (V)= 3V.(T(V, V) AQ(V))
PRE-IMAGE (V)= 3V'.(T(V, V') A Q(V"))

Although the image and pre-image of circuits are traditionally computed using BDDs [5],
some techniques based on all-solution Boolean Satisfiability (SAT) solvers can also be
used [15, 18, 20, 27]. This work focuses on finding the pre-images efficiently using circuit-
based SAT techniques. All-solution SAT solvers can compute all the pre-image sets by
constraining the transition relation T(V, V') to Q(V’) and iteratively finding every solu-
tion that satisfies the problem. These solutions are found with respect to the current state
variables V' [27]. Recent work on SAT-based Unbounded Model Checking (UMC) and pre-
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image computation techniques have demonstrated considerable advancements in terms of
capability and run time [15, 18, 20, 27].

In this paper, the term state refers to a state cube, which is a state encoding that may
contain unassigned or don’t care variables. As such, a state may be a superset (cover) of other
states. For instance, the state cube {vj,ve,v3} = {1X1} covers the states {vy,vo,v3} =
{101} and {v;, v2,v3} = {111}. In the context of cubes, the term small refers to the number
of assigned variables, thus a small cube may cover a larger cube.

3.2 Observability Don’t Cares

Informally, a signal is an Observability Don’t Care (ODC) if its value does not influence
the output of a circuit. For the sake of simplicity, current state and next state variables are
treated as primary inputs and outputs, respectively. In the following, the terms circuit line,
signal, and variable are used interchangeably. The definitions provided below are common
in the circuit testing community [12].

Definition 1. In a combinational circuit, a signal s unobservable if assigning it a 0 or 1
logic value does not change the value of any primary output.

Definition 2. Given a circuit where some signals are assigned a 0 or 1 logic value, an
Observability Don’t Care is a signal that is unobservable.

Definition 3. Given a gate G and an input signal w, a neighbor of w s any input signal
to gate G other than w.

Definition 4. A controlling value assignment is a logic value assignment to a gate input
(fanin) such that all other inputs to the gate are unobservable.

. >
b: > C }e f
d 9}

Figure 1. A two gate circuit

As an example, consider the circuit in Figure 1. When signal d is assigned a controlling
value of logic 0, signal ¢ becomes unobservable because its value does not influence the value
of the output signal e. Since signal ¢ is the fanout of the AND gate with fanins a and b,
both fanins become unobservable too. In summary, under the assignment d = 0, signals a,
b, and c are all observability don’t cares.

In a circuit, the output of a multiple fanout gate can be represented by a common wire
segment that forks into multiple wire segments that directly input the subsequent gates.
The common segment is referred to as a stem, while the fanin segments are referred to
as branches. For example, in Figure 1, wire segment e is a stem, while wire segments f
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and g are branches. To simplify definitions, in the following, different variables are used to
identify circuit stems and branches.

From Definition 4, logic value assignment to circuit lines can result in the creation of
ODC signals under the following three distinct conditions:

Condition 1. When the fanin of a gate is assigned a controlling value (a 0 for
a (N)AND gate and a 1 for (N)OR gate)”, all other fanins excluding stems become
ODCs.

Condition 2. When the fanout of any gate is an ODC, all of the fanins of the gate
excluding stems (including branches) become ODCs.

Condition 3. When all branches of a stem are ODCs (due to condition 1 or 2), the
stem itself becomes an ODC.

The first condition directly depends on the logic value assignment to circuit lines. The
other two conditions depend on other ODC signals and may be implied by the first condition.
In other words, when a line in the circuit is assigned a logic value, the first condition can
determine what signals become ODCs, thus implying other signals to become ODCs as well.
In the next section, a technique is developed that can efficiently test for these conditions
and determine when variables become ODCs.

4. Managing Observability Don’t Cares in SAT

Observability Don’t Cares (ODCs) are signals or variables whose values do not affect the
output of the circuit. Since ODCs can be ignored in circuits, they can also be ignored in
SAT instances derived from them. Ignoring these variables can lead to run time savings by
skipping procedures such as decision-making and Boolean Constraint Propagation (BCP).
Moreover, leaving ODC variables unassigned by ignoring them can lead to smaller solution
cubes. These benefits may not be applied to every circuit-based SAT problem blindly, as
they may alter the problem under some conditions. This section presents conditions common
to many circuit-based SAT problems under which ODC variables can be left unassigned and
proves that the solution’s correctness is maintained.

4.1 Structure of Circuit-based SAT Problems

In SAT-based verification problems derived from circuits such as combinational equiva-
lence checking [28] and bounded model checking [3] a circuit is often augmented with extra
constraints. These constraints typically restrict the value assignments to the primary in-
puts, primary outputs, and state variables. In this work, these variables are referred to as
boundary signals or variables while all other variables are called internal signals or variables.
Typically, to construct a SAT problem, the given circuit is converted to CNF [17, 25, 33, 35]
while constraints on the boundary signals are added using extra clauses. Figure 2 illustrates
this construction for circuit-based problems.

2. The presented technique applies to more complex gate types. However, since other logic gate types such
as multiplexers can be constructed from (N)AND and (N)OR gates, other gate types are not discussed
in this work.
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current state constraints——»
Input constraints

ori gi na| output constraints

circuit

| <— next state constraints

Figure 2. Example of a circuit-based SAT problem

Since most circuit-based verification problems are derived in the manner described
above, the analysis in this paper is restricted to CNF instances generated from such prob-
lems.

4.2 Value Assignment to ODC Variables

By definition, ODC variables do not affect the output values of circuits. In circuit-based
SAT problems, constructed as described in Section 4.1, these variables should not affect the
outcome of the SAT problem either. More specifically, leaving ODC variables unassigned
in a SAT problem should not change the outcome of the problem. Theorem 1 states this
for DPLL-based SAT solvers [19].

The following assumptions, referred to as the ignore assumptions, and the subsequent
lemmas are needed to prove Theorem 1.

Assumption 1. The problem CNF must be derived from a gate-level circuit repre-
sentation as described in 4.1.

