
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009 1597

Automated Design Debugging With
Abstraction and Refinement

Sean Safarpour, Student Member, IEEE, and Andreas Veneris, Senior Member, IEEE

Abstract—Design debugging is one of the major remaining man-
ual processes in the semiconductor design cycle. Despite recent
advances in the area of automated design debugging, more effort
is required to cope with the size and complexity of today’s designs.
This paper introduces an abstraction and refinement methodology
to enable current debuggers to operate on designs that are orders
of magnitude larger than otherwise possible. Two abstraction
techniques are developed with the goals of improving debugger
performance for different circuit structures: State abstraction is
aimed at reducing the problem size for circuits consisting purely
of primitive gates, while function abstraction focuses on designs
that also contain modular and hierarchical information. In both
methods, after an initial abstracted model is created, the problem
can be solved by an existing automated debugger. If an error
site is abstracted, refinement is necessary to reintroduce some
of the abstracted components back into the design. This paper
also presents the underlying theory to guarantee correctness and
completeness of a debugging tool that operates using the proposed
methodology. Empirical results demonstrate improvements in run
time and memory capacity of two orders of magnitude over a
state-of-the-art debugger on a wide range of benchmark and
industrial designs.

Index Terms—Abstraction, debugging, diagnosis, refinement,
verification, very large scale integration.

I. INTRODUCTION

THE RELENTLESS consumer demand for devices with
complex functionality and superior performance contin-

ues to drive the fast growth of the semiconductor industry. As
design size gets larger, verification costs also increase signifi-
cantly. This dramatic increase is confirmed by the number of
verification engineers that has quadrupled in a typical chip de-
sign team over the last decade [1]. Despite all efforts, detecting
errors remains a challenging process as design blocks become
larger and the communication between them becomes more
elaborate. Once an erroneous behavior is observed, locating the
error source is an arduous task in itself since few automated
debugging solutions exist to assist the engineers.

Motivated by these needs, functional verification has re-
ceived much attention from both the academic and industrial
communities. An abundance of methodologies have been de-

Manuscript received June 30, 2008; revised January 13, 2009 and
June 18, 2009. Current version published September 18, 2009. This paper was
recommended by Associate Editor W. Kunz.

S. Safarpour is with Vennsa Technologies, Inc., Toronto, ON M5V 3B1,
Canada (e-mail: sean@vennsa.com).

A. Veneris is with the Department of Electrical and Computer Engineering
and the Department of Computer Science, University of Toronto, Toronto,
ON M5S 3G4, Canada (e-mail: veneris@eecg.toronto.edu).

Digital Object Identifier 10.1109/TCAD.2009.2030593

veloped over the past two decades to tackle this challenge. For
example, equivalence and property checkers help discover the
presence of errors [2], assertion-based verification methodolo-
gies and functional coverage tools target functional corner cases
[3], and powerful engines such as binary decision diagrams
(BDDs), Boolean satisfiability (SAT), and quantified Boolean
formula SAT (QBF) solvers extend the capability and applica-
bility of existing computer-aided-design (CAD) verification
tools [4]–[7].

These advances target almost exclusively one aspect of
verification—that of identifying the presence of errors. Rela-
tively little attention is paid to the task of automating debug-
ging after verification fails. In our context, debugging is the
process of locating the source of failure, with the correction task
being left to the engineer. Today, debugging is predominantly
performed manually due to the scarcity of automated tools.
The process is comprised of manually collecting information
from the failed simulation trace (counterexample) and man-
ually backtracing from the erroneous signals using “what-if”
analysis. This is repeated until the error source is identified.
As typical design block sizes today exceed the half-million-
synthesized-gates mark and traces range from a few hundreds
to a few thousands of clock cycles, it is obvious that scalable
automated techniques have become an urgent necessity to
alleviate the manual debugging pain and improve the design
flow [1].

Traditionally, debugging tools have relied on fault-diagnosis
algorithms based on simulation, path tracing, and BDDs [8],
[9]. More recently, a new genre of automated debugging
methodologies has gained a competitive advantage. These tech-
niques formulate the debugging problem into a SAT instance
where a conventional SAT solver can be utilized. Experiments
have shown that SAT-based techniques outperform traditional
techniques in register transfer level (RTL) debugging [10]–[12].
Parallel to these developments, the use of design hierarchy has
helped increase the applicability of existing debugging tools
[7]. Despite these significant contributions, automated debug-
ging techniques still find it challenging to cope with today’s
increasing design size and problem complexity.

Broadly speaking, there are two factors that impact the
effectiveness of automated debugging. The first factor is the
design size that impacts the solution space. As the gate count
increases, the number of suspect error locations that need to be
examined also increases, which can dramatically slow down a
debugger’s performance [10], [12]. Second, the length of the
error trace, i.e., the number of clock cycles from the beginning
of simulation until the design fails, increases the solution space

0278-0070/$26.00 © 2009 IEEE

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

1598 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

that one must examine. Modern debugging solutions must cope
with the complexity introduced by these factors to remain
practical.

This paper aims to bridge the gap between current debugging
capabilities and contemporary industrial needs. It does so by
introducing the concepts of abstraction and refinement in auto-
mated debugging. In recent years, similar techniques have had
a dramatic impact in the scalability and applicability of modern
verification methodologies [13]–[15]. Essentially, they simplify
the problem by approximating it and iteratively refining it until
a solution is found.

In detail, we present the first abstraction and refinement
methodology aimed specifically at the automated debugging
problem. The proposed methodology starts by creating an
initial abstraction model by “simplifying” or removing com-
ponents of the design. The more components are abstracted, the
smaller the problem size becomes, providing a tradeoff between
performance and resolution. Next, a conventional debugger is
employed to return error locations. If it fails to find any loca-
tions due to the level of abstraction, refinement is performed. In
essence, refinement systematically reintroduces the abstracted
components until the error source is located.

This pairing sequence of debugging and refinement steps
is iterated until all solutions are found. A set of theorems,
presented in this paper, guarantee the correctness and com-
pleteness of this iterative approach. It should be noted that
the proposed methodology is not tied to any particular debug-
ging practice. Although the presentation here is conveniently
outlined in terms of a SAT-based framework, other diagnosis
methodologies (simulation and BDD based) can benefit from
the theory developed here as well.

In further detail, this paper introduces a novel abstrac-
tion and refinement debugging methodology with the follow-
ing two abstraction techniques aimed at different debugging
applications.

1) State abstraction: Aimed at flat netlists, abstraction is
carried on state and memory elements to reduce the
spatial and temporal problem sizes [16].

2) Function abstraction: Leveraging the modular and hierar-
chical structures of RTL designs, abstraction is performed
on functions and modules iteratively in the design hierar-
chy to reduce the computational requirements.

Extensive experiments on large sequential industrial prob-
lems demonstrate memory and run-time reductions of 60%
and 4.5× using state abstraction, respectively. With function
abstraction, a drastic memory reduction of over 27× and run-
time reductions of over two orders of magnitude are observed.
This paper clearly demonstrates that abstraction and refinement
have a critical impact on the performance of debugging.

