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This paper introduces HEMVM, an innovative heterogeneous blockchain framework that seamlessly integrates

diverse virtual machines (VMs), including Ethereum Virtual Machine (EVM) and Move Virtual Machine

(MoveVM), into a unified system. This integration facilitates interoperability while retaining compatibility

with existing Ethereum and Move toolchains by preserving high-level language constructs. HEMVM’s unique

cross-space operations allow users to interact with contracts across various VMs using any wallet software,

effectively resolving the fragmentation in user experience caused by differing VM designs. Our experimental

results demonstrate that HEMVM is both fast and efficient, incurring minimal overhead (less than 4.4%)

for intra-VM transactions and achieving up to 9300 TPS for cross-VM transactions. Our results also show

that the cross-space operations in HEMVM are sufficiently expressive to support complex decentralized

finance interactions across multiple VMs. Finally, the parallelized prototype of HEMVM shows performance

improvements up to 44.8% compared to the sequential version of HEMVM under workloads with mixed

transaction types.
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1 Introduction
Blockchain technology provides the powerful abstraction of a decentralized, resilient, and pro-

grammable ledgers on a global scale [11, 34]. Blockchains, often referred to asWeb 3.0 or Distributed
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Ledger Technologies (DLTs), vastly expand individual autonomy and enable value transfers without

the need for a central authority. They have also fundamentally reshaped the financial landscape

through the emergence of Decentralized Finance (DeFi). DeFi has disrupted the costly legacy model

of Traditional Finance (TradFi) with its offering of similar services (lending/borrowing, value

exchanging, yield earning, insurance, etc.) for cheaper and without relying on costly middlemen

such as banks or brokers.

At the heart of blockhain technology are smart contracts, which are computer programs that

allow developers to establish intricate transaction rules governing these ledgers. These smart

contracts are executed in a decentralized, peer-to-peer manner across the blockchain’s network of

nodes, with each virtual machine (VM) instance executing the code of the same smart contracts

so that consensus can be achieved across the network. For instance, in Ethereum, the second

largest blockchain with a market capitalization of 247 billion U.S. dollars and total value locked

(TVL) of 53.2 billion U.S. dollars, developers craft smart contracts using high-level languages such

as Solidity [19] and Vyper [21]. These contracts are then translated into the Ethereum Virtual

Machine’s (EVM) bytecode using specific compilers [18, 20]. Once compiled, the Ethereum client

ensures the consistent execution of the bytecode across all network nodes, updating the state of

the global ledger.

The virtual machine design of a blockchain plays a pivotal role in determining its performance,

security, and overall utility. For example, the virtual machine of Bitcoin has a restricted opcode

set, limiting it to basic cryptocurrency transactions with minimal programmability. In contrast,

Ethereum VM, being Turing complete, revolutionized the blockchain landscape. It transformed

Ethereum into a versatile programmable ledger, capable of encoding complex transaction rules.

This adaptability has facilitated the integration of smart contracts across diverse sectors, from

finance and supply chain management to entertainment [23, 37, 38]. As a result, blockchains have

gained widespread adoption, with the total value of assets across all blockchains reaching 2.85

trillion U.S. dollars. However, this growth has led to a highly fragmented ecosystem, with over 30

major blockchain platforms operating in parallel - each with its own design, often not compatible

with its predecessors. As a result of that, most smart contracts cannot access or interact with assets

across these platforms. The core issue is the lack of VM interoperability: different blockchain systems

use incompatible virtual machines, preventing smart contracts written for one chain from running

natively on another. This incompatibility severely limits the seamless transfer of assets and data

across networks, ultimately hindering the potential of decentralized applications.

However, value transfer inefficiency is not the only consequence of fragmentation. Data and

value silos also hinder broader blockchain adoption - particularly in the case of the EVM. As EVM

usage grows and smart contracts become more complex, it struggles to meet rising demands for

functionality, efficiency, and security. Limitations such as a small stack size, lack of opcodes for

deep stack access, and vulnerabilities like reentrancy [41] are well-known developer pain points.

These issues stem from early EVM design decisions, many of which are addressed in newer VM

architectures. However, these designs often break compatibility with the established EVM API and

tooling. Given Ethereum’s dominance and the EVM’s widespread use in smart contract development,

other blockchains have to develop their unique tooling to improve user and developer experience.

This fragmentation burdens users with multiple wallets and address formats, while developers

must adapt smart contracts to different languages and environments.

A notable case of VM incompatibility is between EVM and MoveVM. MoveVM powers the

Move smart contract language, originally developed for Facebook’s Libra project in 2018, which

aimed to support a new global digital currency. Recently, Move popularity has increased since its

adoption by popular new high-performance blockchain systems Aptos [17] and Sui [22], which

now have market capitalizations of $3.6 billion and $7.4 billion, respectively. Designed with strong
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safety guarantees and inspired by Rust, Move supports formal verification and treats assets as

first-class citizens. While developers are drawn to Move for its safety and improved experience, the

incompatibility between MoveVM and EVM, combined with EVM’s large user base, forces them to

choose between security and adoption - often at the cost of user familiarity and tooling support.

Ideally, a blockchain would seamlessly support multiple VMs like EVM and MoveVM, concealing

their intricacies from both users and developers. Users ought to have the flexibility to choose any

wallet application and interact with smart contracts, regardless of the VM in which they were

developed, and the resulting systemmust not suffer from drops in performance and reduced security

guarantees. However, current blockchains display a monolithic structure, with VM designs deeply

intertwined with other components such as storage layouts and address formats. Constructing a

heterogeneous blockchain that harmoniously integrates multiple interoperable VMs in one system

remains an unresolved challenge.

HEMVM: This paper presents HEMVM, the first framework for the development of heterogeneous

blockchain systems capable of supporting multiple, interoperable virtual machines. As evidence of

our approach, we have developed a prototype blockchain of HEMVM. This blockchain incorporates

an EVM module that aligns with the existing interfaces and tools of the EVM ecosystem, and a

MoveVM module compatible with the Aptos toolchains. Notably, these two VM modules within

HEMVM function in an interoperable manner. For example, users can utilize MetaMask, a widely-

used wallet tailored for EVM-compatible chains, to engage with smart contracts designed and

deployed in the MoveVM module of HEMVM.

To ensure compatibility across VM modules in HEMVM with the established tool chains of both

EVM and MoveVM, we have integrated RPC interfaces and transaction formats for the EVM as

well as the Aptos MoveVM. To ensure consistent and harmonious processing, HEMVM structures

its blockchain state into specific sub-spaces. Incoming RPC calls and transactions are routed to the

relevant processing sub-space. Each of these sub-spaces maintains its distinct address system and

standalone key-value state storage, mirroring the design ethos of their corresponding VM.

At its core, each sub-space within HEMVM operates as an independent ledger, steered by its

respective VM. A primary challenge for HEMVM is facilitating interoperability between these

sub-spaces. To address this, HEMVM introduces the innovative cross-space handler mechanism,

which has been inspired by a foreign function interface (FFI) technique used in programming

language interoperability designs[10, 15]. In short, this mechanism can be thought of as a unique

type of smart contract operation, allowing a smart contract to bundle operations from multiple

VMs in one atomic transaction. This design not only enables interoperability but also maintains

compatibility with existing tool chains. In essence, legacy tools, which may only recognize a single

sub-space, can interpret cross-space invocations as distinct transactions.

Another challenge for HEMVM is the actual implementation of these cross-space operations. A

direct method would involve modifying compilers for all related high-level languages. However,

HEMVM offers a solution with its novel internal contract design. Instead of introducing new VM

opcodes, which would necessitate new language constructs and compiler modifications, HEMVM

clusters its novel features under a special internal contract address. Invoking these features is

seamlessly managed within HEMVM’s backend. This approach eliminates the need for new high-

level language constructs, allowing HEMVM to integrate smoothly with existing Solidity and Move

compilers.

Finally, the design decisions of HEMVM bring surprising benefits to the performance potential

of the resulting blockchain system. Due to the fact that there are now multiple virtual machines

inside of the system, the execution of their transactions excluding cross-space transactions can be

parallelized to achieve better system throughput.
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Importantly, the proposed techniques in this paper are versatile and can be adapted to construct

heterogeneous blockchain frameworks that accommodate various virtual machines. By providing

a common abstraction layer that can interface with multiple virtual machines while maintaining

execution speed and security properties, these techniques serve as a foundational component in the

broader architecture of cross-chain communication. This facilitates the design of interoperability

layers that are not only secure and verifiable but also flexible enough to integrate with existing and

future blockchain platforms. Consequently, this work lays important groundwork for subsequent

scientific exploration into formal verification of multi-VM systems, composable interoperability

architectures, and other generalized multi-VM execution environments.

Experimental Results: We implemented HEMVM on both the Aptos [17] and Conflux [31]

blockchain platforms. Conflux is a major blockchain with a virtual machine that closely resembles

EVM, but isn’t fully compatible with it, which makes it a perfect candidate for this expiremental

evaluation. Our evaluation concentrated on its cross-space functionality with widely-used smart

contracts and the performance boost that a parallelized implementation of HEMVM is able to

achieve. Benchmarks include such scenarios as native tokens, ERC-20 tokens, decentralized trading,

and lending. The results confirm that HEMVM facilitates the use of EVM wallets such as MetaMask

for interacting with Move-deployed contracts, and similarly in the reverse. In terms of performance,

HEMVM introduces less than 4.4% overhead for intra-VM transactions. For cross-VM transactions,

it achieves 320-358 TPS in complex smart contract interactions and reaches up to 9300 TPS for

simpler token transfer tasks. The parallelized prototype shows performance boost up to 44.8% for

complex workloads.

Contributions: This paper makes the following contributions:

• Heterogeneous Blockchain Design: This paper presents the first general framework for

building heterogeneous blockchains that seamlessly support multiple, interoperable VMs.