Assumption 2. Additional clauses in the problem CNF are allowed only for:

(a) Redundant clauses: clauses providing information already contained in the
problem CNF such as conflict clauses found by conflict analysis procedures [19].

(b) Boundary unit clauses: clauses containing a single literal representing a 0 or
1 constraint on a boundary variable®.

(c) Boundary constraint clauses: clauses containing only boundary variables to
prevent combination of logic value assignments from occurring on all or a subset
of these variables.

Assumption 3. In this context, a variable is identified as an ODC if and only if
it is unassigned, is not constrained by a unit clause, and at least one of the ODC
conditions of Section 3.2 holds for the corresponding signal.

Lemma 1. A SAT problem derived from a gate-level circuit as outlined in [17] without
any extra clauses in its CNF is SATISFIABLE.

3. Note: these clauses may be removed through BCP; However, we do not assume that BCP is run
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Proof. For any circuit, simulating an arbitrary input vector (assignments of 0 or 1 values to
all primary input and current state variables) on the circuit problem will result in all circuit
lines to take well defined 0 or 1 values [12]. Since circuit simulation assigns values to signals
according to the circuit topology (from input to output), every signal is assigned a Boolean
value according the the gate driving it and the fanins of that gate. Thus simulation ensures
that all signals from primary inputs to primary outputs are assigned a Boolean value that
respects the implications of each and every gate. As a result, there cannot be any conflicts in
the assignments made by the simulation process. Thus, the corresponding value assignment
to the circuit CNF must be SATISFIABLE.

O

Lemma 2. In a SAT problem derived from a gate-level circuit, internal ODC variables do
not propagate logic values between the input and output (boundary) variables. That is,
internal ODC variables do not accommodate implications from the inputs to the outputs
or from the outputs to the inputs.

Proof. Consider any internal variable v that is an ODC under one of the conditions of
Section 3.2. Variable v can be assigned any logic value that is implied by its transitive fanin.
However, since variable v is an ODC and its output is unobservable through any primary
outputs by definition, the effect of its value does not imply any values on the fanout(s) of
v including the primary outputs.

0

Theorem 1. Given a CNF problem which is an instance of a circuit SAT problem that
satisfies the ignore assumptions, a DPLL-based SAT solver can leave the ODC wvariables
unassigned without affecting the outcome of the SAT problem.

Proof. This proof uses contradiction. Assume that ignoring the ODC variables (i.e., leaving
them unassigned) leads to an incorrect outcome of the SAT solver. There are two scenarios
under which this can occur:

Case 1. The problem is UNSATISFIABLE but by ignoring the ODC variables the SAT
solver returns SATISFIABLE.

Case 2. The problem is SATISFIABLE but by ignoring the ODC variables the SAT
solver returns UNSATISFIABLE.

Each case is proved to be unrealizable below.

Case 1. The problem is UNSATISFIABLE but by ignoring the ODC variables
the SAT solver returns SATISFIABLE.

Since a CNF derived from a circuit is SATISFIABLE by Lemma 1, extra clauses added
to the CNF problem relating to the boundary variables (under the ignore assumptions)
must generate constraints such that the problem is UNSATISFIABLE. In other words,
the combination of the constraints from the extra clauses containing boundary vari-
ables and the problem structure constraints make the SAT problem UNSATISFIABLE.
However, in this case ignoring ODC variables changes the outcome of the SAT problem
to SATISFIABLE.

s
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Given that all ODC variables are identified according to the ignore assumptions and
that the logic value of internal ODC variables does not propagate to the boundary
signals by Lemma 2, ignoring ODC variables does not affect the logic value of the
boundary variables. As a result, the constraints making the problem UNSATISFIABLE
are unaffected and the SAT solver cannot return SATISFIABLE.

Case 2. The problem is SATISFIABLE but by ignoring the ODC variables the
SAT solver returns UNSATISFIABLE.

To show that ODC variables do not affect the outcome of a SATISFIABLE instance of a
circuit-based SAT problem, all CNF clauses containing ODC variables must be shown
to be satisfiable. Recall that in the CNF format all clauses are in conjunction and
each one must be satisfied for the overall CNF formula to be satisfied. The following
situations cover all possible clause types allowed in the CNF problem under the ignore
assumptions. Figure 3 shows an example of a three input AND gate, as part of a larger
circuit, with inputs a, b, ¢ and output d. The gates and the CNF in figures 3 (ii), (iii),
and (iv) help illustrate situations 1, 2, and 3 below. In these figures, “X” denotes a
line with an ODC variable.

1. Clauses representing a gate where one or more, but not all, inputs
are ODCs and the output is not an ODC. This situation occurs only under
Condition 1 of Section 3.2 where at least one fanin of the gate is assigned a
well-defined logic controlling value (i.e., 0 for (N)AND gate and 1 for an (N)OR
gate). As a result of the controlling value, all clauses derived from that gate are
satisfied, also shown in Figure 3 (ii).

2. Clauses representing a gate where all inputs are ODCs. This situation
occurs only under Condition 2 where the fanout of the gate is identified as an
ODC. As a result, there exists a logic assignment to each variable consistent with
the characteristic function of the gate such that all the clauses are satisfied. This
assignment must also be consistent with the values of variables in the transitive
fanin and fanout of the gate, which can be determined through BCP. In the
example of Figure 3 (iii), any assignment in agreement with the characteristic
function of an AND gate and the transitive fanin and fanout values will satisfy
all clauses.

3. Clauses representing a gate where the output is an ODC but one
or more input is not. This situation occurs when some of the fanin stems
are not ODCs or when some of the fanins are not unassigned. In this situation,
there exists a logic assignment to each variable which is consistent with the
characteristic function of the gate and all previously assigned variable such that
all the clauses are satisfied. This assignment must also be consistent with the
values of variables in the transitive fanin and fanout of the gate, which can
be determined through BCP. In the example of Figure 3 (iv), any assignment
consistent with the characteristic function of an AND gate with respect to the
assigned variables will satisfy all clauses.
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a X X X

S S EDEIE EDS
c 0 X 1

(a+d) (X +0) (X + X) (X + X)
(b+d) (X +0) (X + X) (X + X)
(c+d) (0+0) (X + X) (1+X)
(@+b+c+d (X+X+0+0 X+X+X+X) X+X+T+X)

—~
e
~—

(ii) (i) (iv)

Figure 3. CNF satisfiability with lazy variables

4. Redundant clauses. Since these clauses provide information that is avail-
able through other clauses, any variable assignments that satisfy the other clauses
will also satisfy these redundant clauses.