This paper is organized as follows. In the next section,
notation and background material will be presented. Section III
presents the general abstraction and refinement methodology
and guarantees its correctness and completeness. Sections IV
and V present the details of state- and function-based abstrac-
tion techniques, respectively. Empirical results are presented in
Section VI, and conclusion and future work are discussed in
Section VII.

II. PRELIMINARIES

At the RTL level, a circuit C (combinational or sequential)
can be hierarchically composed of modules or functions. In
this paper, a function is said to generate a Boolean value for
a variable y based on m input variables x1, x2, . . . , xm and
zero or more state variables. For abstraction and refinement,
we are primarily concerned with the structural connectivity
between the input variables and the variable y of a function.
As a result, we label the function of y as f(x1, x2, . . . , xm) and
omit its dependence on any state variables. The terms modules,
components, and functions are used interchangeably to refer
to entities implementing functions, as defined previously. For
example, a Verilog function or a collection of logic gates and
flip-flops can define a module. Each module implements
a multi-output function F = {f1(X), f2(X), . . . , fp(X)},
where each single-output function fi is defined on input vari-
ables X = {x1, x2, . . . , xq}. In the remaining paper, single-
and multiple-output functions are not distinguished, unless
explicitly stated otherwise.

Modules can also contain submodules, thus resulting in
a hierarchy tree H for the design [7]. A hierarchy tree H
contains nodes representing modules and edges representing
parent and child (submodule) relationships. The hierarchy tree
H can contain many levels, and each function is tagged with a
superscript that indicates its level and a subscript to uniquely
label the function. For example, a function F i

j is at level i of the
tree, and it can have subfunctions F i+1

k and F i+1
l at the next

level i + 1. The output of the entire design C is represented
by F 0

1 at root level 0. This terminology is used extensively in
Section V when introducing hierarchical abstraction.

A. Debugging Background

This paper is concerned with functional design debugging,
while other types of failures, such as timing and power, are
not examined. Furthermore, debugging of test benches or de-
sign specifications is outside the scope of this paper. When a
failure occurs, functional verification tools such as simulators
and property checkers provide traces or counterexamples to
reproduce the failure. Although there can be many errors in a
design, verification engineers typically focus on a single failure
at a time (i.e., the first occurrence of an error at a single
observation point). This is because test benches and formal
engines generate traces that target a specific functionality or
property of the design. Dealing with one failure at a time
reduces the probability of multiple errors interacting and often
allows the engineer to isolate different error sources.

In this paper, a diagnosis vector v is a composed of three sets.
One set contains the sequence of primary input logic values
needed to simulate the failure. The second set contains the
initial state values for all state elements. The third set contains
the sequence of correct (reference) values at the observable
signals, given the primary input-value sequence. When given
multiple diagnosis vectors, the resulting set is labeled as V . An
important assumption is that the reference golden model acts as
a “black box” to the algorithm. In other words, it can only be
simulated to provide the correct output values for the vectors

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

SAFARPOUR AND VENERIS: AUTOMATED DESIGN DEBUGGING WITH ABSTRACTION AND REFINEMENT 1599

V . For instance, the golden reference can be written in some
high-level language (C/C++, Matlab, etc.), and when contrasted
to the RTL, usually expressed in some different hardware
description language (HDL) such as Verilog or VHDL, it can
provide no structural similarity.

Given an erroneous design C with a corresponding set of
diagnosis vectors V that detect a failure, automated design
debugging is a process that returns suspect components in the
design. We say that a component with output function f is
a suspect if and only if there exists a new function g that
can replace f and remove the failure for the set of diagnosis
vectors V . Similar to fault equivalence, error suspects can be
functionally equivalent under V if they cannot be functionally
distinguished from one another [8]. Intuitively, functions cannot
be distinguished if they produce the same output values, given
the same input vectors. In general, when more vectors are
available, fewer equivalent suspects exist, leading to a better
resolution/accuracy. For a debugging methodology to remain
complete and return the actual error site, all equivalent error
locations must be returned by the tool.

It has been shown that the complexity of the debugging
problem increases exponentially with respect to the number
of errors sought or error cardinality N . In this paper, a user-
defined number maxN denotes the maximum number of errors
that the debugger is limited to find. If maxN is smaller than
the actual number of errors, then not all error locations can be
found by the debugger. During operation, a debugger begins
with N = 1 and increases N until maxN is reached.

B. SAT-Based Debugging

The first SAT-based debugging formulation is introduced in
[10], and it is enhanced to tackle hierarchical design problems
in [7]. Another work formulates the problem as a QBF instance
where universal quantifiers reduce the memory footprint [7],
[17]. Techniques using maximum satisfiability (Max-SAT) and
UNSAT core analyses [11], [18] are most effective as quick
preprocessing screening steps to drastically reduce the number
of components to consider during debugging.

In SAT-based debugging, the problem is represented as a
Boolean SAT instance where any SAT solver can be utilized
to return solutions corresponding to error locations. The basic
idea is to introduce extra hardware to constrain the problem.
The four central steps in this process are as follows [10].

1) Add extra logic to the erroneous circuit C to model po-
tential error suspects and represent the error cardinality.

2) Convert it into conjunctive normal form (CNF).
3) Replicate and constrain the CNF for every failing vector

sequence in v ∈ V and for every time frame of v.
4) The final CNF is given to any SAT solver to find the error

suspects for vectors V .
We now explain these four steps in terms of a combinational

circuit since they are relevant to work here. In the following,
we do not distinguish between circuit elements and their corre-
sponding CNF variables. The interested reader should refer to
[7], [10], and [17] for more details.

A correction model, represented by a multiplexer mi, is
added at the output of every gate (or module) li and input

Fig. 1. Circuit before and after adding correction models.

of the circuit C, as shown in Fig. 1. The output of each
multiplexer mi is connected to the original fan-out of li. In
effect, when the select line si of mi is inactive (si = 0), the
original gate li is connected to mi; otherwise (when si = 1), a
new unconstrained primary input wi is introduced. Eventually,
the CNF variable corresponding to wi will assume a value that
corrects the circuit for a single input vector v if li is a suspect. In
practice, correction models are only applied to gates/modules
that are suspicious via cone-of-influence [2], Max-SAT [11],
UNSAT core [18], or hierarchical [7] preprocessing to improve
performance while searching for solutions.

The SAT solver can assign any value {0, 1} to the si and
wi variables such that the CNF satisfies the constraints applied
by each diagnosis vector v. These constraints are unit clauses
corresponding to the Boolean values encapsulated in v. To
constrain the SAT problem to a particular error cardinality N ,
further logic is added to activate at most N select lines. Thus,
for N = 1, a single si can be set to logic 1 at the time, which,
in turn, indicates that li is an error suspect. For higher values
of N , the number of multiplexer select lines set to logic 1
indicates an N -tuple error suspect. An all-solution SAT solver
can be implemented to return all equivalent error suspects, as
described in [10]. Iterations of all-solution problems can be
formulated from N = 1 to N = maxN to locate all possible
errors with at most cardinality maxN .