• HEMVM: This paper presents HEMVM, an innovative blockchain system that harmoniously

integrates both EVM and MoveVM. Notably, HEMVM allows users to employ EVM wallets

such as MetaMask to interact with contracts housed in MoveVM and vice versa. This design

also improves the overall transaction throughput via enabling execution parallelization

between VMs.

• Cross-Space Handler: This work proposes a unique cross-space handler mechanism. This

design facilitates interoperability between VMs with differing semantics and storage struc-

tures, all while maintaining compatibility with established tool chains. We also describe an

access control mechanism that makes sure that the proposed cross-space handler mechanism

cannot be used by an unauthorized party.

• Internal Contract Approach: This paper introduces a novel internal contract approach.
This approach allows the introduction of new features to blockchain VMs without altering

high-level language constructs, ensuring HEMVM’s compatibility with current Solidity and

Move compilers.

The remaining of this paper is organized as follows. Section 3 presents an overview of our

heterogenous blockchain framework and shows a motivating example. Section 4 presents the

technical design of HEMVM. Section 5 discusses the implementation of HEMVM. We evaluate

HEMVM in Section 6 and discuss related work in Section 7. We finally conclude this paper in

Section 8.

2 Background
In this section, we will overview several elements of the building blocks of a blockchain platform

that will help in understanding the remaining sections. Blockchain can be conceptualized as a

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: May 2025.



HEMVM: a Heterogeneous Blockchain Framework for Interoperable Virtual Machines 5

state machine. State transitions are commonly referred to as transactions and are recorded. These

transactions are grouped into blocks, with each block cryptographically linked to its predecessor,

forming a chain. This structure ensures data integrity and immutability, preventing retroactive

alteration of records. The idea of the blockchain was originally devised for the digital currency

Bitcoin, however, the blockchain’s concepts have since been adopted and expanded into various

applications, and different paradigms and techniques have been developed to offer a robust and

transparent blockchain platforms.

We distinguish between two components of a blockchain platform: (1) Storage and Execution

where the state machine is being stored and the computation and validation of a new state is

performed; (2) Consensus where nodes in the network agree on the latest state to prevent incon-

sistencies across the network. A blockchain platform must implement a Remote Procedure Call

(RPC) interface to allow different nodes in the network to exchange data and to allow applications

to interact with the blockchain platform.

2.1 Transaction
Transactions correspond to valid state transitions. If a state transition is deemed invalid - such

as a user attempting to transfer more funds than their balance allows - the transition is reverted.

In this case, the system restores the state to the most recent valid state, effectively treating the

invalid transition as if it never occurred and the corresponding transaction is not recorded in the

blockchain. In each blockchain platform, transactions must conform to some standard. For instance,

in Ethereum a transaction includes information that is necessary for its execution such as the

destination address (to), and the function to invoke with the passed parameters (data). Also, a
transaction includes information to secure it against unauthorized usage such as nonce which is an

account specific natural number and linearly increments when the account performs transactions

and it used to prevent replay attacks.

2.2 Smart Contracts
Pioneered by Ethereum [11, 43], smart contracts are programs stored on the blockchain allowing

blockchain platforms complex transactions. Commonly, a smart contract is associated with a unique

address and a persistent state. A smart contract, like a class in object-oriented programming (OOP),

exposes a collection of functions. A transaction can invoke one of those functions by specifying

it in the field data with the corresponding input parameters. The executions of those functions

result in changes to the blockchain’s state. Similar to OOP, smart contracts can also interact with

other smart contracts through external function calls. Thus, smart contracts significantly enhance

blockchain’s functionality, enabling complex transaction rules beyond simple financial exchanges.

2.3 Gas
Gas fees are rewards to incentivise maintainers (miners) of a blockchain to process and confirm

transactions while preventing free-riders spam attacks. A transaction issuer sets a gas fee that they

are willing to pay for their transaction. The amount of gas fees depends on the blockchain platform

and the complexity of the corresponding transactions. In particular, smart contracts transactions

can differ in their computational complexity - some might consume little resources, while others

might run compute-heavy procedures. Also, read and write operations on storage slots requires

much greater amounts of gas than read and write operations from local variables. Thus, to charge

for each transaction execution fairly, the gas fees must be set appropriately based on the transaction

complexity. A transaction will not be included (i.e., will be terminated) if the amount of gas it

consumes exceeds the preset gas fees that the author of the transaction willing to pay for it.
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2.4 Block
Generally, blockchain platforms perform macro state transitions. A macro state transition consists

of a valid execution of a set of transactions that are packed in a block. The chain of blocks records all

state transitions from the genesis state. Transactions are added into a block until the accumulated

gas fees of the added transactions reaches a block gas fee threshold. Then, the blockchain platform

proposes the new block, it executes its transactions, and incorporates the commitment of the

post-execution state into the block header to track the validity of the block when it is inserted into

the chain.

Since a distributed blockchain platform cannot directly determine real-world time, the block
height, which represents the number of blocks in the chain, is used as a timestamp in smart contracts

to estimate time periods. In particular, based on the throughput, i.e., how many blocks per time

unit the blockchain platform produces, it is then possible to estimate the period of time based on

the equivalent of how many blocks were produced between two block heights.

2.5 Ethereum Virtual Machine (EVM)
The Ethereum Virtual Machine (EVM) is a stack-based virtual machine that supports Turing-complete

smart contracts programs, allowing for a broad range of computational operations [43]. Many

blockchains adopt the Ethereum virtual machine (EVM) for execution due to its functionality and

popularity among applications developers. In Ethereum, smart contracts are written in the EVM

bytecode, stored on the smart contract account, using EVM opcodes such as SLOAD and SSTORE to

access the blockchain state and CALLER and CALLVALUE to access caller address and the amount

of native tokens (e.g., Ether) sent. Each EVM opcode has a gas cost associated with it that allows

to estimate the gas fees necessary for executing a transaction. In Ethereum, smart contracts are

commonly written in high-level programming languages, such as Solidity [19], and are subsequently

compiled into the EVM bytecode [18].

In Figure 1a, we show the implementation of a simple fungible token smart contract in Solidity.

The implementation leverages Solidity’s mapping type to store account balances and uses function

modifiers such as public to enforce access control.

The mint function allows the creation of new tokens by increasing the recipient’s balance. To

ensure valid token creation, it includes a require statement preventing minting to the zero address.

Additionally, the function emits a Transfer event with the sender set to zero address to enable

external tracking of transactions. The transfer function enables token transfers between accounts.

It first checks whether the sender has a sufficient balance using require, preventing unauthorized

transfers. The function then deducts the amount from the sender’s balance and adds it to the

recipient’s balance, ensuring proper accounting of tokens. The balanceOf function allows users to

query the token balance of a given account by returning the stored value in the balancesmapping.

2.6 The Move Language
Move is a resource-oriented programming language for writing blockchain applications designed

to improve their security and facilitate their formal verification [9, 14]. In Move, smart contracts

are called modules. Move-based modules are executed by the Move Virtual Machine (MoveVM).
In contrast to EVM and Solidity, Move introduces resources, which are first-class data types that

cannot be copied or accidentally discarded. Move uses resources to represent digital assets in the

state and enforces ownership rules to restrict arbitrary state changes.

Indeed, Move-based modules behave differently from EVM-based and Solidity-based smart

contracts. In Figure 1b, we show the implementation of a token module in Move. The Token module
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1 contract Token {
2 // Balances of Tokens
3 mapping(address => uint256) public balances;
4

5 // Event logs
6 event Transfer(
7 address indexed from,
8 address indexed to,
9 uint256 value
10 );
11

12 // Mint amount of tokens
13 function mint(
14 address to,
15 uint256 amount) public returns (bool) {
16 require(
17 to != address(0),
18 "ERC20: mint to the zero address"
19 );
20 balances[to] += amount;
21 emit Transfer(address(0), to, amount);
22 return true;
23 }
24

25 // Transfer tokens between accounts
26 function transfer(
27 address to,
28 uint256 amount) public returns (bool) {
29 require(
30 balances[msg.sender] >= amount,
31 "Insufficient balance"
32 );
33 balances[msg.sender] -= amount;
34 balances[to] += amount;
35 emit Transfer(msg.sender, to, amount);
36 return true;
37 }
38

39 // View balance
40 function balanceOf(
41 address account) public view returns (uint256) {
42 return balances[account];
43 }
44 }

(a) Solidity-based implementation of token.

1 module Token {
2 use std::signer;
3

4 // Define the Move Token resource
5 struct Token has key, store {
6 balance: u64,
7 }
8

9 // Mint a new Token resource
10 public fun mint(
11 to: &signer,
12 amount: u64
13 ) acquires Token {
14 let token = Token { balance: amount };
15

16 // Move tokens to address "to"
17 move_to(to, token);
18 }
19

20 // Transfer tokens between accounts
21 public entry fun transfer(
22 from: &signer, to: address, amount: u64
23 ) acquires Token {
24 // Get mutable reference from global storage
25 let sender_token = borrow_global_mut<Token>(
26 signer::address_of(from)
27 );
28

29 let recipient_token =
30 borrow_global_mut<Token>(to);
31

32 assert!(sender_token.balance >= amount, 1);
33 sender_token.balance -= amount;
34 recipient_token.balance += amount;
35 }
36

37 // View balance
38 public fun balanceOf(
39 account: address
40 ): u64 acquires Token {
41 // Get immutable reference from global storage
42 borrow_global<Token>(account).balance
43 }
44 }

(b) Move-based implementation of token.

Fig. 1. Implementations of token smart contract.

defines a Token resource with a balance field, marked with the key and store abilities, which

allow it to be stored in global storage and uniquely identified by an account.

The mint function creates a new Token resource and assigns it to the recipient’s account using

move_to, ensuring direct ownership transfer without reliance on global state modifications. The

transfer function retrieves mutable references to the sender’s and recipient’s token resources

using borrow_global_mut. It then enforces a balance check with assert, preventing transfers

that exceed the sender’s balance. The balanceOf function retrieves the token balance of a given

account using borrow_global, ensuring safe and efficient state access.