5. Boundary unit clauses. All unit clauses are assigned a satisfying 0 or 1
value and are not identified as ODCs by the ignore assumptions.

6. Boundary constraint clauses. There exists assignments to boundary ODC
variables that satisfy the above 5 types of clauses. If none of these assignments
can satisfy the boundary constraint clauses then the problem is

UNSATISFIABLE with or without ODC variables. Otherwise, there exists and
assignment to all variables such that the problem is SATISFIABLE in either case.

All cases are shown to be unrealizable thus contradicting the statement that unassigned
ODC variables may result in an incorrect SAT outcome.
O

It has been shown that ODC variables can remain unassigned in a DPLL-based SAT
solver if the ignore assumptions and the ODC conditions are respected. The next step is to
determine how SAT solvers can benefit from unassigned ODC variables.

4.3 Benefiting from Unassigned ODCs

In the previous section it is shown that ODC variables do not affect the outcome of a SAT
problem. This fact can be used to increase the efficiency of a SAT solver and to reduce
the size of its solution cubes through some minor modifications. For instance, the decision-
making and BCP procedures simply ignore all ODCs variables altogether thus leaving them
unassigned.

Before SAT solvers can benefit from ODC variables, these variables must be efficiently
identified. Since variables become ODCs dynamically as the SAT solver makes assignments,
identifying the ODCs must require little overhead. Indeed, much of the required analysis
can be performed as a quick pre-processing step before the SAT solving starts.

The pre-processing step comprises of associating a controlling value and a list of variables
to every variable in the SAT problem. When an assignment is made to a variable v, if the
assigned value is the same as its controlling value, then all the variables in the list are
identified as ODCs. The SAT solver can then ignore these variables for all procedures until
backtracking occurs and the initial variable assignment is reversed.
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The controlling value is set to 0 (1) for a variable that is an input of an (N)AND ((N)OR)
gate. Recall that for simplicity the fanout branch and stem are treated as different variables.
For a given variable v., the the list is constructed by

1. adding all the neighbors of v,

2. for each variable in the list v;, adding each variable in the transitive fanin of v; only
if that variable has a single fanout.

For example, for variable ¢ in Figure 4 the controlling value is 0 and its list contains
variables {d,e}. Similarly, for variable g the controlling value is 1 and its list contains
variables {f,a, b}.

Along with the list of variables, each stem variable also contains a field stating the
number of the fanouts (branches) that are ODCs. When all the fanouts are ODCs, the
variable itself and the variables in its list become ODCs as well.

Within the SAT solver, when a variable is identified as an ODC, a flag is set to allow the
decision-making and BCP procedures to simply skip them and leave them unassigned. The
backtrack procedure is responsible for resetting the ODC flags when the decision associated
to the initial assignment is reversed.

5. Finding Small Solution Cubes

The previous section showed that ODC variables can be identified and ignored in some
SAT procedures. In this section the importance of leaving ODC variables unassigned is
emphasized. For SAT-based reachability analysis it is critical to find small solutions cubes
in an efficient manner. A solution cube containing fewer literals covers more solutions and
reduces the number of iterations to find all solutions. In this regard, SAT solvers that
exploit ODCs have the inherent advantage of finding small solution cubes without applying
assignment reduction procedures [10, 28].

a
f
b 1
g g
e

Figure 4. Example showing benefits of ODCs

As an example consider the circuit in Figure 4 where the objective is to find all primary
input assignments such that the output is 1. An all-solution SAT solver using observ-
ability don’t cares can make the assignment f = 1 leading to signals c¢,d, e, g becoming
ODCs and resulting in the solution cube {a,b} = {1,1}. Similarly, in the next iteration
it can make the assignment g = 1 leading to signals a, b, f becoming ODCs and resulting
in the solution cube {c¢,d,e} = {1,1,1}. In contrast, an all-solution SAT solver with-
out any assignment reduction procedures needs up to 11 iterations to find all the solution
minterms. These 11 minterms are made up of 8 minterms covered by the cube {a, b} = {1,1}
plus four minterms covered by the cube {c,d,e} = {1,1,1} minus the common minterm
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{a,b,c,d,e} = {1,1,1,1,1}. Next, a novel decision-making procedure is developed to in-
crease the likelihood of finding small solution cubes as required by reachability analysis
engines.

5.1 Generating more ODCs with a Novel Decision-Making Procedure

The decision-making procedure of a SAT solver can help generate more ODCs and result in
smaller solution cubes. This can be accomplished by making logic assignment decisions on
variables that lead to more ODC variables. For example, consider the circuit partitioned
in fanout free cones as illustrated in Figure 5. A fanout free cone is a subset of a circuit
that does not contain multiple fanouts (i.e., stems forking into two or more branches) [12].
Assuming that primary input variables are the variables of interest, to generate small solu-
tions cubes, decisions should be made such that A and B are ODCs first. This will result
in the majority of primary inputs being unassigned.

Figure 5. Partition of circuit in fanout free cones

For applications such as model checking and trace reduction, the variables of interest
are often the current state and primary input variables. This means that solutions to a
SAT problem should be in terms of assignments to these variables. Note that the proposed
technique is not restricted to only these variables of interest.

The proposed decision-making procedure branches on variables with both a high score
as well as a high VSIDS rank [23]. The score for each variable is calculated in a quick linear
time pre-processing step with respect to the problem size. A variable’s score represents its
ability to make other variables of interest ODCs. The objective of each decision is to branch
on the variables with the highest probability of generating the most ODCs on the variables
of interest. As such, when a satisfying assignment is found, many variables of interest may
be left unassigned leading to a smaller solution cube.

