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Abstract—In the modern design cycle, substantial manual
effort is required to correct failed liveness properties due to the
limited availability of automated tools. To address this limita-
tion, this paper introduces two techniques to diagnose register
transfer level errors that manifest in the form of erroneously
unreachable states, which represent a common form of liveness
property failure. The first uses steps of reachable state-space over-
approximation and traditional debugging to compute a subset of
the solutions that make a target state reachable. The second
solves a series of unbounded model checking problems using an
enhanced model of the circuit’s transition relation to compute
the complete solution set to the problem. The proposed tech-
niques are complementary to each other and present the user
with a configurable tradeoff between runtime and resolution of
the returned solution set. Empirical results on OpenCores and
HWMCC’15 circuits confirm the effectiveness of the approaches
and demonstrate the tradeoffs between them.

Index Terms—Debugging, formal verification, IC3, property
directed reachability (PDR), register transfer level (RTL), veri-
fication.

I. INTRODUCTION

THE PRIMARY challenge in modern very large scale
integration design is verification, which accounts for

upward of 50% of the design effort [1]. Design debugging,
which involves localizing and correcting a failure after it is
revealed by verification, accounts for half of this effort. The
constant increase in design complexity further complicates
these processes, increasing costs, and time-to-market. Formal
verification techniques [2]–[5] have grown more scalable with
recent advances [6]–[9] making them increasingly applica-
ble to the challenge of verifying modern designs. Likewise,
automated debugging tools [10] have seen numerous advance-
ments targeting scalability toward the goal of tackling modern
debugging problems [11]–[14].

Functional verification involves simulation or model check-
ing to ensure that specific properties hold on a design.
Properties can be divided into two broad classes: 1) safety
properties and 2) liveness properties [15]. When a safety prop-
erty is found to fail through means, such as simulation and
model checking, a finite counter-example demonstrating the
failure is returned as a certificate. The counter-example forms
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an error-trace that can be used with an automated debug-
ging tool [10], [16] to aid the engineer in finding the error.
Evidently, a great deal of automation is available to comple-
ment the human effort to find the root cause of a failure when
error-traces are available.

In contrast, a liveness property has no finite counter-
examples [15]. A commonly used type of liveness property
holds when a particular state is reachable. Such a property
can be verified using safety checking techniques [2] or exhaus-
tive simulation. Since it is a liveness property, no error-traces
are available upon failure, stifling attempts to apply the afore-
mentioned automated tools. Attempts to correct the failure
therefore typically involve a first step in which the engi-
neer attempts to manually discover a trace that should reach
the target state but erroneously reaches some other state.
This is a largely manual and time-consuming task with lit-
tle automation available beyond iterative manual processes
partially assisted by traditional computer-aided design (CAD)
tools [17].

To mitigate this cost, this paper presents two comple-
mentary techniques to diagnose this kind of failure in the
absence of any error-traces. The first is an approximate
approach [18], [19] that returns a subset of all candidate fault
sites, where a correction may rectify the failure (i.e., solutions)
by making the target state reachable. The solutions returned
are dependent on a set of parameters supplied by the user
that dictate and limit the portion of the solution space to be
explored. The safety checking technique of property directed
reachability (PDR) [2], [7] is applied along with boolean sat-
isfiability (SAT)-based debugging [10] to explore the relevant
portion of the solution space. The second contribution is an
exact approach [19], [20] that returns the complete set of all
solutions at the cost of increased runtime when compared to
the approximate approach. This approach applies PDR in a
novel incremental fashion that substantially reduces runtime
by reusing previous results.

In greater detail, the approximate approach returns a sub-
set of all solutions and operates as follows. An incremental
PDR solver is executed toward the goal of proving that the
target state is unreachable. As a side effect, this computes over-
approximations of the reachable state space in each operational
design cycle for a bounded number of cycles. This approxima-
tion provides a set of constraints that is used with traditional
SAT-based debugging to find a set of locations that, when
modified, allow the design to transition from a state in the
over-approximation to the unreachable target state. Spurious
solutions are detected and discarded using the same PDR
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solver, which has the beneficial side effect of refining the over-
approximations. In the initial formulation of the approach, it
returns to the user a set of design locations, where a change
can be made to make the target state reachable within a specific
number of clock cycles without reaching any other unreach-
able states. It is additionally extended to handle cases, where
the target state is to be reached only after a user-specified
number of other unreachable states.

The exact approach eliminates the requirement for the user
to specify parameters limiting the types of solutions returned,
by merging the steps of SAT-based debugging with PDR-based
state space over-approximation. As such, it returns the full
solution set to the problem. It constructs an enhanced model
of the circuit in which the reachability of particular states
implies that specific design locations are solutions. An incre-
mental PDR solver is then used to check the reachability of
these states. As a result, the computation of approximations
and the detection of spurious results occurs entirely within the
PDR solver. Incrementality is applied in a novel fashion that
allows nearly all of the solver’s internal state to be reused, giv-
ing substantial runtime performance gains. Since the approach
uses an unbounded model checking technique, it is able to find
all solutions to the problem. Additionally, it terminates with a
proof of this fact.

The presented techniques are complementary and each pro-
vides its own set of strengths and tradeoffs. The approximate
approach requires the user to set parameters limiting the
portion of the solution space it explores. As a result, it
may not find the complete solution set to the problem. It
is therefore most applicable in cases, where the user has
the requisite information available to select the parameters
appropriately, such as when the target state is supposed to
be reached in a known number of clock cycles. Under these
conditions, it is likely to return the true root cause of the
error to the user while achieving better runtime than would
be possible with the exact approach. Conversely, the exact
approach finds the complete solution set to the problem and
does not require the user to select parameters. Ultimately,
this provides greater automation and confidence in the
results.

Both techniques apply to situations in which a state is
unreachable in violation of the design specification, and there-
fore is indicative of an error in the circuit. In practice, a
state may be unreachable for other reasons, such as over-
constraining the initial states, or because of intentional design
decisions. Our approaches take as input the initial states, the
circuit, and the target state. As such, it is assumed these inputs
are correct, i.e., the user has correctly identified that the given
target state should be reachable from the given initial state
according to the design specification. In this case, the only way
to correct the error is to modify the circuit, and the presented
approaches help the user identify, where to begin making such
a change. As is the case for existing SAT-based debugging
techniques [10], once a set of solutions is found, the engineer
must decide how to implement a fix in order to maintain the
desired functionality.

Experiments on OpenCores [21] and HWMCC’15
designs are presented demonstrating these tradeoffs and the

effectiveness of the presented approaches. The complete solu-
tion set to the problem is found to include a median of
1.6% of the design locations, substantially narrowing down
the root cause of the error and demonstrating the usefulness
of the proposed techniques. The approximate approach offers
a substantial 31x speedup compared to the exact approach,
while finding 63% of the complete solution set. The incre-
mental application of the model checker is found to provide an
impressive 23.9x speedup over the exact approach. Additional
experimental results confirm the benefits of the presented
performance optimizations.