C. Abstraction and Refinement in Model Checking

Abstraction and refinement techniques are used readily in
model checking to mitigate the exponential nature of the un-
derlying state space [13]–[15], [19]. Roughly speaking, an
abstract model is derived by removing state elements or other
components from the original concrete design. As an active
area of research, many different types of abstraction techniques
exist, such as existential abstraction and predicate abstraction
[20]–[22]. Irrespective of the abstraction approach, the final
abstract model contains fewer circuit elements than the original
one, thus simplifying the task of the model checker.

Depending on the properties being verified and the ab-
straction technique used, the model checking result may or
may not be trusted. For example, consider the scenario when
verifying a universal property (whether the property holds for
all paths) using an existential-abstraction technique [23]. If
model checking determines that a property holds in the abstract
model, then it must also hold in the concrete design [23].
However, if a property does not hold in the abstract model,
then the corresponding counterexample must be validated in

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

1600 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 2. Circuit before and after abstracting flip-flop q1.

the concrete design. If the counterexample does not expose a
failure of the property in the concrete design, then it is said to
be spurious [21]. In this case, the abstract model is refined by
reverting some of the abstracted components and continuing the
model-checking process.

III. DEBUGGING WITH ABSTRACTION AND REFINEMENT

The aim of abstraction-based debugging is to reduce the size
and complexity of the underlying problem. Since the perfor-
mance of a debugger and its memory requirements are directly
related to the size of the circuit under analysis, abstraction can
introduce considerable run-time and memory benefits. This sec-
tion introduces the basics of a complete and sound debugging
methodology using abstraction and refinement.

An abstract model C ′ is derived by removing a set
of components or functions Abs from a concrete model
C. More precisely, as shown hereinafter, the procedure
selAbsComponents selects a set of functions to abstract, while
the procedure absDesign removes these from design C

Abs = selAbsComponents(C)

C ′ = absDesign(Abs,C).

When the components Abs are removed, some of the cir-
cuitry in their transitive fan-in may be left dangling (i.e., unused
by any other logic). An iterative dangling logic removal pro-
cedure can eliminate all gates, wires, and other state elements
unused by the abstracted components [24]. The resulting model
C ′ can be significantly smaller than C. For instance, if Abs
includes all primary outputs of a circuit, the entire circuit can
be essentially removed. The degree of abstraction to perform is
addressed through the experiments of Section VI.

After removing the components Abs, their direct fan-outs,
which are now undriven, are connected to newly introduced
primary inputs. Specifically, for every function fi ∈ Abs, a new
primary input is introduced in C ′ and connected to the fan-out
of fi. As an example, consider Fig. 2(a) and (b), where a circuit
is shown before and after abstraction, respectively. In this case,
the component to abstract is Abs = {q1}. Notice that q1 and its
transitive fan-in logic, l6, and x3 are removed in Fig. 2(b) and
that the fanout of q1 (i.e. l2) is now driven by the new primary
input x5.

Fig. 3. Demonstrating the effect of unconstrained inputs on the abstract
circuit.

A. Guaranteeing Correctness

Once the abstract model C ′ is generated, the next step
is to construct the debugging problem. The first attempt is
to formulate the problem according to Section II-B with the
abstract model C ′ and the error trace V . However, the abstract
model C ′ contains the newly added primary inputs, which
remain unconstrained in V . As a result, a SAT-based debugging
engine may arbitrarily assign unjustifiable logic values to these
variables while solving the debugging problem.

Definition 1: Assume that Φ(Φ′) corresponds to a SAT-
based debugging problem derived from a concrete design C
(abstract design C ′). A value assignment to the variables of Φ′

is unjustifiable if the same assignment to Φ gives a conflict.
Here, a conflict occurs when there is an attempt to assign

different values from the Boolean domain to the same variable.
Consequently, the solutions returned by a debugger in this
formulation cannot be trusted because it may be incorrect. The
following example illustrates this particular scenario.

Example 1: Fig. 3(a) shows a concrete design with an error
on gate l1. Regardless of the error type, the correct/erroneous
logic values 1/0, shown in bold, propagate from gate l1 through
flip-flop q1 and to primary output y1. Notice that the primary
input values remain constant in both time frames. When the
state element q1 is abstracted and left unconstrained, the SAT
solver can assign this new input x5 to a value 1, which will
produce the correct/erroneous value pair 1/1, as shown in
Fig. 3(b). Here, the value assignment of x5 = 1 is unjustifiable
because, in the concrete design of Fig. 3(a), the corresponding
assignment to q1 is 0.

One way to prohibit unjustifiable solutions from occurring is
to constrain the newly added primary inputs to the values of the
Abs components in design C, as proposed by Theorem 1.

Theorem 1: Given a circuit C, an input vector sequence from
v, the set Q contains the simulation values of the output of
components Abs for all clock cycles in v. A debugging problem
formulated with abstract model C ′ and v′ = v ∪ Q will not have
any unjustifiable assignments.

Proof: This proof is based on the fact that the abstract
model can be restricted sequentially to behave like the concrete
model. For every clock cycle, the fan-out logic of every Abs
component in C is driven by circuit elements whose Boolean

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

SAFARPOUR AND VENERIS: AUTOMATED DESIGN DEBUGGING WITH ABSTRACTION AND REFINEMENT 1601

values are stored in Q. Similarly, the Boolean values in Q
are used to drive the new primary inputs in C ′ for every
clock cycle. Since the fan-out logic of every Abs component
in C ′ is constrained to the same values as in C, unjustifiable
assignments will not occur. �

By Theorem 1, correctness is guaranteed since all solutions
for the abstract model correspond to solutions for the concrete
design. Next, the proposed methodology is extended to find
suspects that may be accidentally abstracted.

B. Spurious Solutions

Since abstraction may remove large sections of a design, it is
possible that error sources are accidentally removed. This case
will be identified, as automated debuggers will return the new
primary input suspects as spurious solutions.

Definition 2: Spurious solutions are primary input suspects
returned by an automated debugger that correspond to the
abstracted components.

Spurious solutions do not provide enough information about
the error source to help rectify the erroneous concrete design.
In other words, these spurious solutions mask equivalent error
locations. To find the error locations in the concrete design,
the abstracted variables and their respective removed fan-in
logic must be analyzed. One way is to refine the design based
on the spurious solutions and iterate the debugging process.
Refinement is achieved by reintroducing the original circuitry,
including the removed fan-in logic, corresponding to the spuri-
ous solutions into the design C ′.

Example 2: Consider the circuit in Fig. 3(a) after abstracting
q1, where a debugger finds l2, l1, and x5 as suspects with
N = 1. Here, location l6, which is the error source in the
concrete design, is abstracted. In this case, the spurious solu-
tion x5 masks the error source l6. Refinement is necessary to
reintroduce l6 into C ′, thus allowing the debugger to find l6 in
the next iteration.

Traditionally, complete solutions that return all equivalent
solutions are important in debugging [10] since they offer more
degrees of flexibility for the designer to correct the design or
optimize it, if a debugging-based rewiring algorithm is used
[25]. To find all equivalent suspects, all solutions corresponding
to the abstracted components must be refined, a process per-
formed iteratively until no more solutions from the abstracted
components are found. In practice, since the proposed process
is incremental, the user, at any time, can attempt to rectify the
circuit before the entire debugging process is complete.