The variable scoring scheme is called Influence on Variables of Interest or Ivi for short®:.
The Ivi value for every variable is found in a pre-processing step using two breadth-first
traversals of the circuit. In the first pass, an intermediate value called Variables of Interest
Predecessor or Vip is calculated for each variable. For each circuit line, the Vip value
increases with the number of variables of interest that exist in its transitive fanin and scales
down with the number of its fanouts or branches.

4. Ivi and Vip are generalizations of the Lipi and Pip scores in [27] as they are concerned with any
variable of interest type instead of only primary input types.

12
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1: //Calculate Vip value
2: for all (gates ¢ in a breadth-first manner) do

3:  if g is variable of interest then

4: if number of fanouts for g > 20 then
5: g.Vip=1

6: else

7: ¢.Vip=100 — 5(number of fanouts-1)
8: end if

9: else

10: for all (fanins pred) do

11: g.Vip=g.Vip + pred.Vip
12: end for
13: if number of fanouts for g > 3 then
14: ¢.Vip = ¢.Vip/4

15: else

16: ¢.Pip = ¢.Pip/(number of fanouts)
17: end if

18:  end if

19:  //Initialize Ivi

200 ¢gIvi0=0

21: glviil=0

22: end for

23: //Calculate Ivi value

24: for all (gates ¢ in a breadth-first manner) do
25:  for all (fanins line of g) do

26: if (g controlling value = 0) then

27: for all (fanins neighbor of g other than line) do
28: line.Ivi-0 = line.Ivi_-0+neighbor.Vip

29: end for

30: else

31: for all (fanins neighbor of g other than line ) do
32: line.lvi_l = line.lvi_-14+neighbor.Vip

33: end for

34: end if

35: line.Ivi = max(line.Ivi0, line.Ivi_1)

36: end for

37: end for

Figure 6. Calculating Vip and Ivi

The algorithm in Figure 6 illustrates how the Vip and Ivi variables are calculated
with exact values attributed to the variables of interest and the scaling factors. Lines 1-22
calculate the Vip values. These values are calculated differently for variables of interest
such as primary inputs and for other variables. For variables of interest a score is given that
is inversely proportional to the number of fanouts. The reason for this relation is that the
more fanouts there are the less likely it is for the variable to become and ODC. When the
number of fanouts is greater than 20, Vip is assigned the lowest value of 1. For all other
variables the Vip is found to be the sum of the Vip of its fanins. These values also decrease
with the number of fanouts as shown by lines 13-16.

Lines 23-37 of Figure 6 demonstrate how Ivi score for a variable is calculated based
on the Vip value of its neighbors (the other inputs to the gate). There are two Ivi scores
for each circuit line, one for each assignment phase (0 or 1). Each Ivi score for a line is
calculated based on the number of other neighboring lines that become ODCs when this
line takes on a controlling value. The largest of the Ivi scores from both phases is selected
and used in the branching procedure.

13
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Figure 7 shows the Vip and Ivi values on a sample circuit. For example, to calculate
the Vip value for signal e, we add the Vip value of its fanins, that is 100 for input ¢ + 100
for input d. The Ivi score for e is calculated by adding the Vip value of the neighboring
lines for each phase (i.e., 100 for neighbor a + 100 for neighbor b).

Consider the circuit problem of Figure 7 in the context of a SAT problem. Since the Ivi
score for variable a (along with b) is the largest among all variable scores, the first decision
made by the SAT solver is a = 0 (b = 0). As a result of this decision the primary inputs b, ¢
and d become ODCs. If the problem is satisfied without backtracking on the decision a = 0,
the only assigned primary input variable is @ which leads to the solution cube {a = 0}. This
example illustrates that the proposed scoring scheme increases the likelihood of generating

small solution cubes.
P— Vip = 200
Vip =100 Vip = (100+100+200)/2 = 200
Ivi=300 for O] |jyji=150 for1l -
Vip = 100 a t‘ —— g eeo
lvi=300 for O b J
Vip =100 c e h . ..
wi=100 for1| d
Vip =200 Vip= 200
Vip =100 lvi=200 for O Ivi = 100 for O
lvi=100 forl

Figure 7. Example of Vip and Ivi assignments

J

The overall decision-making procedure is dynamic as it picks the variable with the
highest Ivi score from the top ten variables with the highest VSIDS score as proposed
in [28]. This scheme achieves a balance between solving the SAT problem quickly based
on the effective decaying scheme of VSIDS and generating many ODCs on the variables of
interest. The experiments demonstrate the effectiveness of this branching scheme compared
to others.

6. Applications

This section presents applications that the proposed ODC techniques can be applied to.
Reachability analysis is discussed first, followed by unbounded model checking and trace
reduction.

6.1 Reachability Analysis

Reachability analysis is the process of determining whether a state g is reachable from
another state qg. Roughly speaking, reachability analysis can be performed by traversing
the state space backwards from state g until a state qg is found or a fix-point is reached,
where no new states are found [16]. Pre-image computation is a central procedure of
reachability analysis as it performs the single backward steps.

14



IMPROVED SAT-BASED REACHABILITY ANALYSIS WITH OBSERVABILITY DON’T CARES

pre-imagei ]
pre-image 3

pre-image 2
pre-image 1

Y

=
Yayd
YD
</
;@

o ,A,.‘

@)

=
KX
)
AV
——

w;

SR
N

4

(/
(2

DV

S

\w—/
4

Qe

initial state found
Figure 8. Illustration of reachability analysis

The SAT problem for pre-image computation is created by constraining the next state
variables S’ of a circuit’s transition relation T'(S,S’) to the state value ¢;. Thus the SAT
problem is to find the states assignments to the problem 35".7(S,S") A (5" < q;).

A conventional SAT solver is not very efficient for pre-image computation since many
solutions, if not all, are often required. An all-solution SAT solver such as the one described
in the previous section is ideal for this type of application as the ODCs allow it to find small
solution cubes efficiently.