The remaining sections are organized as follows. Section II
presents background information regarding model checking
and SAT-based debugging. Section III defines the problem
and presents the approximate approach. Section IV presents
the exact approach. Section V presents experimental results.
Finally, Section VI concludes this paper.

II. PRELIMINARIES

A. Notation

The following notation is used throughout this paper. Given
a sequential circuit C, S = {s1, . . . , s|S|} denotes the set of state
elements (registers) of C, while S′ = {s′

1, . . . , s′|S|} denotes the
set of next-state variables (inputs to registers). For a proposi-
tional formula P over the set of state variables S, the primed
formula P′ represents the same formula over the next-state
variables S′. Each assignment t ∈ {0, 1}S to the state elements
represents a state of C. A state can be represented by a cube
over the state elements.

The transition relation of C is denoted T ⊆ {0, 1}S ×{0, 1}S.
For a state pair 〈t1, t2〉, 〈t1, t2〉 ∈ T if and only if there exists
an assignment to the primary input of C that causes a state
transition from t1 to t2. We assume T is given in a form such
that the propositional formula t1 ∧ T ∧ t′2 is satisfiable if and
only if 〈t1, t2〉 ∈ T . This formula constrains T with t1 at its
current-state variables (as t1 is not primed), and t2 at its next-
state variables (as t2 is primed). The set of initial states of
C is denoted I ⊆ {0, 1}S. It is represented by a propositional
formula over the state variables also called I, as these are
merely different representations of the same thing. If P is a
formula over the state variables, a state t is said to be a P-state
if and only if t satisfies P.

For the purpose of model checking, C can be modeled by a
finite state machine (FSM) M = (S, I, T), where S represents
the state elements, I is a propositional formula representing the
initial states, and T is the transition relation. A sequence of
states t0, . . . , tn is a trace of M if and only if 〈ti, ti+1〉 ∈ T for
all 0 ≤ i < n and t0 is an I-state. A state t is i-step reachable
if it appears in a trace of i cycles or less from an initial state.
We say that a state is reachable if there is a value of i for
which it is i-step reachable.

B. SAT-Based Debugging

When verification reveals a safety property failure, the
resulting error-trace can be used with an SAT-based automated
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debugging tool [10] to aid the engineer in finding the source
of the error. The work of [10] operates as follows. Given
an error-trace and an error cardinality n ≥ 1, it returns n-
tuples of locations, where a change can be implemented to
correct the erroneous behavior exposed by the trace. Letting
L = {l1, l2, . . . , l|L|} denote the suspect locations in the cir-
cuit, the transition relation is enhanced by the addition of a
set of error-select lines E = {e1, e2, . . . , e|L|}. When ei = 0
the behavior of the circuit at location li is unchanged. When
ei = 1, li is replaced by a free variable wi.

For an error-trace of k clock cycles, the enhanced tran-
sition relation is then unrolled into an iterative logic array
(ILA) representation [22] with k time-frames. Additional con-
straints are added in each time-frame to set the primary input
to the values from the error-trace and to force the primary
output to the known reference (correct) values according to
the specification. An additional constraint is added to the state
variables in the first time-frame to force the circuit to start
in a particular initial state. Finally, a cardinality constraint φn

is added to ensure that exactly n error-select lines are simul-
taneously active. The ILA and constraints are converted into
a propositional formula in conjunctive normal form (CNF).
This construction is such that each satisfying assignment to
the formula indicates an n-tuple of suspect locations, where a
change could correct the erroneous behavior demonstrated by
the error-trace. An all-solutions SAT solver is used to find all
satisfying assignments to the formula.

Considering both the work of [10] and the techniques
presented later in this paper, solutions indicate locations, where
replacing the Boolean function with a different one can correct
the observed failure. The function may be arbitrarily complex,
it may depend on arbitrary input, and it may require adding
new registers to the circuit. It does not, however, require modi-
fying any other locations in the circuit. Other techniques, such
as those based on binary decision diagrams [23] or partial
equivalence checking [24] could be used to compute the actual
function.

C. Property Directed Reachability

This paper makes extensive use of the unbounded model
checking technique of PDR [2], [7]. Given an FSM M =
(S, I, T) and a safety property P in CNF that represents the
set of safe states, PDR attempts to prove that P is invariant for
M (i.e., every reachable state is a P-state). If P is not invari-
ant, a counter-example trace reaching a ¬P-state is returned.
Alternatively, P is invariant and PDR returns an inductive
invariant proving this fact.

At a high level, PDR operates as follows. It main-
tains a sequence of formulas over the state elements F =
〈F0, F1, . . . , Fk〉, referred to as the inductive trace. Each Fi

is in CNF, and F0 is simply set to the initial states I. For
all i > 0, each Fi over-approximates the post-image of Fi−1
(Fi−1 ∧ T ⇒ F′

i). Since F0 includes all initial states, this
means that Fi over-approximates the i-step reachable states.
The fact that Fi over-approximates the i-step reachable states
also implies that each clause of Fi over-approximates the
i-step reachable states. As such, Fi and each of its clauses

are referred to as i-step invariants. Additionally, each clause
c of each Fi includes every initial state (I ⇒ c). That is, c
satisfies initiation.

The algorithm conducts a series of iterations k = 1, 2, . . . in
which iteration k seeks a (k+1)-step counter-example. Iteration
k consists of solving a series of SAT instances of the form
Fk ∧ T ∧¬P′. If this formula is satisfiable, Fk contains a state
t that is one step from violating the property. This does not
imply the existence of a counter-example, as it is not known
whether t is k-step reachable or merely a spurious artifact of
the over-approximation. Therefore, when such a state is found,
this essentially triggers a recursive call to PDR intended to
determine if t is k-step reachable. If it is indeed k-step reach-
able, a counter-example is discovered and the algorithm returns
REACHABLE. If not, a clause is conjoined to Fk that excludes
t from being an Fk-state. The recursive calls may result in
additional clauses being added to some or all of the formulas
F1, . . . , Fk−1.

Iteration k concludes when Fk contains no predecessors of
unsafe states. This condition is detected when Fk ∧ T ∧¬P′ is
unsatisfiable. At this point, the algorithm attempts to construct
a proof that P holds from the inductive trace. If a proof is not
found, it continues to the next iteration. Throughout this paper,
it is assumed that an algorithm PDR(M, P, k) exists, where
M = (S, I, T) is an FSM. It returns REACHABLE if and only
if a P-state is k-step reachable under M. If k = ∞, it returns
REACHABLE if and only if a P-state is reachable under M.
Otherwise, it returns UNREACHABLE.