C. Guaranteeing Completeness

The abstraction formulation and refinement schemes dis-
cussed in the previous sections provide a means of identifying
error sources without considering the entire design. However,
under certain conditions, some equivalent solutions may be
missed by the debuggers. This happens when a set of m errors
in the concrete design are mapped onto a set of n errors in the
abstract model, where n > m, as shown in Example 3.

Example 3: Consider the abstract circuit in Fig. 2(b) un-
folded for two time frames, as shown in Fig. 4. For clarity,
the abstracted logic l6 is shown in dashed lines. Notice that

Fig. 4. Abstract circuit unfolded over two time frames.

the error from gate l1 does not directly propagate to output
y1, but its effect is captured in abstract variable x5. For error
cardinality N = 1, the SAT solver returns the single equivalent
error location l2. Assuming that the design is analyzed and that
it is concluded that l2 is not the error source, the real source of
error goes undetected. However, if N is incremented to 2, then
the pair {l1, x5} is found as a solution. By refining the abstract
variable x5 to q1 and solving the debugging problem again with
N = 1, the single error location l1 is found.

The aforementioned example illustrates how abstraction can
cause the error location to be found with higher error cardinal-
ity. Given a maximum user-defined error cardinality of maxN ,
when using abstraction and refinement, the maximum cardi-
nality should be set to maxNabs = maxN + |output(Abs)|,
where |output(Abs)| is the number of outputs for the abstracted
functions (or the number of new primary inputs). Theorem 2
presents the steps required to find all equivalent error locations
for a user-specified value of maxN .

Theorem 2: Assume that a debugger returns solution set S
for concrete design C, diagnosis vectors V , and maximum
error cardinality maxN . The debugging procedure that per-
forms the following steps with an abstract model C ′, diagnosis
vectors V ′, and maximum error cardinality maxNabs =
maxN + |output(Abs)| finds set of solutions S ′ ⊇ S.

1) Initialize N to 1.
2) Debug C ′ with V ′ and N to get solution set S ′.
3) If any solutions s ∈ S ′ are spurious, refine the abstract

model C ′ using s, and then go to step 1).
4) Increment N by 1.
5) If N > maxNabs, return S ′; else, go to step 1).

Proof: In the worst case, some error sources are ab-
stracted, and their behavior is captured by the new primary
inputs or output(Abs). Together, the maximum number of
active error locations is maxNabs = maxN + |output(Abs)|.
The debugger proceeds to find solutions based on the abstract
model using N ≤ maxNabs. If any of the solutions are spu-
rious, then the abstract model is refined, and those variables
are replaced with their corresponding concrete components.
The new abstract model is then given to the tool that starts
the search with N = 1 again. The search continues until N =
maxNabs, and all the equivalent errors that map into maxNabs-
tuples or fewer will be found. After every refinement step,
some abstracted components are reintroduced, and previous
solutions at N = maxNabs may be found at N ≤ maxNabs.
This process guarantees that all the abstracted components that
mask error locations are systematically resolved, thus finding
all the solutions in S. �

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

1602 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Algorithm 1 Debugging With Abstraction and Refinement
1: S = ∅, N = 1
2: Abs = selAbsComponents(C)
3: C ′ = absDesign(Abs,C)
4: maxNabs = maxN + |outputs(Abs)|
5: while (1) do
6: V ′ = extract_constraint(C,C ′, V)
7: New_sols = debug(C ′, V ′, N)
8: for all Sol ∈ New_sols do
9: if (spurious_solutions (Sol, C ′)) then
10: C ′ = refine(Sol, C ′, C)
11: N = 0
12: maxNabs = maxN + |outputs(C ′, C)|
13: else
14: S = S ∪ Sol
15: end if
16: end for
17: N = N + 1
18: if (N > maxNabs) then
19: return {S,C ′}
20: end if
21: end while

D. Overall Algorithm

Algorithm 1 illustrates the overall abstraction and refine-
ment scheme for a debugging methodology that guarantees
correctness and completeness. The first step is to generate the
initial abstract model C ′, as shown in lines 2 and 3. To ensure
correctness, in line 6, the stimulus is modified to constrain the
new primary inputs to their simulation values, as discussed in
Section III-A. The modified diagnosis vector V ′ and abstract
model C ′ are provided to the debugger to find the error lo-
cations, as shown in line 7. Next, according to the spurious
solutions, refinement may be performed, the error cardinality
is reset, and maxNabs is recalculated. If the solutions are not
spurious, then they are added to solution set S to be returned to
the user. The aforementioned steps are repeated until maxNabs

is reached for completeness.
Even though the final solution S is returned in line 19, the

algorithm is incremental in nature, meaning that every solution
found can be provided to the user. The benefit of an incremental
algorithm is that suspects can be analyzed by engineers prior to
all equivalent solutions being found.

IV. STATE ABSTRACTION

State abstraction is one type of abstraction where memory
elements such as flip-flops and latches are selected for removal.
This approach can be powerful because state elements are
important components that play a central role in both state
machine and datapath logic. Furthermore, when modular or
hierarchical information is not available for a design, as is the
case for post-synthesis netlist or custom logic, state abstraction
can operate on the flat design.

The effectiveness of state abstraction is demonstrated em-
pirically in Section VI-A. A subtle benefit of state ab-
straction is that, with a reduced state space, debug traces

Fig. 5. Reduced trace V ′ due to abstraction.

can be considerably shortened. This advantage will be dis-
cussed next.

A. Trace-Length-Reduction Benefits

Long error trace lengths are commonly associated with
simulation-based verification tools where random and
constrained-random stimuli are used to exercise the design.
Both manual and automated debugging can benefit from
operating on shorter error traces. Trace reduction is an effective
preprocess to debugging because it can reduce trace lengths by
orders of magnitude [26]–[28].

State abstraction can help further reduce the trace length
prior to debugging. With many of the state elements being ab-
stracted, the state space of the design is reduced, thus allowing
for state-matching techniques to remove repeated states and
redundant transitions [26]–[28]. It should be emphasized that
most state-matching techniques implicitly resimulate reduced
traces in order to ensure that the desired failure is still exposed.

As an example, consider Fig. 5, where a state-transition
diagram is used to illustrate an error trace from states q0 to qk.
In the original trace, no trace reductions are possible through
state matching. However, after the second state element is
removed (through abstraction), states q1 and q4 can no longer
be differentiated. The state values after abstraction are shown
under each node in Fig. 5. As a result, a shortcut can be taken
in the trace from states q0 to q4, as illustrated by the dashed
line. Note that, as required by most trace-reduction techniques,
the compacted traces must be tested on the concrete design to
determine whether the error(s) are/is still observable.

V. FUNCTION ABSTRACTION

When a design contains high-level or RTL information,
function abstraction can provide a natural and powerful way
to partition the debugging problem. For instance, designers
working on RTL designs use modules to partition the design
based on functionality and complexity. These modules are also
good candidates for abstraction. Furthermore, the hierarchical
and modular compositions of HDL designs can be leveraged to
apply abstraction and refinement in a systematic manner.