The manner in which the state space is traversed depends on the how states are selected
by the reachability analysis engine. If the visited states are stored in a stack-like data
structure, a depth-first traversal is performed, while a queue-like data structure results in a
breadth-first traversal. Figure 8 illustrates a breadth-first reachability analysis process that
eventually finds the initial state gg. In this figure, the black nodes represent states while
each cone represents a set of states found by one pre-image computation step.

6.2 Unbounded Model Checking

Unbounded Model Checking (UMC), is a verification technique used to determine whether
specific properties are implemented correctly within a design. The properties can be spec-
ified in temporal languages such as CTL and LTL [5] to define both correct and incorrect
circuit behaviors.

Unlike popular SAT-based Bounded Model Checking techniques that unfold the tran-
sition relation for a finite number of clock cycles, UMC performs model checking without
this explicit bound [2]. Instead, a single copy of the transition relation is used to find a
transition path that violates the given property or to prove that such a path does not exist.

Reachability analysis is a central procedure employed by UMC engines. For simple CTL
properties such as FF'q;, where the goal is to determine whether a state g is reachable
from the initial state g, reachability analysis can applied directly to UMC problems [5].

Since UMC does not use an explicit bound, it is critical that the reachability analysis
tool be capable of finding small cubes and storing them efficiently. The proposed ODC-
based SAT solver appears to be ideal for UMC problems due to its inherent small solution
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cubes. The benefit of the proposed techniques on UMC problems are demonstrated in the
experiments.

6.3 Trace Reduction

A trace is a single sequence of states that represents specific transitions of a circuit for a
given number of clock cycles. A trace, also known as a counter-example, is the outcome of
a verification tool such as a simulator or a model checker. Since the majority of verification
performed in the industry is based simulation techniques with limited use of formal tools,
the traces are often much longer than necessary. In the verification debugging process,
these traces must be analyzed to locate error sources when verification tools determine the
existence of errors. Since traces can often be thousands of clock cycles long, trace reduction
approaches are employed to reduce their size and thus accelerate debugging.

A trace can be represented by a directed graph G = (N, E') where the nodes N represent
states and the edges I represent transitions between states. An edge from state ¢; to g;
denotes that g; is a pre-image of ¢; and g; is an image of ¢;. The objective of trace reduction
is to shorten the path from the initial state gy to the final state gz.

One approach to trace reduction is to perform reachability analysis on some of the states
belonging to the original trace [29]. All the states (or state cubes) found by the pre-image
computation steps of the reachability engine are added to the graph G. Graph G can then
be updated with edges denoting that each newly found states g; is a pre-image of some state
qj, selected for pre-image computation.

Figure 9. Updating the graph G with new nodes and edges

When states found by pre-image computation already exist in the graph G, extra edges
may be drawn in G to illustrate new legal transitions. These transitions may provide a
shorter path (or short-cut) from the initial state to the final state thus reducing the overall
trace length. For example consider the situation described in Figure 9 where the original
trace is shown as the sequence < qq, q1, g2, ¢3,q4 > and the dashed nodes are states found
through reachability analysis. Since ¢ is found as a pre-image of g4, and ¢ is the pre-image
of g9 in the original trace, a new edge shown as dashed line can be drawn directly from the
original (non-dashed) g2 to g4 and the dashed g2 can be removed. The overall result is a
shorter path from ¢y to g4 which skips node ¢s.

For more details about the trace reduction algorithm, the reader is referred to [29]. The
benefit of the reachability analysis engine which uses an ODC-based SAT solver on trace
reduction is demonstrated through the experiments.
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7. Experiments

The proposed ODC-based all-solution SAT solver is developed on top of zChaff 2004.11.15 [23]
as the basis of a reachability analysis framework. The all-solution SAT solver is also en-
hanced with the cube reduction procedure presented in [15]. In this section, the benefits
of the ODCs are demonstrated through three set of experiments. First, the ODC-based
all-solution SAT solver is compared against other approaches to determine its strengths in
isolation. Next, the effectiveness of the reachability analysis engine is shown in the context
of two applications, unbounded model checking and trace compaction. All experiments are
run on a Sun Blade 1000 machine with a 750 MHz CPU and 2.5 GB of memory. A time
out limit of 500 seconds and memory limit of 500 MB are used for all experiments, unless
otherwise stated.

7.1 ODC-based SAT Solver

For the first set of experiments, over 1000 problems based on all of the ISCAS’89 bench-
marks are used. In these problems, current state and next state variables are replaced with
primary inputs and primary outputs, respectively. In order to emulate pre-image computa-
tion problems, where a number of outputs are well specified while others are unconstrained,
we constrain an arbitrary number of primary outputs to 0 or 1 at random. The objective
of these problems is to find all the primary input assignments that satisfy the constraints.
In other words, the primary inputs are the variables of interest. Since all the solutions
are sought, finding small solution cubes in an efficient manner is critical in these experi-
ments. These problems are similar to scenarios found in many problems such as pre-image
computation [20] and circuit optimization [21, 30].

Figure 10 (i) plots the run time of the all-solution SAT solver with and without the
ODCs against each other. Points below the diagonal line signify that the ODC technique
results in faster run times. Since the majority of points are below the diagonal line, it is
evident that the ODC methods developed here are effective for all-solution SAT solvers.
On the average, the performance gain is over 1.52x, while the scatter plot shows speed-
ups of nearly one order of magnitude in some cases. The reason for this discrepancy is
that average performance gain is heavily influenced by the large number of problems with
speed-ups between 1-2x.

Figure 10 (ii) and 11 (i) and (ii) illustrate the benefits of the proposed decision-making
heuristic over three other methods. As discussed in Section 5.1, the Ivi scoring scheme is
quite effective at making decisions that produce many ODC primary inputs, but to achieve
a balance between solving each iteration quickly and finding small solution cubes, a strategy
similar to [28] is employed. In this strategy the variable with the highest Ivi score is selected
from the variables with the highest VSIDS scores. As shown in [28], this decision making
approach is found to be well suited for all-solution SAT problems.