III. APPROXIMATE UNREACHABILITY DIAGNOSIS

This section presents an approximate approach to localize
errors that manifest in the form of erroneously unreachable
states. The algorithm takes as input a set of suspect locations
L = {L1, L2, . . . , L|L|}, an unreachable target state condition
S represented by a CNF formula, and error cardinality n. The
target state condition S is a formula in CNF such that all
S-states are unreachable, and is provided by the user. The
set of suspect locations L is similarly provided by the user.
In the worst case it can include every location in the circuit.
As a practical consideration, a larger suspect set is expected
to increase runtime. Therefore, it may be beneficial for the
engineer to apply knowledge regarding the source of the error
to restrict L to, e.g., all locations within a particular block that
is suspected to be the root cause of the error.

A solution of error cardinality n is defined as an n-tuple
of suspect locations that can be replaced by different Boolean
function(s) to make some S-state(s) reachable. The required
functions may be arbitrarily complex, but do not require mod-
ifying any other locations in the circuit. The purpose of the
algorithm is to determine which of the suspect locations are
indeed solutions to the problem. As such, the algorithm returns
a solution set Lsol ⊆ Ln. Note that the algorithm merely indi-
cates locations, where a correction can be made. It is the
responsibility of the engineer to decide how to implement the
desired change.

In its initial formulation, the algorithm uses steps of state
space over-approximation and debugging to return solutions
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Fig. 1. Model used in SAT-based debugging.

that can make the target state reachable one transition after
some already-reachable state. It is later extended to find
solutions that make it reachable only after a user-specified
number of transitions following a reachable state. A final
extension is presented that removes the dependence on fixed
approximations to find a larger portion of the solution set.

A. Single-Cycle Approximate Unreachability

This section presents the initial formulation of the methodol-
ogy. At a high-level, the algorithm models and debugs a single
state transition from an already-reachable state to a target state.
As computing the exact set of reachable states is an intractable
problem, the over-approximations computed by PDR are used
instead. Due to the inherent nature of the approximations, it is
possible to find spurious solutions, necessitating an extra step
to detect them. The formulation presented in this section also
requires the user to provide as input a parameter K known as
the cycle limit. It seeks solutions that can be used to make a
target state (K + 1)-step reachable.

In greater detail, the algorithm involves three main steps:
1) reachable state space over-approximation; 2) debugging;
and 3) spurious solution detection. The reachable state space
over-approximation step computes the initial approximation of
the set of K-step reachable states. This is done by executing
PDR directed toward the goal of proving that S is not K-step
reachable, which produces the needed approximation in the
form of the formula FK from the inductive trace.

As the next step, the algorithm constructs an SAT-based
debugging instance toward the goal of finding an n-tuple of
suspect locations that can be changed to allow for a transi-
tion from some FK-state to some S-state. As such, this step
constructs a propositional formula in the manner described
in Section II-B. Letting Ten represent the enhanced transition
relation with added error-select lines for each suspect location
in L, the resulting propositional formula is

FK ∧ Ten ∧ S ′ ∧ φn. (1)

Intuitively, the debugging instance of (1) consists of a sin-
gle copy of the transition relation, constrained with FK as
its current state and S as its next state. The primary input
and output are left unconstrained, allowing the SAT solver
to find solutions for any input assignment. A cardinality con-
straint φn is used to find solutions of cardinality n. This model
is depicted graphically in Fig. 1, where the shaded region
represents K-step reachable states.

A satisfying assignment to (1) represents an n-tuple of loca-
tions that can be changed to make an FK-state transition to an
S-state. Due to the inherent nature of FK , this may not be a
solution, as the chosen FK-state may not actually be reachable.
This means that some satisfying assignments of (1) may not
correspond to solutions as defined earlier. These are referred
to as spurious solutions.

(a) (b)

Fig. 2. FK -states (a) initially and (b) after spurious result from state t.

This kind of result is detected and rejected in the spurious
solution detection step as follows. Let t represent the chosen
FK-state. When a satisfying assignment is found to the for-
mula, it is verified by using PDR to determine if state t is
K-step reachable. If so, the solution is proven to be nonspuri-
ous, and is therefore added to the solution set. Additionally, a
blocking clause is added to the debugging instance to ensure
that the same solution is not found again. If t is found not to be
K-step reachable, the solution is discarded. As a side effect,
PDR refines its approximations and FK no longer includes
state t.

In practice, when a spurious solution is detected, the gener-
alization done by PDR may remove many other states that are
not K-step reachable from FK . This is shown in Fig. 2, where
after detecting a spurious result from state t, the more accu-
rate approximation shown in Fig. 2(b) is derived. This tends
to result in a rapid increase in the accuracy of the approx-
imations. The increased accuracy is expected to reduce the
chances of finding further spurious solutions.

Note that the spurious solution detection step may discard
nonspurious solutions. A solution that was found using current
state t may be discarded despite being nonspurious in two
cases. First, it may be the case that a fix can both make t
reachable and make an S-state reachable from t. The extension
presented in the next section uses a debugging instance with
multiple time-frames to find solutions that require reaching
other unreachable states before the chosen target state, and is
therefore better able to handle this case.

Next, it may be the case that state t is not K-step reachable
but is reachable in a larger number of cycles. This could be
remedied by using an unbounded call to PDR rather than a
check for K-step reachability in the spurious solution detec-
tion step. However, this sacrifices repeatability, as there are
random factors used in the generalization procedure of PDR.
As a result, different runs of the algorithm may give different
approximations. As such, the presence of a state that is not K-
step reachable in FK is dependent on randomness. Therefore,
if an unbounded call was used to detect spurious solutions the
results may be dependent on the random seed, which is not
desirable. The extension presented in Section III-C eliminates
this problem, by using an over-approximation of all reachable
states in place of FK .

Pseudocode for the procedure is shown in Algorithm 1.
The algorithm is called SCUNREACHABILITY, shorthand for
single-cycle unreachability, as it finds solutions that reach the
target one cycle after a reachable state. In that description, pro-
cedure EXTRACTSTATE extracts the chosen state of FK from a
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Algorithm 1 SCUNREACHABILITY(C, L,S, K, n)
1: Lsol = ∅
2: SC = state element set of C
3: PDR((SC, I, T),S, K)
4: U = FK ∧ Ten ∧ S ′ ∧ φn

5: while SAT(U) �= UNSAT do
6: t =EXTRACTSTATE(Solution)
7: if PDR((SC, I, T), t, K) = REACHABLE then
8: Solution = locations with active ES lines from SAT
9: Lsol = Lsol ∪ {Solution}

10: B = Blocking clause for Solution
11: Ten = Ten ∧ B
12: else
13: FK = updated formula extracted from PDR on line 7
14: U = FK ∧ Ten ∧ S ′ ∧ φn

15: end if
16: end while
17: return Lsol

satisfying assignment. Line 3 executes PDR directed at prov-
ing S is unreachable, implicitly computing FK . Note that we
assume S is unreachable, but additional steps could be taken
to prove it, terminating if it is found to be reachable. Line 4 of
the algorithm constructs the initial debugging instance for the
current iteration. The loop on lines 5–16 repeatedly finds sat-
isfying assignments. Line 7 checks if the found solution could
be spurious. If it is a real solution, line 9 records it, while
line 11 blocks the solution from being found again by adding
a clause to Ten. If the solution contains active error-select
lines ei1 , . . . , ein , the blocking clause is (¬ei1 ∨ · · · ∨ ¬ein).
Otherwise, the solution is discarded and PDR updates FK to
block state t. In this case, line 14 uses the newly updated FK

to update the debugging instance. The iteration continues until
the debugging instance is unsatisfiable, at which point line 17
returns the solution set.