A. Hierarchical Abstraction

The strength of function or modular abstraction can be am-
plified when used in a hierarchical manner. More specifically,
module-based debugging can be applied iteratively at each hier-
archy level, thus allowing for a divide-and-conquer debugging
approach.

At each level i of hierarchy H , the functions
{F i

1, F
i
2, . . . , F

i
p} can be considered by the procedure

selAbsComponents to select the components to abstract

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

SAFARPOUR AND VENERIS: AUTOMATED DESIGN DEBUGGING WITH ABSTRACTION AND REFINEMENT 1603

Fig. 6. Function F 1
1 is composed of functions F 2

2 and F 2
3 .

(Absi). The iterative sequence of abstraction, debugging,
and refinement presented in Algorithm 1 can be applied to
the problem constructed at hierarchy level i. However, only
functions at level i can be refined and not their subfunctions.
In order to locate the errors in the subfunctions, the entire
algorithm must be repeated at hierarchy level i + 1.

Two properties of hierarchical abstraction and refinement are
very important. After completing an iteration of Algorithm 1 at
hierarchical level i, the following properties hold true.

1) If a function f i is still abstracted, then its subfunctions at
gj can be abstracted at hierarchy levels > i.

2) If a function f i is refined, then its subfunctions at gj may
still be abstracted at hierarchy levels > i.

The first observation is easy to confirm. When a function is
still abstracted after debugging, it signifies that equivalent error
locations do not reside inside it. Similarly, the subfunctions
will not contain any equivalent error locations either, and they
should be abstracted at deeper hierarchy levels.

For the second observation, consider Fig. 6, where an error
resides in F 2

2 . At level 1, function F 1
1 cannot be abstracted since

it contains an error. However, at level 2, subfunction F 2
3 may be

abstracted since it is independent from F 2
2 and its output. Thus,

functions can be partitioned into subfunctions such that some of
the subfunctions will not contain any equivalent error locations.

B. Overall Algorithm

To reduce the debugging problem size further, when oper-
ating at a given hierarchy level i, all functions at a deeper
hierarchy level > i should also be abstracted in C ′. However,
it is important to only refine modules at level i. This restriction
reduces the complexity of the debugging problem at level i and
postpones the analysis of the subfunctions at level > i to future
hierarchy levels.

The process of finding all equivalent solutions through the
management of error cardinality is the same with hierarchical
abstraction from Section III, as shown in the following.

Example 4: Consider Fig. 7(a), where the modules Abs1 =
{F 1

2 , F 1
4 } are abstracted at level 1. The abstraction results in

the removal of modules F 1
1 and F 1

3 as well because they fan-
in to Abs1. The initial abstracted circuit is shown in Fig. 7(b).
Assuming that the error is in module F 2

7 , the error effect can
propagate to the output of Y1 and Y2. In this example, the
debugger will not identify a single error source but will find
the error pair of {XF 1

2
,XF 1

4
} with N = 2. Through refinement,

these modules and their fan-in circuitry are reintroduced in the

Fig. 7. Hierarchical abstraction and refinement example. (a) Model C before
abstraction. (b) Initial model C′ at level 1. (c) Final model C′ at level 1.
(d) Final model C′ at level 2.

circuit, as shown in Fig. 7(c). Next, the error cardinality N must
be reset to 1. At hierarchy level 2, the modules F 2

7 and F 2
6

can be abstracted as part of Abs2. Refinement will reintroduce
module F 2

7 , and debugging will find the error source inside it,
as shown in Fig. 7(d).

The proposed hierarchical abstraction and refinement
methodology is shown in Algorithm 2. Here, the debugging
problem is solved iteratively by descending hierarchy H . At
each hierarchy level i, procedure absDesign first abstracts all
functions at levels > i. This ensures that subfunctions will
not be refined. Next, function abstraction and refinement is
performed by Function_debug according to Algorithm 1. The
effectiveness of the proposed technique is demonstrated in the
experiments of Section VI.

Algorithm 2 Hierarchical Debugging
1: Solutions = ∅, level = 0, N = 1, C ′ = C
2: while (1) do
3: level = level + 1
4: C ′ = absDesign(level + 1, C ′)
5: {New_sols, C ′} = Function_debug(C ′, level,N)
6: if New_sols = ∅ then
7: return Solutions
8: else
9: Solutions = Solutions ∪ New_sols
10: end if
11: end while

VI. EXPERIMENTS

This section evaluates the effectiveness of the proposed
abstraction and refinement debugging methodology. First, state
abstraction is applied to gate-level diagnosis problems. The
second set of experiments is conducted on RTL designs that are
developed in a hierarchical manner. For those circuits, function
and hierarchical abstraction and refinement are used.

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

1604 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 8. Logic and trace reduction versus flip-flops abstracted.

TABLE I
PROBLEM INFORMATION AND STATISTICS FOR STAND-ALONE SAT-BASED DEBUGGING APPROACH

A. State Abstraction

To evaluate the effectiveness of state abstraction, hand-
made bugs are inserted in circuits from the ISCAS’89 and
ITC’99 benchmarks, as well as industrial RTL circuits from
www.OpenCores.org [29]. The bugs are single-gate or RTL
assignment changes following Abadir’s model [30]. As dis-
cussed in Section II-A, diagnosing single errors is very common
in practice, as traces usually target specific design functional-
ities. The single errors inserted are also adequate models for
applications such as post-synthesis netlist and custom logic di-
agnosis [8], [27], electronic change order (ECO) modifications
[31] and automated-correction applications [32].

For each erroneous circuit, ten traces that fail are obtained
through pseudorandom simulation. The debugger used to locate
the error sites is the SAT-based methodology proposed in [10],
with MiniSAT [33] being the underlying SAT solver. The
suspects found using all ten traces are intersected to return the
final suspect set. In the proposed abstraction and refinement
procedures of Section IV, the design and traces are modified
from C and V to C ′ and V ′, respectively, before the debugging
engine is called. Contrasting the performance of the debugger
before and after applying the proposed techniques provides a
fair-comparison metric.

The experiments are conducted on a 2.66-GHz Intel Xeon
processor with 2 GB of memory and a time-out of 7200 s for
each problem. In each case, a basic trace-compaction procedure
is applied before debugging. This procedure first builds a graph
for the visited states, it then connects edges between repeated

states, and it finally applies Dijkstra’s shortest path algorithm
from the initial state to the final state [34]. More sophisticated
trace-compaction schemes may provide better results [26], [27].
The resulting traces that do not distinguish between the refer-
ence and buggy circuits are discarded.

In Section IV, the effects of abstraction on logic size and
trace length are discussed. Fig. 8 summarizes the relationship
between the degree of abstraction performed and its conse-
quence on circuit size and trace length. This general behavior is
illustrated using the b04 and b14 benchmarks. Fig. 8(a) shows
an apparently linear relationship between logic-size reductions
and the number of abstracted state elements. In Fig. 8(b), the
experiments show that significant trace-length reductions are
possible only after a certain threshold is reached. This threshold
appears to be over 50% for b04 and over 70% for b14. Thus,
for large problems where memory is a major concern, a more
aggressive approach, where over 70% of state elements are
abstracted, may be desirable.