Unlike Solidity, which uses mappings to store balances and function modifiers to enforce ac-

cess control, Move encapsulates asset logic within the resource itself, preventing unintended

state changes. Additionally, Move’s type system and borrow semantics naturally enforce security

constraints, e.g., borrow_global, reducing the need for runtime checks.

2.7 Cross-chain Transaction
Cross-chain transactions permit different blockchains to interact, allowing applications on different

blockchains to interoperate. Thus, a user with an account in one blockchain can interact with an

application that resides in another blockchain without requiring the use to create an account in the

second blockchain. Cross-chain transactions include transactions between chains that have the

same virtual machine (VM) execution enviroment, e.g., Binance Smart Chain (BSC) and Ethereum,

and transactions between chains that have different VM execution enviroments, e.g., Ethereum and
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Fig. 2. Overview of different Blockchain Architectures

Aptos. Cross-chain transactions are typically used for transferring funds from existing blockchain

networks to newer ones. A situation where a new blockchain network has only a small amount of

funds stored in itself typically results in inefficient markets, high price volatility and poor incentives

for potential investors [2]. This makes cross-chain transactions crucial for the healthy development

and kickstarting of new blockchain ecosystems.

Cross-chain bridges are the commonly used mechanisms for cross-chain interactions. They

consist of a third-party relay protocol that connects the two chains that are involved in the

cross-chain transaction. In particular, the off-chain relay protocol listens to updates on the source

blockchain and reacts by performing updates on the destination blockchain. Cross-chain bridges

support only basic interactions like token transfers cross chains.

In cross-chain bridges, transactions execution and confirmation speeds range from about one

minute (centralized systems) to several days (optimistic rollups). Since new high performance

blockchains are handling millions of transactions per day, cross-chain bridges are not scalable.

Furthermore, cross-chain bridges weaken the overall ecosystem security, and it is reported that

vulnerabilities in cross-chain bridges have resulted in $3.2 billion in losses since May 2021 [5].

3 Overview and Example
This section first presents a design overview of our heterogeneous blockchain framework. We

then present a motivating example of initiating a cross-VM transaction in HEMVM, our prototype

blockchain system.

3.1 Design Overview
Figure 2 presents the overview of our framework. The conventional architecture of blockchain

systems, as depicted on the left side of Figure 2, is structured into four critical layers. The first

layer, the Remote Procedural Call (RPC) layer provides a set of API interfaces, enabling external

applications to interact with the blockchain. Following this is the consensus layer which is respon-

sible for generating a consistent transaction order for execution by each node. The third layer, the

virtual machine layer, is where each transaction is executed. Lastly, there is the storage layer, which

maintains the state of the blockchain ledger.
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Standard blockchain systems are inherently monolithic and restricted to hosting only a single

virtual machine due to the interdependencies among the different layers. This limitation arises from

the significant impact that the design of a virtual machine has on both the storage and the RPC

layers. For instance, EVM and MoveVM feature distinct transaction formats, necessitating unique

APIs for interaction. Additionally, they conceptualize the blockchain ledger state differently: EVM

utilizes a two-level key-value store where each contract is linked to a key-value map for storing its

state values, while MoveVM organizes the blockchain state as a hierarchical tree structure, based

on its specific resource types. This monolithic nature restricts blockchains to operate exclusively

with applications designed for their respective VMs. For example, it is impossible to use MetaMask

wallet to operate with Aptos blockchain because MetaMask is designed for EVM.

The right side of Figure 2 presents the architecture of our heterogeneous blockchain framework.

This framework is partitioned into multiple sub-spaces, each tailored to support a specific VM.

Independent storage, VM execution, and RPC layers within each sub-space ensure complete and

compatible support for the corresponding VM. Unified under a shared consensus layer, these

sub-spaces collectively order transactions before dispatching them for execution in the relevant

sub-space. The design of our framework is adaptable to any consensus algorithm, given the typical

orthogonality of consensus mechanisms to VM designs.

A key innovation in our framework is the incorporation of cross-space operations as new opcodes

within each VM. These opcodes enable a contract in the source VM to invoke a handler function in

another contract in the target VM. Upon completion of the call in the target VM, the transaction

resumes in the original contract within the source VM, as illustrated in Figure 2. Combined with

the atomic nature of blockchain transaction execution, our cross-space operation facilitates the

orchestration of complex interactions across different VMs. It allows for sophisticated functionalities

such as cross-space token transfers and trades, which we will demonstrate in an upcoming example.

3.2 Motivating Example
HEMVM enables developers to leverage both the EVM andMoveVM stacks for contract development

and deployment. Users can choose their preferred interface, such as MetaMask or the Petra wallet,

to interact with contracts within their respective sub-spaces - whether on EVM or MoveVM.

When both the user and the developer operate within the same VM sub-space, interactions are

straightforward. However, complications arise when users need to engage with contracts from

different sub-spaces.

We next present an motivating example to illustrate how a user can use Metamask wallet, which

only supports EVM, to initiate a cross-space transaction on HEMVM, our prototype framework, to

trade with PancakeSwap, a dencentralized finance contract deployed in MoveVM. PancakeSwap

is an automatic market making (AMM) contract that maintains pools of digital asset pairs and

enables users to exchange digital assets with these pools. In our example, we suppose PancakeSwap

maintains a pool of two assets: one following the ERC-20 standard from EVM and another following

the Move Coin standard. The user wants to trade ERC-20 tokens for Move Coins. Throughout this

section and until the rest of this work, we will refer to the sub-space where EVM and MoveVM

reside as EVM sub-space and Move sub-space, respectively.

Figure 4 presents the simplified code snippet of PancakeSwap interface. swap_exact_input()
at line 3 is the function that implements the coin exchange functionality. The function has two type

parameters and three value parameters. The first type parameter X denotes the coin type which

the user sells to PancakeSwap and the second type parameter Y denotes the coin type which the

user buys from PancakeSwap. The first value parameter is sender, which acts as an identifier for

the call initiator. Second parameter x_in is the amount of tokens that the caller wants to swap,
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Fig. 3. Cross-space swapping using PancakeSwap protocol.

1 public entry fun swap_exact_input<X, Y>(
2 sender: &signer, x_in: u64, y_min_out: u64
3 ) {...}

Fig. 4. Interface of PancakeSwap required for the example.

and y_min_out acts as a minimum number of tokens that the caller would like to receive after the

swap, i.e., the swap will abort if the user does not provide enough coin X.
Note that this is a function in a Move contract and users normally cannot interact with Move

contract using Metamask wallet which only supports EVM interfaces. We next show how cross-

space operations in HEMVM make such interactions possible.

Cross-space Transaction Steps: Figure 3 presents the high-level diagram of our example cross-

space swap transaction. The cross-space swap consists of three main parts. The first part is to move

ERC20 assets from the EVM space into the Move space, shown as steps 1 to 7 in Figure 3. The

second part is to invoke PancakeSwap to perform the swap, shown as steps 8 to 12 in Figure 3. The

last part is to retrieve the obtained Move Coin from the Move space to the EVM space, shown as

steps 13 to 17.

Because Metamask wallet cannot interact with non-EVM contracts, developers will deploy three

proxy contracts in each space to enable the above transaction interactions. Figures 5a, 5b, and

6 show snippets of these proxy contracts. Proxy contracts in the EVM space provide interfaces

for Metamask to interact with, they are paired with proxy contracts in the Move space to handle

cross-space interactions. Note that the development efforts of these proxy contracts are negligible

because they can be automatically generated based on the source code of PancakeSwap.

Figure 5a presents the main proxy contract in the EVM space that orchestrates this cross-

space transaction. The user will use Metamask to call swap() at line 4 in Figure 5a to initiate

the transaction. swap() first calls transferFrom() function from the ERC20 standard to transfer

user’s ERC20 tokens that they want to exchange to the proxy contract. Then it calls deposit()
function (shown at line 4 in Figure 5b), which handles cross-space transfer to the Move sub-space.

In the second part, swap() initiates a cross-space call at line 23 to the Move contract shown in

Figure 6, which performs the swap and manages the received tokens. Lastly, after the swap has

been performed, the function withdraws the tokens back to the EVM space by calling withdraw()
function at line 27. We next discuss the deposit and swap steps in details. We omit the withdraw

step, because it is symmetric to the deposit step.

Deposit from EVM Space to Move Space: Figure 5b presents the code snippet of two proxy

contracts, one deployed in the EVM space and another deployed in the Move space. The two
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1 contract ProxyRouter {
2 bytes32 constant handler =
3 "<swap_wrapper_addr>"
4 function swap(
5 address tokenIn, address tokenOut,
6 uint amountIn, uint amountOut) {
7 IXProxy portalIn = getProxyAddr(tokenIn);
8 IXProxy portalOut = getProxyAddr(tokenOut);
9 ...
10 tokenIn.transferFrom(
11 msg.sender, address(this), amountIn);
12 // Step 1: cross-chain deposit
13 portalIn.deposit(handler, amountIn);
14 // Step 2: cross-chain call
15 bytes[] args = new bytes[](2);
16 args[0] = encodeU64(amountIn);
17 args[1] = encodeU64(amountOut);
18 bytes[] coins = new bytes[](2);
19 coins[0] = toMoveType(tokenIn);
20 coins[1] = toMoveType(tokenOut);
21 string aptos_module = "swap";
22 string func = "swap_exact_input_handle";
23 crossVM.callMove(
24 handler, aptos_module, func,
25 args, coins);
26 // Step 3: withdraw swapped coins
27 portalOut.withdraw(msg.sender);
28 } ... }

(a) Cross-chain proxy contract swap() implementation.