This algorithm returns a particularly useful subset of the
complete solution set to the problem. Specifically, it returns
all solutions, where a change can make a target state reach-
able one cycle after a K-step reachable state. As demonstrated
empirically in Section V, this is often adequate to find the true
source of the error. Note that in Algorithm 1, FK is computed
based on the original transition relation T with no error-select
lines. If the user implements a change at a solution location,
it may change the behavior of the circuit such that the cho-
sen FK-state is not reachable. As is the case for traditional
SAT-based debugging techniques [10], care must be taken to
implement the fix correctly. A full verification step may be
needed after correcting the design to ensure correctness after
fixing the design.

B. Multicycle Approximate Unreachability

The approach of the previous section finds a useful subset
of the complete solution set. However, it is unable to find solu-
tions that require more than one transition to reach the target
state from some already-reachable state. In order to address
this limitation, this section extends the methodology to find

Fig. 3. Model used in SAT-based debugging for the multicycle case.

solutions, where a user-specified number of transitions are
required. As such, it requires an additional input parameter
N, referred to as the window size. As was the case for the
algorithm of the previous section, it requires the cycle limit
parameter K.

To achieve the above, this approach uses the same three
steps of reachable state space over-approximation, debugging,
and spurious solution detection. The key difference is in the
debugging step. Rather than using the debugging instance
of (1), it models and debugs a sequence of N state transi-
tions that starts at FK and ultimately transitions to S. As
such, it uses an ILA representation of the enhanced transi-
tion relation consisting of N time-frames. The current-state of
the first time-frame is constrained to FK , while the next-state
of the final time-frame is constrained to S. As before, the pri-
mary input and output are left unconstrained. The resulting
debugging instance is expressed as follows:

FK ∧ T1
en ∧ · · · ∧ TN

en ∧ S ′ ∧ φn (2)

where Ti
en denotes the enhanced transition relation in the ith

time-frame of the ILA. Intuitively, the cycle limit parameter K
represents the number of clock cycles for which the circuit’s
behavior is modeled by the approximation derived from PDR.
The window size N is the number of cycles for which the
algorithm is allowed to “look forward” for unreachable states
so that it ultimately reaches S. The debugging instance used
here is depicted in Fig. 3.

Rather than finding solutions that make a target state (K+1)-
step reachable, this approach finds solutions that may make the
target state (K + N)-step reachable. More specifically, it finds
the set of all solutions that may make the target state reachable
in N or fewer steps after a K-step reachable state. Essentially,
this represents a more general version of the approach in
the previous section. As demonstrated by empirical results in
Section V, this is particularly valuable in the case of pipelined
designs.

C. Unlimited Cycle Approximate Unreachability

The previous two sections present approaches, where a
fixed cycle limit K is used in modeling the set of poten-
tially reachable states. As mentioned in Section III-A, the
algorithm may discard a solution as being spurious when the
chosen state from the approximation is only reachable in a
number of cycles greater than K. This section extends the
methodology to find solutions that would be discarded in that
case. The extension presented here finds solutions that make
the target state reachable N or fewer steps following any
reachable state, and eliminates the need for the cycle limit
parameter.

To accomplish this, the reachable state space approxima-
tion step of the previous sections is essentially eliminated,
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Algorithm 2 UCUNREACHABILITY(C, L,S, n)
1: Lsol = ∅
2: SC = state element set of C
3: F∞ = ¬S
4: U = F∞ ∧ Ten ∧ S ′ ∧ φn

5: while (Solution = SAT(U)) �= UNSAT do
6: t =EXTRACTSTATE(Solution)
7: if PDR((SC, I, T), t,∞) = REACHABLE then
8: Lsol = Lsol ∪ {Solution}
9: B = Blocking clause for Solution

10: Ten = Ten ∧ B
11: else
12: V = inductive invariant extracted from PDR
13: F∞ = F∞ ∧ V
14: U = F∞ ∧ Ten ∧ S ′ ∧ φn

15: end if
16: end while
17: return Lsol

and in place of FK , an over-approximation of all reachable
states is used. This approximation is denoted by F∞ to distin-
guish it from the bounded approximations used in the previous
sections. The algorithm uses F∞ = ¬S as the initial approxi-
mation of the reachable state space rather than computing an
initial approximation with PDR. Subsequently, the debugging
step begins in an attempt to find solutions that allow reaching
a target state up to N steps after any F∞-state. The debugging
instance can be expressed as

F∞ ∧ T1
en ∧ · · · ∧ TN

en ∧ S ′ ∧ φn. (3)

The primary difference to the approaches of the previous
sections is in the spurious solution detection step. Upon find-
ing a satisfying assignment to (3), it is necessary to check if
the chosen F∞-state is reachable using an unbounded call to
PDR. As was the case before, if the chosen state is reach-
able, the solution is recorded and a blocking clause is added
to the debugging instance. Conversely, if the chosen F∞-state
is unreachable, PDR returns an inductive invariant proving this
fact. As explained in Section II-C, the inductive invariant is a
formula in CNF that over-approximates the reachable states.
It is conjoined to F∞ refining the approximation in a man-
ner that excludes the chosen unreachable state and possibly
excludes many other unreachable states.

This approach represents a half-step between the approxi-
mate approaches and the exact approach of the next section.
While this approach considers F∞, effectively similar to set-
ting K to infinity, it still returns a subset of the complete
solution set. Finding the complete solution set requires con-
sidering values of N up to infinity, or equivalently, considering
the possibility that an arbitrary number of currently unreach-
able states may need to be reached prior to reaching S. The
exact approach of the next section accomplishes this goal by
executing PDR against Ten rather than T .

Pseudocode for the procedure is shown in Algorithm 2. It
is presented as an extension of Algorithm 1, but can eas-
ily be modified to support a window size parameter as well.
The primary difference from Algorithm 1 is in lines 12

through 14. On line 12, the inductive invariant computed
by PDR is extracted. Subsequently, line 13 refines the over-
approximation of all reachable states using the inductive
invariant. Additionally note the absence of the initial call
to PDR before executing the debugging step. Otherwise, the
algorithm is structured similarly to Algorithm 1.

IV. EXACT UNREACHABILITY DIAGNOSIS

The approximate approach presented in the previous sec-
tion finds a particularly useful subset of the complete solution
set. However, it has two drawbacks. The first is that in order
to use it, the engineer must apply design knowledge to intel-
ligently select parameter values in order to balance runtime
with completeness of the solution set. The second is that it
does not guarantee that the returned solution set includes the
actual error source, limiting confidence in its results. While
the unbounded version presented in Section III-C somewhat
mitigates these issues by eliminating the cycle limit parameter,
it still is fundamentally limited due to the dependence on the
window size parameter. This section presents a methodology
that removes these drawbacks for one who is willing to trade
resolution for run-time performance.