Table I presents a summary of the benchmark characteristics
and performance statistics when debugging the concrete cir-
cuits. Columns 1, 2, and 3 present the circuit name, number
of gates, and number of flip-flops (state elements) in each
circuit, respectively. Columns # clk and # red. clk show the
average lengths of the traces before and after trace compaction,
respectively.

The next five columns summarize the results of the debugger
for each problem. In columns # cls and mem (MB), the number
of clauses (in thousands) generated for each problem and
memory usage are presented, respectively. The average time

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

SAFARPOUR AND VENERIS: AUTOMATED DESIGN DEBUGGING WITH ABSTRACTION AND REFINEMENT 1605

TABLE II
PERFORMANCE STATISTICS FOR ABSTRACTION AND REFINEMENT DEBUGGING FRAMEWORK

required to find the errors and the number of equivalent errors
found by the tool are presented in columns time/err (s) and
err, respectively. Finally, the total time required to find all
the errors is presented in column total (s). To cope with the
size of the larger problems, the CNFs are partitioned into bands
(groups) for each trace vector, and each is solved sequentially,
as described in [10]. For b14 and ac97, where the average
reduced traces are 54 and 30 time frames long, respectively,
the problems still run out of memory. As we shall see, the
proposed abstraction framework is particularly beneficial in
such memory-intensive cases.

Table II presents the results when the tool utilizes the pro-
posed abstraction and refinement techniques. For each prob-
lem, state elements are randomly selected such that between
40% and 50% are abstracted, which are conservative amounts
according to Fig. 8. More powerful abstraction heuristics can
be developed to intelligently select which components to ab-
stract; however, this basic scheme adequately demonstrates the
effectiveness of our methodology.

To allow a comparison with the data in Table I, the percent-
age of logic and flip-flops still abstracted after the iterations of
Algorithm 1 is presented in columns 2 and 3. These figures also
included logic and other state elements removed through dan-
gling logic removal. Additional compacted traces and overall
reduced-memory requirements are shown in columns 4 and 5,
respectively.

Looking across one row for problem b08, by abstracting
47.6% of the flip-flops, the logic is reduced by 26%, and the
trace length is reduced by an additional 65%, which leads to
an overall memory reduction of 60% versus the stand-alone
version. The largest problems in Table I are for circuits b14 and
ac97, and they ran out of memory. With the new methodology,
they both successfully complete. It can be calculated that, on
average, the proposed methodology results in up to 60% mem-
ory reduction with average savings of 30% under a conservative
abstraction approach.

The majority of problems in Table II do not benefit from
additional trace compaction. This can be attributed to the fact
that trace reduction is most effective for long traces since the
probability of matching states is higher. Furthermore, Fig. 8(b)
states that 40%–50% state abstraction does not result in reduced
traces for most problems. In the experiments, the initial trace-
compaction process is able to reduce the traces considerably.

For instance, the initial trace of circuit s1488 that is 104 clock
cycles is reduced to only five clock cycles after compaction,
so further reduction is highly unlikely. For industrial traces
derived from functional test benches and not randomly, it is
highly unlikely to reduce their length drastically by simple
state-matching techniques [26]. Therefore, trace reduction via
abstraction may be more effective.

A summary of the run-time results of the proposed frame-
work is presented in columns 6–12 of Table II. In columns,
time/err (s) and # err, the average time required to find an
error and the number of errors found are presented, respectively.
It should be noted that when the number of errors is greater
than those in Table I, it means that abstracted state variables
are found as errors. In these experiments, if all equivalent error
tuples are found (including the inserted errors), then refinement
is not performed. If the errors found by the proposed framework
do not include all equivalent error locations (i.e., # err is smaller
in Table II than in Table I), then all spurious solutions must be
refined.

In Table II, column maxNabs shows the maximum number
of tuples searched until all equivalent errors are found. The
debugging time for all searches prior to maxNabs is shown in
column prev (s). When refinements are necessary, column refine
(s) presents the solve time for the subsequent searches.

For many of the problems in Table II, the maximum error
tuple found (maxNabs) is often greater than 1 but always less
than or equal to 3. This signifies the fact that a single error in
the concrete design maps to 3 or fewer locations in the abstract
model. The time required to determine that no solutions exist
prior to maxNabs (prev (s)) is always quite smaller than the
average time required to find an error (time/err (s)). If we take
b12 for instance, it takes on average 4.2 s to determine that
no errors occur when N < 3 and 85 s to find each solution at
N = 3. Relating these times to Algorithm 1, it means that the
approach is quite effective since the majority of time is spent in
the debugging function in line 7 when N = maxNabs and not
when N < maxNabs.

The total debugging time for the proposed approach is found
by summing the product of time/err (s) and # error with prev (s)
and refine (s), and it is shown in column total (s). Performance
improvement over that data from Table I is given in column
X impr. When abstracting 40%–50% of the state elements, not
many refinement steps are necessary, as most equivalent error

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

1606 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

TABLE III
SUMMARY OF B14 WHEN ABSTRACTING OVER 80% OF FLIP-FLOPS

TABLE IV
SUMMARY OF AC97 WHEN ABSTRACTING OVER 96% OF FLIP-FLOPS

locations are found in the abstract model. However, even for
the cases where refinement is necessary, substantial run-time
improvement is observed, with the exception of benchmark
b12. Overall, performance improvements of up to 4.5× are
observed, with an average value of 2× across all problems.
This increased efficiency can be attributed to CNF problems
of smaller size that are easier to get tackled by the solver.

As observed in Fig. 8, smaller problem sizes and shorter
traces can be achieved with more aggressive abstraction than
those of Table II. To demonstrate the effectiveness of the
framework under a more aggressive-abstraction strategy, the
two largest problems b14 and ac97 are shown in Tables III and
IV, with 80% and 96% of the state elements being abstracted,
respectively. For easy comparison, the first row of each table
represents the problem properties of Table II. The following
rows show the results after each abstraction and refinement
step until the specific injected error is found (not all equivalent
errors as in Table I). For each table, column 1 describes whether
the data are derived from Table II, from the initial abstraction
(abs), or from a refinement step (ref). The remaining columns
are labeled similarly to Table II.

As expected, when more state variables are abstracted,
greater memory savings are attained, yet more refinement
steps are necessary. However, along with the memory savings,
more abstracted variables lead to much faster solve times
per error. For instance, b14 requires 3740 s/error with 40%
state abstraction, while it requires only 172 s/error with 82%
state abstraction. It is interesting to notice the relatively small
number of iterations that are necessary to find the injected
error. More precisely, b14 and ac97 require only two and three
refinement steps.

As shown in Tables III and IV, aggressive abstraction
schemes can be desirable at times since incremental solutions
are quickly returned. However, many refinement steps may be
required to find all solutions. For instance, to find all equivalent
solutions for b14, the percentage of logic abstracted must reach
15.3% from 50.1%. This will likely require many more itera-
tions of refinement according to the linear curve of Fig. 8(a).