1 contract VaultErc20 is IXProxy {
2 bytes32 constant handler =
3 "<coin_wrapper_addr>"
4 function deposit(
5 bytes32 receiver, uint256 amount) {
6 token.transferFrom(
7 msg.sender, address(this), amount);
8 ...
9 bytes[] args = new bytes[](2);
10 args[0] = crossVM.encodeBytes32(receiver);
11 args[1] = crossVM.encodeU64(amount);
12 bytes[] coinType = new bytes[](1);
13 coinType[0] = toMoveType(getUnderlyingToken());
14 crossVM.callMove(
15 handler, "cross_vm_coin", "deposit",
16 args, coinType);
17 } ... }
18 module coin_wrapper::cross_vm_coin {
19 fun ihe_deposit<CoinType>(
20 caller: vector<u8>,
21 message: vector<vector<u8>>
22 ): vector<u8> ... {
23 let amount = decode_u64(&mut message);
24 let receiver = decode_address(&mut message);
25 let coin = make_coin(amount);
26 coin::deposit<CoinType>(receiver, coin);
27 b""
28 } ... }

(b) Simplified code for deposit proxies.

Fig. 5. Implementation snippets for some of the proxy contracts.

1 module swap_wrapper::swap {
2 use pancake::router;
3 ...
4 fun ihe_swap_exact_input_handler<X,Y>(
5 caller: vector<u8>,
6 message: vector<vector<u8>>
7 ): vector<u8> {
8 ...
9 let out = decode_u64(&mut message);
10 let in = decode_u64(&mut message);
11 router::swap_exact_input<X,Y>(
12 &cashier_signer(), in, out);
13 // transfer money to the vault contract
14 sweep_out<Y>();
15 b"" } }

Fig. 6. Move swap proxy.

contracts together implement the functionality of moving the ERC20 token from the EVM space to

theMove space. Call to deposit() at lines 6-17 in Figure 5b implements a lock-and-mint mechanism.

The function first transfers tokens from the caller to the address of the contract, at line 6. It then

invokes a cross-space call using crossVM.callMove(), a built-in function of HEMVM. The call

will invoke ihe_deposit() at the Move proxy contract coin_wrapper::cross_vm_coin (line 19

in Figure 5b). ihe_deposit() eventually mints the corresponding amount of new coins at line 25.

Note that the new coins are minted to the address stored in the variable of handler shown at line 3

in Figure 5a, which corresponds to another proxy Move contract for the follow up swap operation.

If the user wants to move the asset back to the EVM space, the user needs to burn the coin in the

Move space and then VaultERC20 will unlock its tokens from the EVM space. We omit this part for

brevity.

Invoke Swap: To perform the swap, the cross-space call at line 23 in Figure 5a invokes the

function ihe_swap_exact_input_handler() in the Move proxy contract in Figure 6 using the

crossVM.callMove() built-in function. Function ihe_swap_exact_input_handler() decodes

the arguments at lines 8-11 in Figure 6 and eventually calls swap_exact_input() in PancakeSwap
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⟨prog⟩ ::= program ⟨inst⟩∗

⟨inst⟩ ::= ⟨EVMinst⟩ | ⟨MoveVMmod⟩ | ⟨Crossinst⟩
⟨Crossinst⟩ ::= VMtoVMCreateDispatcher (ad𝑠 , val, c, gp) | VMtoVMCreateHandler (ad𝑠𝑦𝑠 , ad𝑠 , val, c, gp)

| VMtoVMCallDispatcher (ad𝑠 , ad𝑡 ,𝑚, val, gp) | VMtoVMCallHandler (ad𝑠𝑦𝑠 , ad𝑠 , ad𝑡 ,𝑚, val, gp)
| Decode data | Encode data

Fig. 7. Core language of HEMVM cross-space instructions. 𝑎∗ indicates zero or more occurrences of 𝑎.

to actually swap the tokens. If the swap is successful, the obtained token will be also in the address

of the Move proxy contract. The function therefore transfers the tokens out to prepare for the

withdraw steps at line 16.

Cross-Space Operations: This example highlights the capability of the cross-space opeations

of HEMVM to implement sophisticated interactions. In our example code snippets there are two

cross-space operations. The first operation can be found at line 14 in Figure 5b. It invokes the

Move function to mint coins during the deposit part. Another cross-space operation is at line 23 in

Figure 5a and it invokes the Move proxy to eventually call PancakeSwap. HEMVM supports cross-

space calls to the Move space with its built-in fuction crossVM.callMove(). The first argument

of the call specifies the address of the target contract in the Move space. The second and the

third arguments are the contract name and the function name to call. The fourth and the fifth

arguments are the value arguments and the type arguments supplied for the invoked Move function.

In the deposit case, the cross-space call invokes the function ihe_deposit() in the Move contract

coin_wrapper::cross_vm_coin at line 19 in Figure 5b. The type argument is the coin type of the

ERC20 token and the value argument is the amount being transferred.

Our example shows how a heterogenous blockchain system can potentially provide solutions

to the fragmentation problem introduced by new VMs, e.g., users can use their favorite wallets

to interact with contracts deployed in multiple VMs. Note that one advantage of HEMVM is that

the developers do not need to modify the source code of existing contracts. The required proxy

contracts can also be automatically generated based on the original contract interface.

4 HEMVM Design
This section presents the design of HEMVM and its formalization. We introduce the instructions

that HEMVM adds to the core list of EVM and MoveVM opcodes in order to perform cross-ledger

(cross-space) operations. We describe the semantics of the new operations, and also describe the

methodology for packing cross-space transactions into blocks.

4.1 Core HEMVM Language
HEMVM defines an environment that allows accounts and smart contracts in one ledger (sub-

space) to interact with accounts and smart contracts in the other ledger (sub-space). Note that the

interactions between the two sub-spaces are bidirectional: each of the two sub-spaces can initiate a

cross-space call to the other sub-space.

In Figure 7, we present the syntax of a simple programming language that we use to formalize

HEMVM cross-space design approach. The language extends the standard EVM operations EVMinst
(e.g., load and push) and the default MoveVMmodules with their built-in functions MoveVMmod (e.g.,
Account and Block) with a new set of operations Crossinst, e.g., VMtoVMCreate and VMtoVMCall,
to enable a heterogeneous blockchain with two ledgers (sub-spaces) under HEMVM. For brevity, in

Figure 7 we omit the full description of the EVM standard instructions EVMinst and the MoveVM

default modules MoveVMmod since they are not necessary in understanding the design of HEMVM.

In Crossinst, the four operations are categorized into two groups: (1) the first two operations,

i.e., VMtoVMCreateDispatcher and VMtoVMCreateHandler, enable a caller in one sub-space to
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create a smart contract (resp., module) in a another sub-space; and (2) the last two operations, i.e.,

VMtoVMCallDispatcher and VMtoVMCallHandler, enable a caller in one sub-space cross-space to

invoke a function within an existing smart contract (resp., module) that is located in a another

sub-space. For simplicity, in the rest of the paper, we will refer to the first group as ’cross-space

smart contract creation’ and the second group as ’cross-space function call’. Such definition of

Crossinst implies that the deployment of new bytecode and function calls can now be initiated

through two mechanisms: either through a native operation that is defined in EVMinst/MoveVMmod
if the transaction sender is located in the same sub-space as the target sub-space or through the

smart contract/module creation operations defined in Crossinst if the transaction sender is located
in a different sub-space compared to the target sub-space.

We use A to represent the set of addresses that is partitioned between the two spaces.

VMtoVMCreateDispatcher (ad𝑠 , val, c, gp) and VMtoVMCreateHandler (ad𝑠𝑦𝑠 , ad𝑠 , val, c, gp)
operations allow an address ad𝑠 ∈ A in one space to create a new contract or module in the other

space. In these operations, parameter c ∈ <prog> stands for the bytecode of the whole contract or

module that needs to be deployed, parameter val ∈ N stands for the amount of native tokens that

is sent along the transaction creation function, and parameter gp ∈ N stands for the number of

native tokens that the transaction is allowed to spend for gas. Note that parameters val and gp
are natural numbers, i.e., N, and the native tokens for sub-spaces do not necessarily have to be

identical. The choice to maintain uniform or distinct native tokens across sub-spaces is orthogonal

of the handling of cross-vm operations in HEMVM framework.

Similar to the previous two operations, the operations VMtoVMCallDispatcher (ad𝑠 , ad𝑡 ,
𝑚, val, gp) and VMtoVMCallHandler (ad𝑠𝑦𝑠 , ad𝑠 , ad𝑡 ,𝑚, val, gp) allow an address ad𝑠 ∈ A in

one sub-space to call a function 𝑚 in a deployed contract or module ad𝑡 ∈ A in another

sub-space and transfer val native tokens. Note that for uniformity, VMtoVMCallDispatcher and
VMtoVMCallHandler can also perform simple cross-space native tokens transfer where in this case

the parameter𝑚 will be empty. In this case, the account ad𝑡 does not need to contain a deployed

code. Lastly, the operations Encode data and Decode data are used to encode and decode data
between the two popular serialization formats Recursive-Length Prefix (RLP) and Binary Canonical

Serialization (BSC) that are used in the EVM and MoveVM ledgers, respectively.

Note that the design of the HEMVM can be generalized to any pair of virtual machines since

the intra-space instructions are not involved in the definition of the cross-space operations. For

instance, we have also adopted the framework of HEMVM in Conflux [31], a production blockchain

network, to allow accounts and contracts between two EVM based ledgers to interact.

4.2 Semantics of Cross-space Operations
Global state: The global state in HEMVM is a tuple 𝜎 = (h, acts) where h is the current block

height, and acts stores the states of all accounts. Variable acts maps each account address ad ∈ A
to acts(ad) = (non, b, vars, c) where non is the account nonce, b is the account balance, vars is
the persistent valuation of contract or module variables, i.e., a mapping from the contract/module

variables to their values in the ledger, and c is the whole bytecode of the smart contract or module

deployed at the address ad.
Storage layout: In the design of HEMVM we use a key-value map to represent the storage

where the keys are the accounts addresses, and we abstract away the differences between EVM

contract-centric storage (i.e., smart contract stores all of its data under its account address) and

Move resource-centric storage (i.e., resources related to a module can be stored across different

account addresses). However, note that for both storage types the HEMVM storage abstraction is

valid since both types can be represented as key-value map where the keys are accounts addresses.
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Thus, the domain of addreses for the global state component acts is partitioned between the two

sub-spaces.