The work of [25] presents a parameter synthesis technique
for infinite-state transition systems using generalized PDR
with a satisfiability module theories solver [26]. The tech-
nique determines parameters that guarantee a system maintains
desired safety properties. The parameters are analogous to
initial states in our approach. It operates by starting with
the parameters unconstrained and repeatedly finding counter-
examples. The counter-examples are used to refine the param-
eter values, and the process continues until the parameters
are such that the desired safety properties hold. By carefully
constructing the parameters (i.e., initial states) and transition
relation, the technique proposed in this section represents a
specialized application of the technique in [25].

The proposed methodology solves a series of unbounded
model checking instances using PDR. The instances are con-
structed using an enhanced FSM model of the circuit with
added hardware to facilitate diagnosis. An additional feature
key to the runtime performance of our approach is the incre-
mental use of the model checking algorithm. For ease of
presentation, the model checker is treated as a “black box”
until Section IV-C, which discusses internal behavior of the
model checker to clarify and justify the use of incrementality.
Section IV-D presents further optimizations dependent on the
internal behavior of the model checker.

A. Enhanced Model Construction

The enhanced FSM model behaves like the original circuit
with specific suspect locations replaced by unknown Boolean
functions. More specifically, the number of suspect locations
replaced is equal to the error cardinality n. Which suspect
locations are replaced depends on value assignments to the
error-select registers, which are new hardware added to the
circuit to facilitate diagnosis. They are similar to the error-
select lines used in SAT-based debugging and serve a similar
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Fig. 4. Error select register and multiplexer at suspect location li.

purpose, but are suitable for use in an unbounded model check-
ing problem. In particular, error-select lines are more similar
to inputs than to registers. However, using inputs to control
the replacement of suspect locations would allow the PDR
solver to choose different locations in each clock cycle. Using
registers and other hardware explained later in this section,
the problem instances are crafted such that the replacement is
consistent across clock cycles.

The enhanced model is denoted M = (S ∪ E, Ien, Ten), and
is constructed from that of the original circuit by adding a
set of error-select registers E = {e1, . . . , e|L|} and construct-
ing enhanced transition relation Ten along with the enhanced
initial state condition Ien. Given a trace of the enhanced model
tM,0, . . . , tM,m, the original circuit is said to have an equivalent
trace tC,0, . . . , tC,m if and only if the original registers in the
set S have the same value assignments in state tM,i and tC,i

for all 0 ≤ i ≤ m.
The enhanced transition relation is constructed from that

of the original circuit by inserting additional hardware to
facilitate diagnosis. For each suspect location li, an associ-
ated error-select register ei, and free variable wi are added.
Subsequently, new hardware is constructed such that if ei = 1,
li is effectively disconnected from its fanout and replaced by
wi. If ei = 0, the circuit’s behavior is unaffected. In other
words, the value assigned to ei controls whether or not li is
replaced by a free variable. As is explained later, an important
aspect of the enhanced model’s behavior is that the chosen ini-
tial state from Ien dictates which suspect locations are replaced
by free variables. As a result, while the model checker is free
to choose any initial state from Ien, the values for each ei are
not allowed to change during state transitions. This necessi-
tates a constraint enforcing that e′

i = ei for all error-select
registers. Without this constraint, the values assigned to the
error-select registers would be allowed to change during state
transitions, and therefore the initial state would not dictate
which suspect locations are replaced.

This construction can be implemented using a multiplexer
and a register. The multiplexer has 0-input li, 1-input wi,
and select line ei. The output of the multiplexer is denoted
zi and is connected to the original fanout of li. This enforces
the required behavior, where the value assigned to ei controls
whether or not li is replaced by a free variable. The register
enforces the constraint that e′

i = ei. This can be implemented
by feeding its output back to its input. Fig. 4 depicts this mul-
tiplexer and error-select register construction. The enhanced
transition relation is derived from the circuit with the added
hardware. The following example illustrates the behavior of

(a) (b)

Fig. 5. (a) Original circuit. (b) Circuit of Ten (added registers omitted).

Ten and will be used to explain various aspects of the algorithm
throughout this section.

Example 1: Consider the circuit of Fig. 5(a). It has a single
state element s1, two primary input signals x1 and x2, and two
suspect locations are indicated as l1 and l2. Assume that the
initial state is represented by the cube s̄1 [i.e., I = (s̄1)]. It
can easily be verified that it is impossible to reach a state in
which s1 = 1. To diagnose this unreachability, given S = (s1),
L = {l1, l2}, and I = (s̄1), the enhanced transition relation
is constructed from the circuit shown in Fig. 5(b). When
e1 = e2 = 0, this circuit behaves identically to the origi-
nal. When e1 = 1, l1 is replaced by the free variable w1,
which allows it to assume any value during model checking.
This effectively replaces l1 with an arbitrary unknown Boolean
function. Similar behavior applies to l2 and e2.

The only remaining component of the enhanced model is
Ien. As mentioned earlier, we associate the reachability of par-
ticular states under the enhanced model with a specific n-tuple
of locations being a solution. Toward the goal of constructing
Ien, consider a trace of the enhanced model. As Ten has a con-
straint enforcing e′

i = ei for all error-select registers, all states
in the trace must have the same active error-select registers
ei1 , . . . , eim . The enhanced model therefore behaves like the
original circuit with li1, . . . , lim replaced by free variables. It
can be concluded that the original circuit has an equivalent
trace if the Boolean functions at those locations are simulta-
neously replaced by different functions. If this trace contains
an S-state, then simultaneously replacing li1 , . . . , lim makes a
target state reachable.

Now consider a trace of the enhanced model that starts
from an I-state, ends on an S-state, and has exactly n active
error-select registers ei1 , . . . , ein . Using the argument from the
previous paragraph the original circuit has an equivalent trace
when li1 , . . . , lin are replaced with unknown Boolean func-
tions. The equivalent trace starts from an initial state and ends
at a target state, so replacing these n locations makes a target
state reachable. In other words, li1 , . . . , lin is a solution of car-
dinality n. This argument applies to any trace satisfying these
three properties. The algorithm is intended to find such traces.

This motivates the construction of the enhanced model’s
initial state formula Ien. The original registers of the circuit
are constrained with the original initial state formula I. This
ensures that traces of the enhanced model begin on an I-state.
Since exactly n error-select registers must be active, the error-
select registers are constrained using a cardinality constraint
φn. The enhanced initial state formula is therefore Ien = I∧φn.
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This completes the construction of the enhanced model, though
it still remains to tailor the algorithm to find traces with the
final requirement of ending on an S-state. Intuitively, this is
handled using the property given to the model checker, as
explained later. The following example builds on the previous
one to clarify the behavior of the enhanced model.