B. Function Abstraction

This section presents the experiments for function abstrac-
tion. All the circuits used are from the www.OpenCores.org

TABLE V
SUMMARY OF PROBLEMS FOR FUNCTION ABSTRACTION

[29], except for an industrial communication design (comm)
that has nearly 500 000 synthesized gates. In this set of ex-
periments, hierarchical information about the design is readily
available to the methodology.

Each circuit contains functional-level errors, such as in-
correct operation, incorrect module instantiation, bad module
wiring, wrong state-machine transition, etc. Bugs are inserted
systematically into the designs to represent typical human-
made RTL-level errors. It is important to notice that these
RTL errors usually translate tens or hundreds of errors in the
synthesized gate-level netlist. An industrial simulator with a
behavioral Verilog test bench accompanying the design is used
to identify the presence of the bugs. The debugger utilized is the
module-aware SAT-based one from [7] implemented on top of
MiniSAT [33]. The experiments are conducted on a 64-b Intel
Core 2 Quad processor with 2.66 GHz and 8 GB of memory.

Table V presents a summary of the debugging problems and
the corresponding tool statistics. Columns 1, 2, and 3 show the
name of the design, and its size in terms of gates and state
elements (FF), respectively. Column 4 contains the number of
cycles for the failing input trace. When it is too long for the
tool to formulate the problem, the trace is reduced to only
contain the last 25 or 40 simulation cycles. The final number of
clock cycles used to build the problem is given in parentheses
in column 4. For example, problem wb_con2 contains 1397
clock cycles, but only the last 40 clock cycles are used. The
next column presents the number of literals in the CNF. Finally,
columns time and mem show the total run time (in seconds)
to solve the problem and the memory usage (in megabytes).
Notice that comm2 requires more than 8000 MB to formulate it,
and it runs out of memory.

Table VI presents the result of the proposed technique on
the debugging problems. For these experiments, all modules are
initially abstracted. Column 1 shows the problem name, while
column 2 shows the maximum error cardinality (maxNabs) to
solve it. As discussed in Section III-C, the cardinality required
to locate the bug using an abstracted design can be larger than
the actual number of errors. This is demonstrated in the comm1
and comm3 instances where a higher cardinality of 2 is used to
find the single error.

In Table VI, the column labeled # itr states the number of
refinement and debugging iterations (line 7 in Algorithm 1) to
find all the equivalent locations. The column mod refined/total
presents the number of modules refined out of the total number
of modules in the concrete design. These modules are the only

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

SAFARPOUR AND VENERIS: AUTOMATED DESIGN DEBUGGING WITH ABSTRACTION AND REFINEMENT 1607

TABLE VI
RESULTS OF THE PROPOSED FUNCTION ABSTRACTION AND REFINEMENT TECHNIQUE

Fig. 9. Solve time and # literals in problem versus the number of refinement and debugging iterations for vga2, fdct1, and comm1.

ones required to diagnose the error. The smaller this number
is, the more effective abstraction/refinement becomes. The next
three columns, namely, # literals, time (s), and peak mem (M),
present the benefit of the proposed technique in terms of the
number of problem literals, total run time (in seconds), and
peak-memory requirements.

The improvement provided by the proposed technique is
shown in the last columns of Table VI. Here, the reduction in
the number of literals, the speedup in run time, and the reduc-
tion in memory over the debugging technique of [7] without
abstraction and refinement are shown. The effectiveness of the
abstraction technique is attributed to the reduction of problem
size or literal count. For example, consider problem vga1 where
5/14 modules are used, leading to 630.48× reduction in literals,
which results in 260.89× improvement in run time and 27.17×
reduction in the overall memory requirement. For problem
comm2, which resulted in memory out without the abstraction
technique, only 640 MB of the available 8000 MB is required.
For all problems, the number of refinement and debugging
iterations performed is larger than one. Therefore, it is clear
that each iteration is much easier and faster when abstraction is
used, so it is more advantageous to run more iterations on easier
problems than fewer iterations on harder ones.

In Table VI, there are two problems that experience a slow-
down. It is worthwhile to analyze the reason for this behavior.
For problem fdct1, six iterations are required to solve the
problem, at which stage all five modules are used. Thus, in
this case, the extra iterations simply add overhead as the entire
circuit is needed in order to solve the problem. Problem vga2
also experiences a slowdown, but in this case, a 2.26× reduction
in memory is observed. Unlike the overall trend, the simpler
and faster debugging problems cannot compensate for the extra
iterations performed.

Fig. 9(a)–(c) shows the detail into the numbers of Table VI
for vga2, fdct1, and comm1, respectively. The figure illustrates
the relationship between the run time shown in solid line and the
number of literals shown in dashed line against the refinement
and debugging iterations. Notice the general trend where both
run time and number of literals appear to increase exponentially
with the increase in the number of iterations. For the majority
of cases where the proposed technique is effective, abstraction
allows the problem to be solved with a fraction of its size,
thus leading to smaller memory requirements and run times.
Considering problem vga2, notice that, for iterations 3, 4, and
5, the solve time is quite high, thus not providing any run-time
benefit.

The proposed techniques allow for different degrees of ab-
straction to be applied. In general, aggressive (high-degree)
abstraction leads to more debugging and refinement steps.
However, due to the simplicity of the design when abstracted
aggressively, the initial debugging and refinement iterations are
relatively much easy problems and thus quicker to solve. This
behavior is observed in Fig. 9, where the initial iterations have
a faster run time than the latter ones. It may be possible to
find an abstraction heuristic that can balance the number of
iterations and the functions abstracted, but this is not a trivial
task. Overall, these experiments show that abstracting all RTL
functions and modules becomes quite effective.

VII. CONCLUSION

As debugging remains a manual and time-consuming burden
in today’s chip design cycle, it becomes important to develop
automated methodologies to address contemporary verification
needs. This paper has presented state/function abstraction and
refinement techniques in design debugging to allow larger

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

1608 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

designs to be handled faster and with less memory by existing
CAD tools. Designs were first abstracted, resulting in smaller
debugging problems. To ensure that all the equivalent error
locations are found in the original design, a refinement process
was performed. Refinement was applied in iterations, thus only
reintroducing the necessary components for debugging. A con-
sequence of state abstraction is that the error trace can be further
reduced, and so does the problem size. Function abstraction
employed in a hierarchical framework allows for a powerful
debugging framework. The experiments have demonstrated an
order of magnitude improvement in both memory requirements
and run time for state abstraction and two orders of magnitude
for function abstraction. Admittedly, the results from this paper
encourage work in this field in an effort to develop scalable and
robust automated debugging methodologies.

REFERENCES

[1] “International Technology Roadmap for Semiconductors,” ITRS 2006
Update, 2008. [Online]. Available: http://www.itrs.net/

[2] E. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge,
MA: MIT Press, 1999.

[3] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design. Norwell,
MA: Kluwer, 2003.

[4] R. Bryant, “Binary decision diagrams and beyond: Enabling techniques
for formal verification,” in Proc. Int. Conf. CAD, 1995, pp. 236–243.