Execution of high-level cross-space operations: In HEMVM, a cross-space smart contract

deployment transaction (resp., cross-space regular function call transaction) consists of the two

operations, (VMtoVMCreateDispatcher, VMtoVMCreateHandler) (resp., (VMtoVMCallDispatcher,
VMtoVMCallHandler)), that occur atomically together one after the other: first operation dispatches

the transaction from the originating sub-space and the second operation handles the transaction in

the target sub-space. For example, for a cross-VM call crossVM.callMove(. . . ) from the example in

Figure 5a, the pair (VMtoVMCallDispatcher, VMtoVMCallHandler) would be executed. The four

operations in Crossinst are implemented as functions in an internal contract or module, i.e., a
precompiled contract or module, within each of the two sub-spaces and it acts as an interface for

facilitating cross-space interactions between programs on both. Internal contracts allow HEMVM

to extend both execution engines without introducing new low-level opcodes which will require

introducing high-level language features for using them, e.g., Solidity language primitives, and

extending the compilers, e.g., Solc compiler, to translate those features to the low-level opcodes.

We use the variable ad𝑠𝑦𝑠 ∈ A to represent the reserved address of the internal contract or module.

The VMtoVMCreateDispatcher (ad𝑠 , . . . ) (resp., VMtoVMCallDispatcher (ad𝑠 , . . . )) is the

operation, i.e., function, in the internal contract or module through which a user with an

address ad𝑠 can initiate a cross-space contract deployment transaction (resp., cross-space regular

function call transaction) in the originating sub-space. Consequently, VMtoVMCreateDispatcher
(resp., VMtoVMCallDispatcher) from the internal contract or module with the address ad𝑠𝑦𝑠
calls VMtoVMCreateHandler (ad𝑠𝑦𝑠 , . . . ) (resp., VMtoVMCallHandler (ad𝑠𝑦𝑠 , . . . )) in the internal

contract or module to complete the cross-space contract deployment transaction (resp., cross-space

regular function call transaction) in the target sub-space. Note that the address space is partitioned

between two sub-spaces, meaning that a user address ad𝑠 uniquely defines the sub-space where

the transaction originates.

Opcode semantics: Figure 8 presents the semantic rules of the cross-space operations execution in

HEMVM. We use 𝜎 =J VMtoVMInstr K⇒ 𝜎 ′ to interchangeably denote the global state transition

from 𝜎 to 𝜎 ′ after executing the corresponding cross-space operation.
Cross-space contract/module creation: The transitions labeled by VMtoVMCreateDispatcher
(ad𝑠 , val, c, gp) corresponds to the initiation of a cross-space contract creation transaction initiated

by an account with an address ad𝑠 in the first sub-space. First, it ensures that the balance of the

sender is sufficient to pay for the cross-space account creation transaction
1
. Then, ad𝑠 transfers the

value amount val (that can be zero) to ad𝑠𝑦𝑠 in the first sub-space. Finally, it invokes the handler

opcode VMtoVMCreateHandler in the second sub-space
2
where the new contract will be created.

This triggers the transition VMtoVMCreateHandler (ad𝑠𝑦𝑠 , ad𝑠 , val, c, gp), which creates a fresh

address ad𝑛 in the destination sub-space acts for the new account. Then, it executes an ordinary

deployment transaction on the freshly created address ad𝑛 with the code c and transfers to it the

specified value amount val from ad𝑠𝑦𝑠 .
Cross-space function calls: The transition labeled by VMtoVMCallDispatcher(ad𝑠 , ad𝑡 ,
𝑚, val, gp) corresponds to the initiation of a cross-space function invocation transaction from

the address ad𝑠 . First, the transition ensures that the balance of the sender is sufficient to

pay for the cross-space account creation transaction. Then, ad𝑠 transfers the value amount

val to ad𝑠𝑦𝑠 in the first sub-space. Finally, it invokes the handler opcode VMtoVMCallHandler

1
If the balance is not sufficient, the operation is cancelled, and since all transactions in blockchain systems are atomic, the

state gets reverted back to the last correct state known to both of the sub-space ledgers.

2
For simplicity we assume the internal contract and module in the two sub-spaces have the same address ad𝑠𝑦𝑠 .
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(non𝑠 , b𝑠 , _, _) = acts(ad𝑠 ) crossVmDispatcherPerm(ad𝑠 ) (_, b𝑠𝑦𝑠 , _, _) = acts(ad𝑠𝑦𝑠 )
b𝑠 ≥ gp + val acts′ := acts[ad𝑠 ↦→ (non𝑠 + 1, b𝑠 − gp − val, _, _) ; ad𝑠𝑦𝑠 ↦→ (_, b𝑠𝑦𝑠 + val, _, _) ]

VMtoVMCreateHandler (ad𝑠𝑦𝑠 , ad𝑠 , val, c, gp)
(h, acts) =J VMtoVMCreateDispatcher (ad𝑠𝑦𝑠 , ad𝑠 , val, c, gp𝑠 ) K⇒ (h, acts′ )

(non𝑠𝑦𝑠 , b′𝑠𝑦𝑠 , _, _) = acts(ad𝑠𝑦𝑠 ) crossVmHandlerPerm(ad𝑠𝑦𝑠 ) isFresh(ad𝑛 )
vars0 := init(ad𝑛 ) acts′ := acts[ad𝑛 ↦→ (non𝑠𝑦𝑠 , val, vars0, c) ; ad𝑠𝑦𝑠 ↦→ (non𝑠𝑦𝑠 + 1, b′𝑠𝑦𝑠 − val, _, _) ]

(h, acts) =J VMtoVMCreateHandler (ad𝑠𝑦𝑠 , ad𝑠 , val, c, gp) K⇒ (h, acts′ )

(non𝑠 , b𝑠 , _, _) = acts(ad𝑠 ) crossVmDispatcherPerm(ad𝑠 ) (_, b𝑠𝑦𝑠 , _, _) = acts(ad𝑠𝑦𝑠 )
b𝑠 ≥ gp + val acts′ := acts[ad𝑠 ↦→ (non𝑠 + 1, b𝑠 − gp − val, _, _) ; ad𝑠𝑦𝑠 ↦→ (_, b𝑠𝑦𝑠 + val, _, _) ]

VMtoVMCallHandler (ad𝑠𝑦𝑠 , ad𝑠 , ad𝑡 ,𝑚, val, gp)
(h, acts) =J VMtoVMCallDispatcher (ad𝑠𝑦𝑠 , ad𝑠 , ad𝑡 ,𝑚, val, gp) K⇒ (h, acts′ )

(_, b𝑡 , vars𝑡 , c𝑡 ) = acts(ad𝑡 ) crossVmHandlerPerm(ad𝑠𝑦𝑠 ) (non𝑠𝑦𝑠 , b′𝑠𝑦𝑠 , _, _) = acts(ad𝑠𝑦𝑠 )
acts′ := acts[ad𝑛 ↦→ (_, b𝑡 + val, vars, c𝑡 ) ; ad𝑠𝑦𝑠 ↦→ (non𝑠𝑦𝑠 + 1, b′𝑠𝑦𝑠 − val, _, _) ]

acts′′ := 𝜌 (𝑚,c𝑡 ,ad𝑠 ,ad𝑠𝑦𝑠 ) (acts
′ )

(h, acts) =J VMtoVMCallHandler (ad𝑠𝑦𝑠 , ad𝑠 , ad𝑡 ,𝑚, val, gp) K⇒ (h, acts′′ )

isFresh(𝑎) ≜ creates a fresh address a ∈ A

Fig. 8. The operational semantics of cross-space transactions. init returns the initial state of a contract
persistent variables. 𝜌 (𝑚,c𝑡 ,ad𝑠 ,ad𝑠𝑦𝑠 ) (acts𝑡 ) takes the target sub-space state acts𝑡 and executes the method𝑚
implemented in the code c𝑡 over the given state. crossVmDispatcherPerm and crossVmHandlerPerm check
whether the invoker of the cross-space operations has the correct privileges to do so. isFresh(𝑎) checks
whether an address 𝑎 already contains state data in the sub-space within which it is executing.

in the second sub-space that contains the target address ad𝑡 . This triggers the transition

VMtoVMCallHandler (ad𝑠𝑦𝑠 , ad𝑠 , ad𝑡 ,𝑚, val, gp) in the second sub-space, which calls the function

𝑚 in the contract/module associated with the address ad𝑡 in its sub-space and transfers the balance

val to ad𝑡 from ad𝑠𝑦𝑠 .
In the above opcodes, the predicates crossVmDispatcherPerm and crossVmHandlerPerm have

to be satisfied in order for the transitions to happen. Those predicates enfroce access control

for cross-VM operations, we will present them in details in Section 4.4. In a nutshell, they check

whether a given address has permission to execute a cross-VM operation.

4.3 Cross-space Transactions Packing
In Algorithm 1, we give the procedure for packing cross-space operations as one transaction

that involves updating the states of the two sub-spaces. It is executed every time a cross-

space transaction needs to be packed into a block. Each cross-space transaction consists

of invoking either VMtoVMCreateDispatcher and VMtoVMCallDispatcher which, in turn,

invokes VMtoVMCreateHandler or VMtoVMCallHandler, respectively. Thus, Algorithm 1 takes a

cross-space operation VMtoVMInstr∗ ∈ {VMtoVMCreateDispatcher, VMtoVMCallDispatcher}
that is initiating a cross-space transaction and a global state 𝜎 . It returns:

(1) Current block blk which is not yet finalized and to which the network will keep adding new

transactions until it is full,

(2) Chain of blocks BLK which contains blocks that have already been finalized and organized in

a cryptographically secure chain.
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Algorithm 1 A procedure to pack cross-space operations. On first execution, both blk and BLK
are empty.