Example 2: Consider once again the circuit of Fig. 5.
Assuming an error cardinality of one, the enhanced initial state
condition is Ien = I ∧ φ1. Therefore, Ien = (s̄1) ∧ (e1 ∨ e2) ∧
(ē1 ∨ ē2). Representing states as cubes, the set of states satis-
fying Ien is {(s̄1 ∧ e1 ∧ ē2), (s̄1 ∧ ē1 ∧ e2)}. Notice that these
are all states in which s1 = 0, corresponding to initial states
of the original circuit. Additionally, every Ien-state has exactly
one active error-select register. Therefore, these states meet the
requirements for initial states of traces that indicate solutions.

B. Finding Solutions With PDR

As mentioned earlier, the final requirement for a trace to
indicate a solution is that it must end on an S-state. This
is accomplished simply by using S as the unsafe state for-
mula when calling PDR. If any target state is reachable, then
PDR will return REACHABLE along with a counter-example
trace that meets the requirements previously described. If
ei1 , . . . , ein are the active error-select registers in the counter-
example, then li1 , . . . , lin is a solution. The following example
demonstrates the process of finding a solution.

Example 3: Continuing the illustration of the methodology
from the previous example, recall that the target state condi-
tion is S = (s1) and the initial state condition is I = (s̄1).
The enhanced model has the following counter-example trace:
〈t0, t1〉 = 〈(s̄1 ∧ ē1 ∧ e2), (s1 ∧ ē1 ∧ e2)〉. Notice that t0 corre-
sponds to an initial state of the original circuit, t1 is a target
state, and e2 is the active error-select register. In states t0 and
t1 the model behaves identically to the original circuit with l2
replaced by an unknown function. Since t0 is an initial state
and t1 is a target state, replacing l2 with a different func-
tion makes a target state reachable in the original circuit. This
indicates that location l2 is a solution. Indeed, the reader can
confirm that replacing the AND-gate that drives l2 with an
OR-gate makes the target state reachable. Other corrections to
the problem are also possible.

After a finding a solution, it is necessary to continue search-
ing for additional solutions, if any. This is accomplished by
modifying Ien to exclude a solution after it is found. If a
solution li1 , . . . , lin is found, then Ien is updated by conjoin-
ing the blocking clause (¬ei1 ∨ · · · ∨ ¬ein). This prevents
PDR from finding any further counter-examples in which all
of those same error-select registers are active. By repeating
this procedure, eventually the algorithm will reach a point,
where no Ien-state can reach an S-state. When this occurs,
the algorithm terminates. The following example builds on
the previous one to demonstrate the procedure of blocking a
solution and terminating.

Example 4: In the previous example, the solution l2 was
found. After blocking it by conjoining the clause (¬e2), the
enhanced initial state condition becomes Ien = (s̄1)∧(e1∨e2)∧
(ē1 ∨ ē2) ∧ (ē2), leaving (s̄1 ∧ e1 ∧ ē2) as the only remaining

Algorithm 3 UNREACHABILITY(C, L,S, n)
1: Lsol = ∅
2: SC = state element set of C
3: Ten, E = CONSTRUCTMODEL(L, C)
4: Ien = I ∧ φn

5: M = (SC ∪ E, Ien, Ten)

6: while PDR(M,S,∞) == REACHABLE do
7: ei1 , ..., ein = active error-select registers in trace
8: Lsol = Lsol ∪ {(li1, ..., lin)}
9: B = (¬ei1 ∨ ... ∨ ¬ein)

10: Mblk = (SC ∪ E, Ien ∧ B, Ten)

11: M = Mblk

12: end while
13: invariant = inductive invariant extracted from PDR
14: return (Lsol, invariant)

initial state. It is easily verified that this state cannot reach any
target states. Therefore, we can infer that l1 is not a solution.
This is indeed the case. To reach a state, where s1 = 1 the
output of the AND-gate must be 1. In the initial state s1 =
0, so regardless of the value at l1 the AND-gate will never
output 1. Therefore, there is no way to modify the circuit at
l1 to rectify the unreachability of the target state.

Pseudocode for the procedure is shown in Algorithm 3.
In that description, algorithm CONSTRUCTMODEL receives
input L and C and returns the enhanced transition relation
and error-select register set. Lines 3–5 construct the enhanced
FSM model that is used by PDR. Lines 6–12 contain the main
loop in which solutions are found. If a solution exists, it is
extracted (line 7) and added to Lsol (line 8). Line 10 constructs
a new model Mblk in which the solution is blocked, while the
next line updates M. The distinction between M and Mblk is
intended to simplify the discussion in Section IV-C. As the
number of suspect locations is finite, the loop will eventually
terminate. At this point, PDR indicates S is unreachable and
an inductive invariant is extracted (line 13). Finally, Lsol and
the proof of solution completeness are returned in line 14.

C. Incremental PDR

The previous section treats PDR as a black box to main-
tain conceptual simplicity. However, we note that the model
changes only very slightly between consecutive calls to PDR.
For a small change in the model, it is expected that many of
the invariants may remain valid [27] and therefore substantial
performance gains may be achieved by applying PDR incre-
mentally. This section uses the internal behavior of PDR and
the structure of Algorithm 3 in order to explain the incremental
use of the model checking algorithm. In this context, incre-
mentality means that each call to the model checker reuses
the inductive trace from the previous run. This is of critical
importance to the runtime of the algorithm, as in Algorithm 3,
each solution requires an additional call to PDR. In the worst
case, this requires a total of

(|L|
n

)
calls, suggesting that the

performance gains that can be achieved with incrementality
may be significant.
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As explained in Section II-C, PDR maintains a sequence
of CNF formulas F = 〈F0, . . . , Fk〉 called the inductive
trace. Each Fi and each clause c of Fi are i-step invariants.
Additionally, they satisfy initiation, meaning that Ien ⇒ c. The
work of [27] presents an invariant finder that determines which
invariants computed under one model are also invariant under
another model. This provides a means for the reuse of a por-
tion of the inductive trace after changing the model by, e.g.,
modifying the initial states as Algorithm 3 does. It involves
executing a series of SAT queries to determine which clauses
are usable with the new model. However, it is in fact possible
to exploit the structure of the model updates in Algorithm 3
to reuse every clause without the additional verification steps
required by [27]. To demonstrate this, we show that after
updating Ien, for each clause c in each formula Fi, the updated
Ien ⇒ c and c is i-step invariant for the new model.

Consider the state of Algorithm 3 immediately after execut-
ing line 10. The first requirement is that Ien ∧B ⇒ c for every
clause c of every formula Fi of the inductive trace. This fol-
lows immediately from the fact that Ien ⇒ c by the behavior
of PDR and that (Ien ∧ B) ⇒ Ien trivially.