In Figure 10 (ii) the proposed scoring scheme is compared against a random scoring
scheme to show the impact of the scoring scheme alone. The data points in Figure 10 (ii)
clearly demonstrate the out performance of the combined Ivi and VSIDS scoring scheme
over the random approach. However, there are certain cases where random fares better
which indicates that the proposed heuristic may have room for improvement.
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Figure 10. Performance comparison (i) with and without ODCs (ii) with random decisions

Figure 11 (i) compares the proposed approach (combined Ivi + VSIDS) against the lazy
scoring scheme used in [28] which is successful at producing many ODC variables in general.
Like the proposed scheme, the lazy method is also a hybrid which picks the variables with
the highest lazy score from a window of variables with high VSIDS scores. In [28] it was
shown that the lazy scheme outperforms the pure VSIDS scheme for circuit-based problems.
Figure 11 (i) clearly demonstrates that the proposed Ivi + VSIDS scheme is superior to
the lazy + VSIDS scheme as the majority of points are consistently under the diagonal line.

In Figure 11 (ii), the proposed scoring scheme (combined Ivi and VSIDS) is compared
with the pure Ivi scoring scheme to illustrate the trade-off between solving for solutions
quickly and finding small solution cubes. The out performance of the Ivi and VSIDS scheme
shown in Figure 11 (ii) clearly emphasizes the importance of utilizing the dynamic nature
of VSIDS. It is interesting to compare the general distribution of the points of Figure 11
(ii) with that of Figure 10 (ii). Although the schemes used are quite different, their general
performance versus the proposed scoring scheme appears to be similar. Therefore, the pure
Ivi and random scheme share some similar properties.

The scatter plots of Figures 10 and 11 clearly demonstrate that the proposed scoring
scheme is superior to the other on the average. The Ivi score allows for signals to be
selected to produce many ODC on the variables of interest, while the VSIDS scheme allows
for a dynamic decision procedure able to adapt to the changing nature of the SAT problem.

7.2 Unbounded Model Checking

In this section, the SAT-based reachability analysis framework is evaluated on unbounded
model checking problems. The UMC problems are of type EFp, where p is a reachable
or unreachable state picked at random. The UMC algorithm uses a hybrid BFS and DFS
approach where the next state for pre-image computation is chosen as the state with the
smallest hamming distance to the initial state gp [29]. The smallest hamming distance
is a greedy heuristic used to reach the initial state with the fewest number of iterations
possible. The data structure used to find whether a newly found pre-image is already found
by the reachability analysis engine is similar to the tree structure described in [29]. Instead
of using an explicit timeout or memory limit, the number of state cubes visited by the
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Figure 11. Comparison of different decision making heuristics

unbounded model checker is limited to 1000 since it is related to both memory requirement
and performance.

Table 1 shows the results of the presented ODC-based SAT solver versus a justification
engine similar to [15] on UMC problems. This justification approach is a state-of-the-art
technique for creating small cubes from each SAT solver solution, which is shown to be
competitive relative to other techniques such as [20]. Our implementation of [15] is built
on top of zChaff and makes use of the circuit-based justification engine, as described in [1],
each time the SAT solver finds a solution.

For each of the ISCAS’89 circuits shown in column one, the number of solution cubes
found by the proposed approach and the justification approach is shown in columns two
and three, respectively. Columns four and five give an insight into how the UMC problem
is solved by showing the maximum depth visited by the reachability analysis engine for
each respective approach. The run times required to solve the problems for the proposed
and the justification approaches are shown in columns six and seven, respectively, with the
faster approach shown in bold face. The final column present the average speed-up of the
proposed approach with respect to the justification approach.

The results of Table 1 show a fairly similar behavior in terms of the number of solu-
tions found and the depth visited by the UMC engine. For reachable problems that are
solved within the alloted 1000 solutions, these numbers do not provide much insight in the
effectiveness of the ODC techniques. This is due to the fact that a reachable state can be
found quickly when a “lucky” state is selected for pre-image computation which leads to the
initial state. The run time of the UMC tool (in columns five and six) allow us to evaluate
the effectiveness of the different techniques.

The UMC results can be split into two sets, the easy reachable problems that are solved
with few solution cubes and the harder problems that are not solved within finding 1000
solution cubes. The techniques are comparable on the easy problems, with the justification
approach performing slightly better. However, for the more interesting harder problems,
the proposed approach is overwhelmingly faster. Indeed, for the 13 cases where the solution
limit is reached by both approaches (“1000” shown in columns two and three in Table 1), the
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Table 1. Comparison of proposed and justification techniques for UMC problems

circuits proposed | justification | proposed | justification | proposed | justification | speed-up
# solutions | # solutions depth depth time (s) time (s) (x)
s1196 2 2 1 1 0.01 0.01 1.00
51238 1 1 1 1 0.01 0.01 1.00
s13207.1 170 2 88 1 0.10 0.01 0.10
s13207 37 1 1 1 0.03 0.01 0.33
s1423 9 1 1 11 0.01 0.01 1.00
51488 1000 1000 21 21 112.03 398.90 3.56
$1494 1000 1000 21 21 120.51 397.49 3.30
s15850.1 1000 1000 434 373 0.71 3.13 441
s15850 1 1 1 1 0.06 0.07 1.17
$208.1 1 1 1 1 0.09 0.08 0.89
s27 8 1 1 1 0.01 0.01 1.00
5298 1000 1000 511 701 122.17 500.00 4.09
s344 1 1 1 1 0.01 0.01 1.00
s349 1000 1000 364 387 0.72 3.16 4.39
$35932 2 2 1 1 0.01 0.01 1.00
535932 6 1 1 1 0.01 0.01 1.00
$382 28 1 1 1 0.02 0.01 0.50
s38417 1000 1000 463 504 0.84 2.70 3.21
$38584.1 1000 1000 462 512 0.81 2.57 3.17
$38584 1 1 1 1 0.01 0.01 1.00
s386 1000 65 24 18 1.31 0.09 0.07
s400 6 1 38 25 0.01 0.01 1.00
s420.1 1000 1 1 91 1.41 0.18 0.13
s444 11 1 1 1 0.01 0.01 1.00
s510 11 1 1 1 0.01 0.01 1.00
$526 1000 1000 543 617 1.63 3.41 2.09
$526n 1000 1000 511 511 14.80 114.19 7.72
s5378 1000 1000 511 511 13.52 114.14 8.44
s641 1000 44 511 26 1.38 0.08 0.58
s713 1 1 1 1 0.01 0.02 2.00
$820 1 1 1 1 0.02 0.02 1.00
5832 1000 1000 411 238 2.43 8.42 3.47
$838.1 102 1 49 1 0.18 0.01 0.06
59234.1 101 1 48 1 0.18 0.01 0.06
$9234 1000 1000 511 511 41.92 312.42 7.45
5953 1000 1000 511 511 33.95 256.37 7.55
[ average 896.70 715.41 326.97 297.68 25.46 114.46 2.24 ]