1: procedure BlockPacking(VMtoVMInstr∗, 𝜎)
2: 𝜎 ′ ← ExInst(VMtoVMInstr, 𝜎);
3: (h, acts) ← 𝜎 ;

4: (h, acts′) ← 𝜎 ′;
5: tx← (acts, acts′);
6: blk← blk ∪ {tx};
7: if blk is full

8: BLK← BLK ∪ {blk};
9: blk← 𝜖 ;

10: h← h + 1;
11: 𝜎 ← (h, acts′);
12: return (𝜎, blk,BLK);
13: end procedure

(3) Updated global state 𝜎 after the execution of the cross-space transaction.

Algorithm 1 first executes the cross-space operation as detailed in the transition rules in Figure 8

denoted ExInst (line 2). Then, it creates a transaction to represent the states changes of each sub-

space (line 5). The created transaction is then added in the current block being packed (line 6). If

the block is full, it is then added to the chain of blocks and the block being packed is set to empty

and the block height is incremented (lines 7-10).

Native token transfer in a MoveVM-based sub-space: In contrast to an EVM-based sub-

space, in a MoveVM-based sub-space it is not possible to transfer native tokens during a contract

deployment (i.e., constructor function call) or a regular function call. Thus, a cross-space operation

from an EVM-based sub-space to a MoveVM-based sub-space actually involves three intra-space

operations. In particular, before the internal module performs the operation to deploy a contract or

call a function in the MoveVM-based sub-space, it first performs an additional operation to deposit

the native tokens amount into the specified address.

4.4 Cross-space Access Control
HEMVM has an access control mechanism to protect both the dispatcher and handler

functions of cross-space operations from malicious interactions. In particular, the dispatcher

function should authenticate that the initiator of cross-space operation is eligible to do so, i.e.,

crossVmDispatcherPerm(ad) in Figure 8. Also, the handler function should verify that it is invoked

within a cross-space operation, i.e., crossVmHandlerPerm(ad) in Figure 8. In an EVM-based

sub-space, HEMVM uses the msg.sender, an EVM built-in variable that refers to the address

of the caller, to verify the initiator of a transaction. In particular, the dispatcher function uses

msg.sender to implement an access control mechanism to limit who can perform cross-space

operations. Therefore, the implementation of the handler function can check the value of the

passed msg.sender to verify whether the invocation is legitimate or not. If the developer wants the

handler function only being called during the cross-space operations, it should limit the caller of

the handler function to only the internal contract address ad𝑠𝑦𝑠 . Thus, in an EVM-based sub-space,

we will have:

crossVmDispatcherPerm(ad) ≜ ad ∈ A𝑎𝑙𝑙𝑜𝑤𝑒𝑑 crossVmHandlerPerm(ad) ≜ ad = ad𝑠𝑦𝑠
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where A𝑎𝑙𝑙𝑜𝑤𝑒𝑑 is the set of addresses allowed to initiate cross-space transactions from EVM-based

sub-space.

On the other hand, in an MoveVM-based sub-space the msg.sender feature is not available.

In this case, HEMVM uses an approach similar to the MintCapability in Aptos Coin in the Move

language [8]. In particular, the dispatcher function uses a cross-space permission capability, i.e., a

permission to perform certain operations [13, 33], to implement an access control mechanism to

only allow the holder of the CrossSpaceCapability to call it.

1 struct CrossSpaceCapability <phantom CallType > has copy , store , drop {}

In the Move-based sub-space, we will have then:

crossVmDispatcherPerm(ad) ≜ borrow_global<CrossSpaceCapability>(signer :: address_of (ad))

where we ensure that the address ad has the CrossSpaceCapability.
For the handler function, the function must be declared as a private function (the default visibility

in Move language [8]), thus disallowing other modules within its sub-space from calling it. The

internal module ad𝑠𝑦𝑠 will bypass the function visibility and invoke the handler function since it is

integrated within the MoveVM execution engine. Thus, we do not need to do check for the handler

function in the Move-based sub-space: crossVmDispatcherPerm(ad) = True
Note that the handler function may also need to validate the address of the cross-space operation

initiator. To address this, in HEMVM the internal contract (or module) embeds the address of the

cross-space transaction sender ad𝑠 as an additional parameter in the function call transaction.

5 Implementation
We now present a prototype implementation of the HEMVM framework that supports cross-space

operations between an EVM-based space and a MoveVM-based space, called HEMVM as well.

HEMVM is implemented on top of the Aptos client [16] in Rust programming language. The

implementation of HEMVM consists of two main components: a shared database storage to hold

the states of both EVM-based and MoveVM-based spaces; and an execution engine that support

both intra-space and cross-space transactions.

5.1 HEMVM Storage
HEMVM uses one shared key-value database storage to store the states of the two spaces, while

keeping the two states logically separated within the database. The database keys correspond

to account addresses in both Ethereum and Aptos. HEMVM key-value database storage extends

AptosDB to support mapping accounts addresses in Ethereum. Note, however, that addresses in

Ethereum and Aptos have different sizes, i.e., 20 and 32 bytes, respectively. To address this, we

extend the Ethereum addresses with 12 bytes of zeros. Thus, all the keys of the shared key-value

databases are of size 32 bytes. To store or fetch the state values of the EVM-based space, we convert

them from RLP to BSC or BSC to RLP using the Encode and Decode serialization and deserialization

procedures, respectively.

Note that the probability of a collision between an Aptos address and Ethereum address is very

small. Consider the case where the EVM space contains one billion unique addresses (Ethereum

has less than 260 millions unique addresses at the end of 2023), the chance of a randomly generated

Move address colliding with any existing EVM address is 10
9/2256 ≈ 8.64 × 10

−69
. An attacker

would have to generate on average 1.16 × 1077 different addresses to deliberately cause a collision.
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5.2 HEMVM Execution Engine
HEMVM extends the Aptos execution engine to include an EVM execution engine to process

Ethereum transactions. Our implementaiton of EVM in HEMVM is based on the EVM modules

in OpenEthereum [1]. HEMVM then extends both Apots and EVM execution engines to support

cross-space transactions.

On the MoveVM side, the internal module is implemented as a native aptos_framework Move

module called cross_vm providing first-class features for executing cross-operations to EVM-based

space. It provides the following Move interface for MoveVM to EVM cross-space function call:

1 public native fun call_evm(coin , addr , function , params , cap): vector <u8 >;

where coin parameter specifies the cross-space transferred native tokens. The handler function in

the EVM-based space is uniquely identified by the tuple (addr, function), and its arguments are

specified in params. The last parameter cap refers to the capability of the caller to perform cross-

space function call. The function returns an array of bytes encoding the result of the computation

and returned data.

On the EVM side, HEMVM provides a functional interface for cross-space calls and the functions

are implemented within its execution engine. The reserved address 0x08880...06 is assigned to the

internal contract account. Thus, when a call is performed to an arbitrary address, the execution

engine checks whether this address corresponds to the reserved address of the internal contract

account. If it is, it then redirects the control flow from low-level bytecode execution to a custom

Rust module that defines the required logic. In particular, this module decodes the function call that

needs to be performed and redirects the execution to the corresponding function implementation

within the module.

The internal contract provides the following Solidity interface for EVM to MoveVM cross-space

function call:

1 function callMove(addr , module , func , data , types) external payable returns

2 (bytes memory );

where callMove takes a triplet (addr, module, func) that uniquely identifies the handler

to be invoked in the MoveVM-based space. It also accepts two additional parameters data and

types, which represent encoded function arguments and type arguments respectively. callMove is
payable function, allowing the transfer of native tokens cross-spaces. It returns an array of bytes

in order to encode arbitrary return data.

5.3 2EVM-based Implementation of HEMVM
We have also implemented the HEMVM design in Conflux [31], a high-performance blockchain

network. Conflux has a VM that is similar to Ethereum VM, i.e., ConfluxVM can execute all

EVM instructions. However, Conflux has a different transaction format and a different rule for

generating account addresses from public keys than Ethereum VM. For instance, Conflux uses

base32 format address, e.g., cfx : aa... while the EVM space uses hexadecimal checksum format

address, e.g., 0xaAD8... The new HEMVM-based Conflux system consists of two spaces; one new

space that is fully EVM-compatible, and the other space is based on the ConfluxVM and is backward

compatible with previous Conflux accounts and transactions formats. It allows a smooth porting of

Ethereum compatible decentralized applications (DApps) to Conflux network.

Similar to before, the two main implementation components of HEMVM-based Conflux system

are the storage and the execution engine. The storage component is implemented on top of the

Conflux key-value authenticated data structure storage. The keys from the two spaces (EVM and

ConfluxVM) are mapped. In particular, the storage key for an account in the EVM space corresponds
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Fig. 9. Implementation of the parallelized execution in HEMVM.

to the storage key for the account with the same address in the ConfluxVM (native) space where

we insert the byte 0x81 at position 20 (indexing starts at 0).

The new execution engine uses an internal contract account associated with a reserved address

0x08880...06 that provides the following Solidity interface for applications to perform cross-space

operations:

1 function createEVM(calldata init) external payable returns (bytes20 );

2 function transferEVM(bytes20 to) external payable returns (memory output );

3 function callEVM(bytes20 to, calldata data) external payable returns (memory output );

Since Solidity is the most popular programming language for writting DApps, the above Solidity

interface makes it easy for DApps developers to write smart contracts in Solidity that perform

cross-space operations using the set of functions declared in the interface. The new execution

engine also supports the precompiled contracts of Ethereum from address 0x00..01 to address

0x00..08.

5.4 Parallel Execution
In HEMVM, the storage for different virtual machines (VMs) is completely independent, ensuring

that intra-space transactions - those confined to a single VM - do not create race conditions

when executed in parallel. This separation allows HEMVM to significantly boost performance

by parallelizing intra-space transactions that do not involve cross-space operations. However,

transactions that span multiple VMs (i.e., cross-space transactions) can introduce race conditions,

as they involve interactions between different VMs, requiring special handling to ensure data

consistency.