The proof of the latter requirement (i.e., each clause c of
Fi is also i-step invariant for Mblk), ultimately arises from
the fact that the reachable state set of Mblk is a subset of
that of M. This implies that any over-approximation of the
reachable states of M also over-approximates the reachable
states of Mblk. An i-step invariant simply over-approximates
the i-step reachable states, and so intuitively one would expect
the i-step invariants from M to also hold for Mblk. Lemma 1
provides a first step toward proving this claim by showing that
conjoining the blocking clause B from line 9 of Algorithm 3 to
Ien does not make any previously unreachable states become
reachable.

Lemma 1: All B-states that are not i-step reachable under
M are not i-step reachable under Mblk for all i ≥ 0.

Proof: Consider a B-state t that is not i-step reachable under
M. Assume toward a contradiction that it is i-step reachable
under Mblk. For some m ≤ i the model Mblk must have a trace
t0, . . . , tm, where t0 is an (Ien ∧ B)-state and tm = t. As all
literals of B are error-select registers and t is B-state, t0 is
also a B-state. This is because the error-select registers cannot
change their value assignments.

Both models M and Mblk have the same transition relation.
Therefore, each transition in the trace is valid under M. As a
result, t is only unreachable under M if t0 is not an Ien-state.
This is a contradiction as t0 is an (Ien ∧ B)-state and it has
already been shown that (Ien∧B) ⇒ Ien. Therefore, all B-states
that are not i-step reachable under M are not i-step reachable
under Mblk.

As the lemma shows, blocking a solution in Algorithm 3
does not make any unreachable B-states reachable. Further,
it clearly makes all ¬B-states unreachable. These two facts
together imply that no unreachable states of Mblk are reach-
able under M. Allowing R (Rblk) to denote the set of reachable
states under M (Mblk), clearly Rblk ⊆ R. It still remains to
show how this implies that invariants of M are invariants of
Mblk. To provide some intuition behind this reasoning, con-
sider a clause c that is invariant for M, which implies that it

(a) (b)

Fig. 6. State space representation of (a) M and (b) Mblk.

over-approximates R. It must also over-approximate Rblk, as
depicted in Fig. 6.

The discussion above focused on invariants of M, but the
same reasoning applies to i-step invariants as demonstrated by
the following theorem.

Theorem 1: All clauses that are i-step invariant under M
are i-step invariant under Mblk.

Proof: Let c be a clause that is i-step invariant under M.
Assume toward a contradiction that c is not i-step invariant
under Mblk. This implies that there is a ¬c-state t that is i-step
reachable under Mblk. Additionally, since c is i-step invari-
ant for M and t is a ¬c-state, t must not be i-step reachable
under M.

Since t is i-step reachable under Mblk and not M, by
Lemma 1 it is a ¬B-state. No ¬B-states are reachable under
Mblk, contradicting the assumption that c is not i-step invariant
under Mblk.

Theorem 1 proves that it is possible to reuse the entire
inductive trace from previous calls to PDR without apply-
ing any verification steps. That is, the execution of PDR
on line 6 of Algorithm 3 can be done incrementally. This
results in a substantial reduction of the algorithm’s runtime,
as demonstrated by empirical results presented in Section V.

D. Performance Optimization

The algorithms presented in this paper make extensive
use of incremental PDR, and as demonstrated by results in
Section V, they gain substantial performance benefits from
incrementality. However, each clause in the inductive trace
incurs some runtime overhead within the PDR solver. In partic-
ular, the proof detection step attempts to push clauses forward
from Fi to Fi+1 for 1 ≤ i ≤ k in an effort to produce an induc-
tive invariant. This requires an SAT query for each clause in
the inductive trace, which can have a substantial runtime cost.
This can be particularly expensive when applying incremental
PDR, as each model checking query tends to add new clauses
to the inductive trace.

The model checking algorithm of Quip [6] is based on
PDR, but adds additional reasoning capabilities. Critically, it
has a concept of “bad” clauses, which are clauses that will
never appear in an inductive invariant. This occurs when a
clause c excludes a reachable state, i.e., a ¬c-state is reach-
able. Intuitively, if a ¬c-state is reachable, c cannot appear in
a CNF formula that over-approximates the reachable states,
meaning c is bad. When this condition is detected, there is
no need to attempt to push clause c forward, as it will never
appear in the proof.
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TABLE I
DETAILS OF BENCHMARK CIRCUITS

In Algorithm 3, we therefore use a modified incremental
PDR solver that incorporates this feature. When failing to push
a clause forward, the solver performs an extra query to detect
if the clause is bad. As is the case for [6], this essentially
involves a recursive call to PDR. For a clause c that cannot
be pushed from Fi to Fi+1 under model M, the PDR query is
PDR(M,¬c, i + 1). If this query returns REACHABLE, then a
¬c-state is (i + 1)-step reachable and c is detected to be bad.
Further attempts to push it forward will be skipped, as it will
never be pushed successfully. Conversely, if the query returns
UNREACHABLE, then c is successfully pushed forward.

However, as more solutions are found more states become
unreachable. In particular, after blocking a solution li, all states
in which ei = 1 are made unreachable. Some clauses that
are marked bad may no longer be bad after blocking. Two
approaches are suggested to deal with this. The first is to sim-
ply ignore it and allow the solver to relearn such clauses on
an as-needed basis. The second is to note which error-select
registers are active in a counter-example trace that leads to
the detection of a bad clause. Subsequently, when a solu-
tion is blocked, any clauses that were marked bad due to a
counter-example with the same active error-select registers are
unmarked. In the experiments of Section V, the latter approach
is used, as the overhead of doing so is minimal.

Additionally, when the above query returns REACHABLE,
the counter-example trace returned by PDR contains a set of
reachable states. Each clause in the inductive trace is com-
pared against all of the states in the trace. If any clause
excludes any known reachable state, it is marked as bad.
These states are also stored to be compared against clauses
learned in the future. Ultimately, this optimization mitigates
the runtime overhead from the constantly growing number of
clauses. However, it may also introduce extra overhead from
the added bad clause detection queries. For this optimization
to be successful, we expect two conditions must be met. The
first is that numerous bad clauses are detected. The second
is that the inductive trace found by PDR is long, meaning
that many attempts are made to push lemmas forward. Under
these two conditions, the amount of run-time saved by not
trying to push bad lemmas is expected to outweigh the added
overhead.

V. EXPERIMENTS

All results presented in this section are executed on a sin-
gle core of a workstation running Linux with an i5-3570
CPU clocked at 3.4 GHz and 16 GB of RAM. The proposed
algorithms are implemented using a state-of-the-art SAT-based
debugging algorithm [10] and a reference implementation of
PDR [2]. Experiments are timed out after 12 h. Five problem
instances from the HWMCC’15 safe track are used, along with
seven derived from OpenCores designs [21]. The hardware
model checking competition (HWMCC) problem instances are
constructed directly from the HWMCC circuits, with the goal
of finding solutions to make the given bad (i.e., unreach-
able) state reachable. The OpenCores problem instances are
constructed by manually injecting common design errors that
make at least one state unreachable. The chosen design errors
are those typically observed in industry, such as complemented
conditions in if-statements, changed operators, etc. The sus-
pect set L is chosen to include every design location in the
cone-of-influence of the target state. All experiments are exe-
cuted using error cardinality n = 1. Higher error cardinalities
can be handled in the same manner as in the work of [10],
and as such are not a contribution of this paper.