proposed technique is always faster. On average the ODC-based technique requires a run
time of 25.46 seconds, while the justification-based technique requires a run time of 114.46
seconds for all experiments. These results demonstrate that the ODC approach is effective
for BMC, as it is able to find more solutions quickly with an average of 4x performance
improvement.

7.3 Trace Reduction

In this section the effectiveness and efficiency of the proposed reachability analysis frame-
work is demonstrated on the trace reduction application. The traces are generated using
directed random simulation where control inputs such as enable and reset are set ap-
propriately, while other signals are assigned randomly for the entire trace sequence. The
trace reduction approach is limited to find at most 10,000 state cubes via pre-image com-
putation and an explicit timeout is not used. Since the compaction techniques of previous
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works [4, 24, 32] are not publicly available, and due to the fact that the assertions and errors
used are also unknown, the results cannot be compared.

Table 2 illustrates the results of the experiments on all ISCAS’89 and ITC’99 circuits
for traces of length 50, 100 and 1000. The first column shows the circuit names while the
remaining columns are organized into three sections based on their original trace length.
The first column of each section labeled orig describes the original length of each trace (50,
100, or 1000). The next two columns under the trace length label of each section show
the resulting trace length after applying the pre-image computation technique (pre-img)
followed by the reachability analysis technique (reach). More specifically, the pre-image
computation technique is the single step pre-image process described in Section 6.3 and the
reachability analysis technique is the proposed method introduced in Section 6.1. The fourth
and fifth columns of each section labeled with run time show the processing time in seconds
required for pre-img and reach, respectively. Note that both the pre-image computation
and reachability analysis are based on the proposed ODC-based SAT solver.

Table 2 shows how both techniques effectively work together to reduce the trace length.
For many circuits, the original trace length is first reduced greatly by the single step pre-
image (pre-img) technique and further reduced by the reachability analysis (reach). For
example, the trace for circuit s344 is first reduced from 50 clock cycles to 33 clock cycles
using pre-img, and then again from 33 clock cycles to 1 clock cycle using reach.

Analyzing the results in Table 2, notice that many traces are reduced to having a single
clock cycle (length of 1), or a very short trace size after applying reachability analysis.
This result can be partially attributed to the state selection heuristics of Section 5.1. These
techniques result in smaller cubes, which increase the number of short paths created through
the graph G and the likelihood that they will lead to the initial state.

Table 3 provides more insight into the results in Table 2 by providing the average length
reductions achieved by the different components of the proposed approach for traces of size
50, 100, and 1000. Similar to Table 2, the summaries are provided for each original trace
length separately. Column one presents the name of the compaction method: single step
pre-image computation (pre-img), reachability analysis (reach), or combined. For each trace
length, the overall average reduction is presented under the label avg. reduced. This field
is calculated by adding the reduction in size over all circuits divided over the number of
circuits. Since not all circuit traces are reduced by the proposed method, this number may
not provide a good representation of the average factor of reduction achieved. Instead, the
columns labeled affected and reduced show the percentage of traces that are affected by each
approach and the amount by which they are reduced, respectively. For example, for traces
of length 50, the proposed approaches separately achieve 10.08 x and 3.81x reductions while
the combined approach reaches 19.67x reductions. Furthermore, approximately 70% of the
circuits are affected by the pre-img techniques which results in an average reduction of
13.77x. Similarly, the reach technique and the combined approach affect 37% and 74% of
traces for a reduction of 8.45x and 25.72x, respectively.

The overall benefit of these reduced traces is that the subsequent debugging task is much
easier. For manual debugging, the verification engineer can concentrate on these reduced
traces in order to find the error source. For automated debugging, the impact is much
greater since sequential debuggers are limited by the length of the traces [7]. Thus reducing
the trace lengths can provide benefits to both manual and automated debugging.
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Table 2. Results comparing reachability analysis approaches for trace reduction problems