[5] T. Larrabee, “Test pattern generation using Boolean satisfiability,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 11, no. 1,
pp. 4–15, Jan. 1992.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model check-
ing without BDDs,” in Tools and Algorithms for the Construction and
Analysis of Systems, vol. 1579. Berlin, Germany: Springer-Verlag, 1999,
pp. 193–207.

[7] M. F. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Drechsler, “Post-
verification debugging of hierarchical designs,” in Proc. Int. Conf. CAD,
2005, pp. 871–876.

[8] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems Testing and
Testable Design. New York: Comput. Sci. Press, 1990.

[9] S.-Y. Huang, “A fading algorithm for sequential fault diagnosis,” in Proc.
19th IEEE Int. Symp. DFT VLSI Syst., 2004, pp. 139–147.

[10] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using Boolean satisfiability,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 24, no. 10, pp. 1606–1621, Oct. 2005.

[11] S. Safarpour, M. H. Liffiton, H. Mangassarian, A. Veneris, and
K. A. Sakallah, “Improved design debugging using maximum satisfiabil-
ity,” in Proc. Int. Conf. Formal Methods CAD, 2007, pp. 13–19.

[12] K.-H. Chang, I. Markov, and V. Bertacco, “Automating postsilicon
debugging and repair,” Computer, vol. 41, no. 7, pp. 47–54, Jul. 2008.

[13] E. Clarke, O. Grumberg, and D. Long, “Model checking and abstraction,”
in Proc. Symp. Principles Programm. Languages, 1992, pp. 342–354.

[14] E. Clarke, A. Gupta, and O. Strichman, “SAT-based counterexample-
guided abstraction refinement,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 22, no. 7, pp. 1113–1123, Jul. 2004.

[15] P. Bjesse and J. Kukula, “Using counter example guided abstraction re-
finement to find complex bugs,” in Proc. Des. Autom. Test Eur., 2004,
pp. 156–161.

[16] S. Safarpour and A. Veneris, “Abstraction and refinement techniques in
automated design debugging,” in Proc. Des. Autom. Test Eur., 2007,
pp. 1182–1187.

[17] H. Mangassarian, A. Veneris, S. Safarpour, M. Benedetti, and D. Smith,
“A performance-driven QBF-based iterative logic array representation
with applications to verification, debug and test,” in Proc. Int. Conf. CAD,
2007, pp. 240–245.

[18] A. Suelflow, G. Fey, R. Bloem, and R. Drechsler, “Using unsatisfiable
cores to debug multiple design errors,” in Proc. Great Lakes Symp. VLSI,
2008, pp. 77–82.

[19] N. Amla, X. Du, A. Kuehlmann, R. Kurshan, and K. McMillan, “An
analysis of SAT-based model checking techniques in an industrial envi-
ronment,” in Proc. CHARME, 2005, pp. 254–268.

[20] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,” in
Proc. Comput. Aided Verification, 1997, pp. 72–83.

[21] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, pp. 752–794, Sep. 2003.

[22] H. Jain, D. Kroening, N. Sharygina, and E. Clarke, “Word level predicate
abstraction and refinement for verifying RTL Verilog,” in Proc. Des.
Autom. Conf., 2005, pp. 445–450.

[23] P. Chauhan, E. M. Clarke, J. H. Kukula, S. Sapra, H. Veith, and D. Wang,
“Automated abstraction refinement for model checking large state spaces
using SAT based conflict analysis,” in Proc. Int. Conf. Formal Methods
CAD, 2002, pp. 33–51.

[24] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli,
Logic Minimization Algorithms for VLSI Synthesis. Norwell, MA:
Kluwer, 1984.

[25] A. Veneris and M. Abadir, “Design rewiring using ATPG,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 12,
pp. 1469–1479, Dec. 2002.

[26] Y. Chen and F. Chen, “Algorithms for compacting error traces,” in Proc.
ASP Des. Autom. Conf., 2003, pp. 99–103.

[27] K. Chang, V. Bertacco, and I. Markov, “Simulation-based bug trace min-
imization with BMC-based refinement,” in Proc. Int. Conf. CAD, 2005,
pp. 1045–1051.

[28] S.-J. Pan, K.-T. Cheng, J. Moondanos, and Z. Hanna, “Generation of
shorter sequences for high resolution error diagnosis using sequential
SAT,” in Proc. ASP Des. Autom. Conf., 2006, pp. 25–29.

[29] OpenCores.org, 2008. [Online]. Available: www.opencores.org
[30] M. S. Abadir, J. Ferguson, and T. Kirkland, “Logic verification via test

generation,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 7, no. 1, pp. 172–177, Jan. 1988.

[31] A. Ling, S. Brown, J. Zhu, and S. Safarpour, “Towards automated ECOs
in FPGAs,” in Proc. Int. Symp. Field-Programm. Gate Arrays, 2009,
pp. 3–12.

[32] Y.-S. Yang, S. Sinha, A. Veneris, and R. Brayton, “Automating logic
rectification by approximate SPFDs,” in Proc. ASP Des. Autom. Conf.,
2007, pp. 402–407.

[33] N. S. N. Een, “An extensible SAT-solver,” in Proc. Int. Conf. Theory Appl.
Satisfiability Test., 2003, pp. 333–336.

[34] T. Cormen, C. Leierson, and R. Rivest, Introduction to Algorithms.
Cambridge, MA: MIT Press, 1990.

Sean Safarpour (S’01) received the B.A.Sc. de-
gree in computer engineering from the University of
British Columbia, Vancouver, BC, Canada, and the
M.A.Sc. and Ph.D. degrees in computer engineer-
ing from the University of Toronto, Toronto, ON,
Canada.

He is currently the Chief Technology Officer with
Vennsa Technologies, Inc., Toronto, where he is in
charge of research and development. His research in-
terests include design debugging, formal verification
techniques, and formal engines such as SAT, QBF,

and SMT solvers. He is the author of over 20 papers and 3 patents since 2004.

Andreas Veneris (S’96–M’99–SM’05) received the
Diploma in computer engineering and informatics
from the University of Patras, Patras, Greece, in
1991, the M.S. degree in computer science from the
University of Southern California, Los Angeles, in
1992, and the Ph.D. degree in computer science from
the University of Illinois, Urbana, in 1998.

In 1998, he was a Visiting Faculty with the Uni-
versity of Illinois until 1999 when he joined the
Department of Electrical and Computer Engineering
and the Department of Computer Science, University

of Toronto, Toronto, ON, Canada, where he is currently an Associate Professor.
His research interests include computer-aided design for debugging, verifica-
tion, synthesis and test of digital circuits/systems, and combinatorics. He is the
author of one book and is the holder of three patents.

Dr. Veneris has received several teaching awards and a best paper award.
He is a member of the Association for Computing Machinery, the American
Association for the Advancement of Science, the Technical Chamber of Greece,
Professionals Engineers Ontario, and The Planetary Society.

Authorized licensed use limited to: The University of Toronto. Downloaded on November 1, 2009 at 19:23 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