To enable HEMVM to handle parallel execution intra-space transactions while ensuring safe

and correct execution of cross-space transactions, we implement a parallel version of HEMVM

using thread worker pattern. In particular, we split transactions in three differnt categories: EVM

intra-space transactions, MoveVM intra-space transactions, and cross-space transactions. Each

transaction type will have its own worker thread, illustrated in Figure 9, that will be executing only

transactions of this type. The main thread sends transactions to the corresponding worker thread,

batching similar transactions in order to reduce the communication latency. MoveVM and EVM

intra-space transactions can be executed in parallel, however, cross-space transaction worker blocks
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the execution for any other worker in order to avoid any race conditions. Once the execution of a

transaction has been finished in any of the workers, the results are sent back to the main thread.

5.5 Gas Model
The HEMVM framework is designed orthogonal from any particular gas incentive mechanism. This

is because the gas fees of transactions are blockchain specific, and they do not necessary depend

only on the cost of the operations in the transactions, but also on the nature of the blockchain and

its ecosystem. Thus, in the prototype implementation of HEMVM we did not adopt any gas model.

However, note that when designing an incentive mechanism for a HEMVM-based system of

two ledgers, one needs to carefully consider the transactions throughput of the two ledgers when

fixing the gas cap per block. For instance, fixing the gas cap in each ledger space alone without

considering the other ledger may result in undesirable behaviors. If each block of a ledger B1 can

pack 1000 transactions, and each block of another ledger B2 can only pack 500 transactions, then a

cap of 500 cross-chain transactions in B1 will be enough to fill the capacity of a single block in B2

with cross-chain transactions alone, preventing B2 from packing its own transactions. Thus, to

prevent this denial-of-service scenario either the block size of B2 needs to increase or the cap on

the cross-chain transactions in B1 needs to decrease.

In the HEMVM-based Conflux implementation multiple gas incentive mechanisms are adopted.

Specifically, the total gas limit of cross-space transactions within a block cannot exceed half of the

block gas limit. In a cross-space function call transaction, only
1

10
of the transaction gas can be used

to cover the fees of executing operations in the destination space. This is aimed to limit gas usage

and discourage users from frequently launching complex cross-space transactions.

6 Evaluation
We next evaluate the proposed heterogenous blockchain framework and our prototype system,

HEMVM. The goal of our evaluation is to answer the following questions:

(1) Is our proposed framework robust enough to support multiple VMs running end-to-end

efficiently?

(2) Is our cross-space operation design expressive enough to implement sophisticated multi-VM

smart contract interactions?

(3) Is our proposed framework general enough to support different kinds of VMs?

Benchmark Scenarios: To evaluate our prototype system, HEMVM, we consider two different

groups of workloads. The first group tests the performance of single-threaded prototype for

homogeneous workloads, and the second one considers multi-threaded prototype under mixed

workloads.

For the first group of workloads, we consider seven different benchmark scenarios: native coin

transfer in EVM, ERC20 coin transfer in EVM, native coin transfer in MoveVM, custom coin transfer

in MoveVM, interaction with PancakeSwap in MoveVM (i.e., our example in Section 3), interaction

with UniswapV2 [23] in EVM, and interaction with a simplified version of CompoundV2 [29] in

EVM. UniswapV2 and PancakeSwap are two popular decentralized trading protocols based on

automatic market making. CompoundV2 is a popular decentralized lending protocol that allows

users to borrow digital assets using other assets as collateral.

To estimate the overhead of using the HEMVM on an existing blockchain, we also run native

coin, custom coin and AMM swap benchmarks on a forked Aptos client that has no HEMVM

modifications. To evaluate the capability of our proposed framework to support different kinds

of VMs, we also implemented HEMVM in Conflux [31], a production blockchain system with

two EVM-like VMs. One of the VM is fully compatible to EVM and another is based on EVM but
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Base VM Intra-space Cross-space

Aptos Native Move 4952 N/A

Aptos Custom Move 4784 N/A

Aptos PancakeSwap Move 1220 N/A

HEMVM Native Move 4784 4770

HEMVM Custom Move 4581 1100

HEMVM Native EVM 17552 2152

HEMVM ERC20 EVM 7036 1368

HEMVM PancakeSwap Move 1219 355

HEMVM UniswapV2 EVM 1025 320

HEMVM CompoundV2 EVM 1019 358

Conflux Native EVM 9363 9337

Conflux ERC20 EVM 9285 5491

Table 1. Performance results of homogeneous benchmark scenarios for sequential prototoype (100K transac-
tions, fixed sender and receiver). We count each cross-space transaction as one transaction.

modified the transaction format to support a different incentive mechanism. We evaluate the native

and ERC20 coin transfer scenarios between these two EVM-like VMs.

Second workload group evaluates the performance increase of parallelized HEMVM vesrion

compared to the sequential one under the mixed transaction workloads. We focus on native coin

transfers, custom coin transfers, and on decentralized trading protocols, however, we create different

variations of the workloads with and without cross-space transactions to test the limits of the

prototype.

Experimental Methodology: For each benchmark scenario that involves cross-space transactions,

we deploy corresponding proxy contracts. We generate 100K transactions with fixed sender and

fixed receiver for the sequential group of workloads (Table 1), and generate 500K transactions with

random senders and receivers for parallelized prototype (Table 2) with a pool of 12.5K accounts for

each of the spaces (25K accounts in total). We then send the generated transactions into HEMVM

and measure the end-to-end transaction processing throughput. For Table 1, we run each scenario

twice, one from the same VM space and one from the other VM space via cross-space operations. For

Table 2, we run each scenario in a parallelized prototype and in a sequential prototype to compare

their performance. To avoid potential performance bottlenecks introduced by the consensus layer or

the transaction pool, we run our experiments with a single node blockchain that has the transaction

pool removed, which allows to immediately pack and execute received transactions. All experiments

have been run on a machine with AMD Ryzen Threadripper PRO 5945WX 12-Cores CPU and 32GB

RAM.

In the end, in order to understand how cross-space operations enable implementation of sophisti-

cated smart contract interactions, we also present case studies for the UniswapV2 and CompoundV2

scenarios.

6.1 Experimental results
Sequential Prototype: Table 1 presents our experimental resutls for the sequential prototypes.

Each row of the table corresponds to the result of one benchmark scenario. The first column shows

the name of each scenario. The second column shows the base VM type of the benchmark contract

or the token. The third column shows the resulting transaction per second (TPS) measurement when

we run a corresponding scenario inside one VM space. The fourth column shows the result TPS

when we run the corresponding scenario with our cross-space opeations, e.g., the PancakeSwap
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Experiment payload Par. TPS Seq. TPS Diff. (%)

Native (80% ETH, 20% Aptos Native) 8560 7460 14.7%

Native (70% ETH, 20% Aptos Native, 5+5% ETH + Aptos Native Cross) 5912 6051 -2.3%

Coin (60% ERC20, 40% MoveCoin) 4979 4127 19.4%

Coin (55% ERC20, 35% MoveCoin, 5+5% ERC20 + MoveCoin Cross) 3347 3143 6.4%

PancakeSwap (15% Native AMM, 15% MoveCoin, 70% ERC20) 3547 2986 18.7%

PancakeSwap (15+10% Native+Cross AMM, 15% MoveCoin, 60% ERC20) 1559 1531 1.8%

Uniswap (20% Native AMM, 30% ERC20, 50% MoveCoin) 2958 2343 26.2%

Uniswap (20+10% Native+Cross AMM, 30% ERC20, 40% MoveCoin) 1510 1421 6.2%

DeFi(45% Native Uni, 55% Native Pancake) 1457 1006 44.8%

DeFi(45+5% Native+Cross Uni, 45+5% Native+Cross Pancake) 968 830 16.6%

Table 2. Performance results of non-homogenous benchmark scenarios for parallelized prototype (500K
transactions, random accounts). We count each cross-space transaction as one transaction.

contract is deployed in the Move space and we send EVM transactions via proxy contracts to

interact with it.

Our results show that the HEMVM client demonstrates high performance. When running only

intra-space transactions, HEMVM achieved 4784 TPS for native Move coin transfers, 4581 TPS for

custom coin transfers and 1219 TPS for PancakeSwap transactions. For comparison, the native Aptos

blockchain can achieve 4925, 4784 and 1220 TPS for native coin transfers, Move coin transfers and

PancakeSwap transactions, respectively. Therefore, the overhead of integrating additional VM is

less than 4.4 %. Furthermore, our proposed framework achieves 17552 TPS for native EVM transfers,

7036 for ERC20 token transfers, and 1019-1219 TPS for complicated DeFi transactions. HEMVM

client demonstrates fast intra-space performance due to the fact that the proposed framework only

adds new opcodes without changing existing virtual machine designs.

Our results also show that the performance of cross-chain operations is acceptable. Because each

cross-space transaction involves multiple calls via proxy contracts, it will be significantly more

complicated than the original intra-space transaction. Nevertheless, HEMVM achieves more than

1100 TPS for cross-space transfers and more than 300 TPS for cross-space DeFi smart contract

transactions.

Our results further show the proposed framework can be adopted for different kinds of VMs.

In fact, the cross-space transactions between two EVM-like spaces in the production blockchain

system are faster than the cross-space transactions in HEMVM. This is because the two virtual

machines are similar and, therefore, the cost of switching the execution environment is smaller

comparing to crossing between the EVM and Move spaces.

Parallelized Prototype: We now present the results for the parallelized version of HEMVM.

Table 2 summarizes the transaction per second (TPS) performance across different workloads. The

first column lists the workload composition, while the second and third columns provide the TPS

measurements for the parallelized and sequential prototypes, respectively. The fourth column

shows the percentage change in performance when comparing the two versions.

Our results show that parallelization significantly enhances transaction throughput in HEMVM,

especially for workloads involving complex transactions. In particular, the decentralized finance

(DeFi) trading workload, which includes Uniswap and PancakeSwap transactions, saw a 44.8%

improvement in performance. This improvement is largely due to the fact that complex transactions

are more constrained by the VM execution layer, where parallelization has the most impact. The

degree of performance improvement, however, varies depending on the ratio of cross-space trans-

actions within the workload. While cross-space transactions cannot be parallelized alongside other
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1 function swapExactTokensForTokens(
2 uint amountIn, uint amountOutMin,
3 address[] calldata path, address to,
4 uint deadline
5 ) returns (uint[] amounts) { ... }

Fig. 10. Interface of UniswapV2 swapTokensForTokens().

transactions in the current prototype, HEMVM still achieved a 6.2%-16.6% throughput improvement

in three out of five scenarios, even when 10% of the transactions involved cross-space operations.