circuits trace length run time (s) trace length run time (s) trace length run time (s)
orig | pre-img | reach | pre-img | reach || orig | pre-img | reach | pre-img | reach orig | pre-img | reach | pre-img | reach
5208.1 50 25 25 0.00 0.56 || 100 51 51 0.07 0.60 || 1000 244 244 0.08 9.26
5298 50 1 1 0.00 0.00 || 100 3 1 0.59 0.86 || 1000 1 1 0.34 0.01
5344 50 33 1 0.00 0.00 || 100 55 1 0.31 0.00 || 1000 10 5 0.42 0.08
5349 50 33 1 0.00 0.00 || 100 55 1 0.32 0.00 || 1000 10 5 0.39 0.08
5382 50 3 1 0.00 0.17 100 4 2 0.75 0.00 1000 1 1 0.89 0.00
5386 50 1 1 0.00 0.00 || 100 2 2 0.09 0.00 || 1000 2 2 0.06 0.00
5400 50 3 1 0.00 0.01 || 100 2 1 0.69 0.01 1000 2 1 0.74 0.05
5420.1 50 21 21 0.01 1.20 || 100 44 44 0.13 0.97 || 1000 505 505 0.14 25.85
5444 50 2 1 0.01 0.01 || 100 3 1 0.98 0.93 || 1000 1 1 0.67 0.01
8510 50 24 24 0.00 0.87 || 100 10 10 0.13 0.66 || 1000 25 25 0.12 0.56
5526 50 2 1 0.00 0.03 || 100 3 1 1.27 0.86 || 1000 1 1 1.09 0.03
55261 50 2 1 0.00 0.03 || 100 3 1 1.26 0.86 || 1000 1 1 1.17 0.02
5641 50 3 3 0.00 1.65 || 100 4 4 1.81 2.10 || 1000 2 2 1.72 5.86
5713 50 3 3 0.00 1.65 | 100 4 4 1.80 2.01 1000 2 2 1.76 2.88
5820 50 1 1 0.00 0.00 || 100 1 1 0.00 0.00 || 1000 1 1 0.38 0.00
5832 50 1 1 0.00 0.00 || 100 1 1 0.00 0.00 || 1000 1 1 0.4 0.00
5838.1 50 26 26 0.00 1.87 || 100 45 45 0.26 2.07 || 1000 510 510 0.27 48.48
5953 50 6 5 0.00 1.38 || 100 1 1 2.52 0.00 | 1000 1 1 3.25 0.01
51196 50 8 1 0.00 0.05 || 100 14 1 0.89 0.12 | 1000 5 1 1.11 0.03
51238 50 8 1 0.01 0.05 || 100 14 1 0.84 0.11 1000 5 1 0.96 0.02
51423 50 50 2 0.01 3.41 || 100 57 2 6.19 3.55 | 1000 15 3 6.24 67.61
55378 50 50 50 0.04 0.89 || 100 100 100 23.76 1.03 || 1000 | 1000 1000 | 26.18 5.86
§9234.1 50 50 50 0.04 22.67 || 100 100 100 50.26 1.76 | 1000 | 1000 1000 | 49.89 11.55
59234 50 34 34 0.02 1.67 || 100 36 36 46.99 1.66 || 1000 35 35 47.41 10.76
513207.1 || 50 50 50 0.28 3.52 || 100 100 100 96.76 4.20 || 1000 | 1000 1000 | 105.92 7.61
513207 50 50 50 0.23 3.29 || 100 100 100 91.57 4.17 || 1000 | 1000 1000 | 98.79 7.74
515850.1 || 50 50 50 0.12 5.82 || 100 100 100 | 145.67 | 87.18 || 1000 | 1000 1000 | 140.31 9.01
515850 50 50 50 0.07 3.45 || 100 100 100 96.18 4.19 || 1000 | 1000 1000 | 222.94 | 8.09
538417 50 50 50 1.07 | 40.58 || 100 100 100 | 311.05 | 154.30 || 1000 | 1000 1000 | 340.83 | 25.74
538584.1 || 50 50 50 1.27 11.83 || 100 100 100 | 336.97 | 12.37 || 1000 | 1000 1000 | 375.70 | 25.68
538584 50 50 50 1.26 59.15 || 100 100 100 | 315.11 | 185.30 || 1000 | 1000 1000 | 344.44 | 23.85
b01 50 6 2 0.09 0.00 || 100 4 4 0.10 0.04 || 1000 4 4 0.9 0.04
b02 50 2 2 0.04 0.00 100 4 4 0.04 0.01 1000 4 4 0.4 0.01
b03 50 14 2 1.17 0.07 || 100 26 2 1.20 0.05 || 1000 8 8 1.32 13.54
b04 50 50 50 6.57 3.79 || 100 100 100 6.26 4.54 || 1000 | 1000 1000 6.89 27.88
b06 50 3 1 0.65 0.00 || 100 3 3 0.63 0.04 || 1000 2 2 0.62 0.03
b07 50 43 43 0.35 1.81 || 100 51 51 0.34 1.70 || 1000 56 56 0.28 14.56
b08 50 43 7 0.11 1.17 || 100 92 2 0.16 0.00 || 1000 329 5 0.16 0.02
b09 50 50 17 0.16 0.96 || 100 97 97 0.17 1.56 || 1000 82 82 0.18 18.70
b10 50 22 22 0.36 1.19 || 100 45 21 0.31 1.56 || 1000 32 32 0.59 9.56
bll 50 35 25 1.44 3.06 || 100 98 88 2.50 4.07 || 1000 550 550 1.92 27.68
b12 50 14 14 8.03 5.97 || 100 20 20 7.51 2.50 || 1000 36 36 7.89 34.85
b13 50 45 45 2.10 2.22 || 100 99 98 2.05 2.80 || 1000 | 1000 1000 2.57 19.54
bl4 50 50 50 42.48 1.84 || 100 100 100 47.68 24.18 || 1000 | 1000 1000 | 52.92 3.93
b15 50 49 49 76.63 | 6.19 || 100 100 100 56.65 | 43.78 || 1000 87 87 52.11 | 230.41
Table 3. Effectiveness of each component of the proposed trace reduction technique
| | orginal size 50 | orginal size 100 | orginal size 1000 |
approach || avg. reduced | affected | reduced || avg. reduced | affected | reduced | avg. reduced | affected | reduced
pre-img 10.08 x 70% 13.77x 16.88x 72% 22.66x 266.35% 1% 362.84x
reach 3.81x 37% 8.54x 6.10x 35% 15.36x 2.77x 15% 12.40x
combined 19.67x 74% 25.72% 36.21x 72% 49.01x 327.76x 2% 446.59 x
22
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8. Conclusion

This paper demonstrated the benefits of ODCs for reachability analysis problems. We de-
veloped an efficient way to identify ODCs during the SAT solving process and proposed
to leave such variables unassigned. As a result, SAT solutions can be found with fewer
assigned variables, thus leading to smaller solution cubes. The advantages of small solu-
tion cubes make the proposed approach ideal for reachability analysis applications, such as
unbounded model checking and trace reduction. Experiments on these applications demon-
strated results of up to an order of magnitude better in terms of performance when using
the proposed ODC techniques.
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