6.2 Case Study
We next present case studies on the UniswapV2 and CompoundV2 scenarios to illustrate how

HEMVMenables sophisticated cross-VM smart contract interactions. Note that we already presented

how HEMVM operates with PancakeSwap in Section 3.2 in detail.

UniswapV2: UniswapV2 [23] is a popular decentralized trading protocol using automated market

making mechanisms similar to PancakeSwap [36]. The smart contract of UniswapV2 is based on

EVM. In our experiments, HEMVM successfully enabled users to use Aptos wallets, which only

operates with the Move interface, to trade with UniswapV2 via cross-space operations in HEMVM.

Figure 10 shows the code snippet of the UniswapV2 interface for the swap operation. The first

parameter amountIn of swapExactTokenForTokens() denotes the amount of input tokens the

user plans to trade. The second parameter amountOutMin denotes the minimum amount of output

tokens the user must obtain or the trade will abort. The third parameter path is an array of token

addresses denoting the trading path. For simple trade between two tokens, the array will contain

two token addresses, the first being the input token address and the second being the output token

address. The fourth parameter to denotes the address that will receive the obtained token and the

last parameter deadline denotes the time limit of this trade.

Similar to the example in Section 3, HEMVM enables this cross-space transaction in three steps.

HEMVM first moves neccessary assets from the Move space to the EVM space via a pair of proxy

1 public entry fun swap_exact_tokens_for_tokens<X, Y>(
2 account: &signer, amount_in: u64,
3 amount_out_min: u64, deadline: u64,
4 cross_uniswap_wrapper_eth_address: vector<u8>) ... {
5 ...
6 let encoded_amount_in = bcs::to_bytes(&amount_in);
7 let encoded_amount_out_min = bcs::to_bytes(
8 &amount_out_min);
9 let encoded_deadline = bcs::to_bytes(&deadline);
10 let handler = cross_uniswap_wrapper_eth_address;
11 let funcName = b"handleSwapExactTokensForTokens";
12 let call_cap = &borrow_global<CapStore>(
13 @coin_wrapper).call_cap;
14 let params: vector<vector<u8>> = vector[
15 raw_type<X>(), raw_type<Y>(),
16 encoded_amount_in, encoded_amount_out_min,
17 encoded_deadline];
18 cross_vm::call_evm(
19 option::none(), handler, string::utf8(funcName),
20 params, call_cap
21 ); ... }
22 function handleSwapExactTokensForTokens(
23 string caller, bytes[] data) public ... {
24 ...; router.swapExactTokensForTokens(...); ...
25 }

Fig. 11. Cross-space call from Move sub-space to EVM sub-space
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Fig. 12. Cross-space collateral deposit using simplified CompoundV2 protocol.

contracts. HEMVM then invokes the UniswapV2 swap function via a cross-space call. In the last

step, HEMVM withdraws the obtained tokens back to the Move space via another pair of proxy

contracts. The high level control flow diagram is similar to Figure 3 but in the reverse direction

(i.e., crossing from the Move space to the EVM space).

Figure 11 presents the code snippet of the main proxy contract in the Move space which the

Aptos wallet interacts with. Function swap_exact_tokens_for_token() encodes cross-space call

parameters at lines 8-21 and eventually initiates a cross-space call at line 22. This cross-space

call execution will start at the handler defined in a contract in the EVM side shown as line 26 in

Figure 11, which in turn calls the UniswapV2 swap function at line 29.

HEMVM provides the cross-space call functionality via cross_vm::call_evm() built-in func-

tions, where cross_vm is the internal contract address alias in HEMVM that clusters all cross-space

builtin functions. The first parameter denotes the amount of native coin transfers of this cross-call,

which is none in this case. The second and the third parameters denote the contract and the handler

function to invoke. The fourth parameter contains the encoded parameters of this cross-call. The

last parameter enables the access control for the handler functions.

CompoundV2: CompoundV2 is a popular decentralized digital asset lending protocol for EVM [29].

Users can deposit digital assets into the protocol vault and then lend out other kinds of digital assets

using the deposited assets as collateral. To maintain the solvency of the protocol, CompoundV2

makes sure that the total value of the collateral assets is greater than the total value of the borrowed

assets by a margin for each user. If a user violates this constraint, their position will be closed by

CompoundV2 and his collateral will be sold at other markets such as Uniswap to pay back his loans.

With the cross-space operations, HEMVM successfully enables users to use the Aptos wallet

to interact with a simplified version of CompoundV2 deployed in the EVM space. There are two

cases for this simplified CompoundV2 protocol: depositing assets and borrowing assets. Figure 12

presents the high level control flow diagram for the deposit case. In the deposit case, HEMVM

first uses a pair of proxy contracts to enable the movement of assets from the Move space to the

EVM space, shown as steps 2-7 in Figure 12. HEMVM then calls the CompoundV2 via the main

EVM proxy contract to supply the deposit, shown as steps 8-11 in Figure 12. The borrow case is

symmetric to the lending case. HEMVM first calls the CompoundV2 via a handler in the main EVM

proxy contract to borrow assets. HEMVM then moves the borrowed assets from the EVM space

back to the Move space.

Note that the above pattern can work with unmodified CompoundV2 contract code. The main

proxy contract in the EVM space will maintain the position in CompoundV2 instead of the user.

From the point of view of CompoundV2, it is the proxy contract in EVMwhich deposits and borrows
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assets. It does not need to be aware of any cross-space interactions. To avoid mixing positions of

different users, we will need to deploy one proxy contract in EVM for each cross-space user from

Move. This may incur additional gas cost, but we can make this cost very small by reducing the

size of the proxy contract using delegate calls.

7 Related work
Cross-chain Interoperability: The emergence of numerous blockchains has highlighted the

critical need for cross-chain interoperability techniques. Belchior et al. provide a comprehensive

survey of existing solutions in this domain [7]. Atomic swap techniques, which utilize hashed time

locks, facilitate the exchange of digital assets between different blockchains, ensuring transaction

atomicity [6, 24, 39, 47]. Additionally, lock-and-mint bridges offer another method for transferring

assets, where a bridge locks assets in a smart contract on one blockchain and then mints equivalent

tokens on another [28, 30]. These bridges can be either centrallymanaged or fully decentralized, with

the latter often incurring high gas costs due to the need to verify blockchain consensus protocols.

Innovative solutions such as ZKBridge [45] use zero-knowledge proofs to batch verifications and

reduce these costs.

While cross-chain interoperability and its security are a key concern in the blockchain space [4,

12, 25, 32, 35, 42, 46], HEMVM addresses a distinct challenge. Its aim is not to facilitate interaction

between different blockchains, but rather to create a single blockchain that hosts multiple virtual

machines. Traditional cross-chain methods primarily focus on asset transfer across chains [40].

However, they fall short in solving user experience fragmentation due to the introduction of

new virtual machines. For example, a cross-chain bridge connecting EVM and Move blockchains

would still require users to have separate wallets for each which may create vulnerabilities [4], a

complexity that HEMVM seeks to eliminate.

Blockchain with Subchains: Polkadot [44], Cosmos [26], and Avalanche [27] have proposed

creating a hierarchical multi-blockchain ecosystem consisting of a central hub blockchain and

multiple subchains. This structure allows the hub to verify subchain states and facilitate their

interaction. Although each subchain could theoretically support different VMs, this hierarchical

approach has inherent limitations. For instance, even if the hub enables cross-chain transactions

across subchains, these transactions are less secure and slower compared to HEMVM’s cross-space

transactions, as they depend on the integrity of all involved subchains and incur the latency of

multiple blockchains.

8 Conclusion and Future Directions
The emergence of diverse virtual machine designs has led to an increasingly fragmented blockchain

ecosystem. This paper introduces a novel heterogenous blockchain framework designed to coun-

teract this fragmentation by integrating multiple virtual machines within a single blockchain.

This integration is pivotal, as it allows users and developers to engage with the blockchain using

their preferred interfaces and virtual machines, bridging gaps between different virtual machine

technologies. Our comprehensive evaluation not only underscores the efficiency and practicality

of our framework but also demonstrates the expressiveness of our cross-space operation design

in enabling the implementation of sophisticated functionalities found in popular smart contracts.

Our proposed heterogeneous blockchain framework streamlines user interaction and lays the

groundwork for continued innovation in blockchain technology.

Although the blockchain ecosystem remains fragmented, and this work only begins to explore the

space of cross-VM interoperability, we hope that it also motivates future research at the intersection

of blockchain interoperability and programming language design. In particular, we identify two

promising directions for further exploration.
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First, this work could be extended by developing cross-VM debugging and developer tooling to

streamline the development of multi-VM DeFi protocols. Given that these protocols span heteroge-

neous execution environments, developers currently lack unified tools for inspecting, tracing, or

debugging interactions that cross VM boundaries. A practical extension would involve building

language-agnostic debuggers, trace visualizers, or state diffing tools that can operate across VMs

while abstracting away low-level incompatibilities. Such tools would further lower the barrier to

multi-VM development and reduce the likelihood of subtle cross-context bugs. Next, one could

envision generalizing the current approach to support interoperability across more than two virtual

machines. While this presents new challenges - including increased complexity and the need to

balance performance, security, and expressiveness - it also holds the potential to unify currently

fragmented virtual machine ecosystems. Such unification could dramatically improve the developer

experience by enabling seamless application development across multiple blockchains.

9 Data Availability
We plan to publicly release the source code of HEMVM and the experimental data as part of

the paper’s artifact. Upon acceptance of the paper, we will submit the artifact for evaluation. A

preliminary anonymized version of the artifact is currently available at [3].
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