A bounded model checking (BMC)-like approach was also
implemented to compare against the approximate approach.
From each value of M from 1 to (K + N), M time-frames are
unrolled. If M ≤ N, all M time-frames are constructed from
Ten. Otherwise, (M − N) time-frames are constructed from T
and N from Ten. This mimics the approach of Section III-B
and finds the same solution set, but replaces the PDR-derived
approximations with concrete instantiations of the transition
relation.

When running the exact approach on circuits with 10 000
or more suspects, suspects are checked in batches of 5000.
That is, 5000 arbitrary suspects are put in the set L and the
algorithm is executed. After it terminates, 5000 different sus-
pects are chosen. This repeats until every suspect has been
considered. This is necessary because each suspect location
introduces a register into the design, which can cause sub-
stantial slowdowns in PDR for large values of |L|. Limiting
the number of suspects in this manner presents a tradeoff
between repeated computation due to aspects of the problem
that are common to the different suspect batches, and the slow-
downs from adding more registers. This approach still finds
the complete solution set to the problem, it merely represents
a performance-tuning heuristic. It may be possible to iden-
tify approaches to batch the suspects in a manner that further
improves performance, but in this paper they are grouped into
batches arbitrarily. Grouping the suspects into batches in a
manner that improves performance is a topic of future work.

Table I shows the details of the benchmark circuits. The five
columns show the name of the problem instance, number of
gates, number of suspect locations, number of solutions, and
percentage of suspect locations that are solutions, respectively.
The number of gates is derived from the circuit’s and-inverter
graph [28] representation, and gates that are not in the cone-of-
influence of the registers defining the target state are removed.
Table II shows comprehensive results. The first column shows
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TABLE II
RUNTIME AND SOLUTIONS FOUND

the name of the benchmark. The next nine columns show
the speedup of the proposed approach relative to the exact
approach, the speedup of the equivalent BMC-like approach
relative to the exact approach, and the fraction of solutions
found for variants of the approximate approach. The next four
columns show the same information for Algorithm 2, omit-
ting the equivalent BMC speedup as no BMC-like equivalent
exists for this algorithm. The last column shows the runtime
of the exact approach without the optimization discussed in
Section IV-D. That optimization is evaluated separately later in
this section. The number of solutions for the exact approach is
omitted as it finds every solution. The “average” row shows the
geometric mean of the speedup columns (as it can range from
0 to infinity) and arithmetic mean of the fraction of solutions
found columns (as it has a fixed range from 0% to 100%).

The results in Tables I and II clearly demonstrate the effec-
tiveness of the presented algorithms and the tradeoffs between
them. It can be seen that the entire solution set to the problem
tends to be a small portion of the design locations, with a
median of 1.55% and an average of 16.5% of the design
locations being solutions. In six cases, the fastest approxi-
mate configuration tested (K = 20, N = 1) is adequate to
find the entire solution set. In every benchmark, the approx-
imate approach with K = ∞ and N = 5 is able to find at
least 80% of the solution set. It can also be seen that the
proposed approximate approaches compare favorably against
a BMC-like equivalent, especially for large values of K.

Fig. 7 visualizes the number of solutions found for
the fastest approximate configuration tested and the exact
approach. It can be seen that the approximate approach effec-
tively presents a configurable tradeoff between runtime and
number of solutions found (i.e., resolution). In the fastest
configuration tested, it provides an average speedup of 31×
while finding an arithmetic mean of 63% of the solution set.
Increasing the window size to 5 reduces the speedup to 12.8×,
but increases the fraction of solutions found to 79.9%. Note
that in this configuration, K was accordingly reduced to 16
to keep K + N constant between the two configurations. The
unlimited cycle unreachability approach of Section III-C finds

Fig. 7. Solutions found by E and A (K = 20 and N = 1) approaches.

an even larger portion of the solution set, but requires even
more runtime. Naturally, the exact approach finds the full
solution set but requires the greatest runtime. It additionally
confers greater confidence in its results, as the user can be
assured that the true error source is in the solution set.

A. Approximate Approach

It can be seen that in many cases, the approximate approach
is adequate to find the complete solution set to the problem.
For the divider benchmark, however, the window size
parameter seems to have a profound impact on the number of
solutions found. Fig. 8 plots the number of solutions against
the window size for divider. Recall, from Table I the total
number of solutions is 38. It can be seen that a small number
of solutions are found for small N, and the number gradually
increases with increasing values of N. Finally, it plateaus at
N = 10. This is because the error occurs in a pipelined por-
tion of the design, which has eight stages. When N = 1, the
algorithm is only able to find locations, where the effect of
the change propagates to the registers that define the target
state within one cycle. In other words, it can only find solu-
tions in the one-step cone-of-influence of the target state. In
the divider benchmark, this is essentially the output stage
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Fig. 8. Solutions versus window size for divider (K = 20).

Fig. 9. Solutions versus cycle limit for shift1add256 (N = 1).

of the pipeline. Increasing N allows solutions to be found in
other pipeline stages. This matches the observed results, as
four additional solutions are found each time N is increased,
until it plateaus after N = 9.

The cycle limit parameter also impacts the number of solu-
tions found in many cases. Fig. 9 plots the number of solutions
found versus the cycle limit for shift1add256, which has
a total of 59 solutions. It can be seen that the majority of
solutions are found with very high values of K. In particular,
when increasing K from 255 to 256, 35 additional solutions
are found. One further solution is found by increasing K from
256 to 257. As many solutions only appear at high values of
K, it can be inferred that some states are only reachable in a
large number of cycles for this circuit, and that many states
relevant to this problem can only be reached after 256 cycles.
Further, no value of K is large enough to find all solutions
when N = 1, as evidenced by the fact that the unlimited cycle
approximate approach finds only 40 out of 59 total solutions
when N = 1.

Naturally, adjusting these parameters can also impact run-
time. Fig. 10 plots the number of solutions found and runtime
against N for the bjrb07amba1 benchmark. Fig. 11 plots
those metrics against K for shift1add512. Each of these
benchmarks has substantial variation in the number of solu-
tions when varying the respective parameter (K or N). It can

(a) (b)

Fig. 10. Solutions and runtime versus N for bjrb07amba1 (K = 100).

be seen that the runtime appears to scale somewhat similarly to
the number of solutions found as K increases, with both met-
rics increasing sharply around K = 512. When considering N,
runtime seems to scale up as N increases. The upward trend in
runtime with increasing N is intuitive, as the SAT-based debug-
ging steps become more complex when more time-frames are
added.

However, the close tracking with the number of solutions
as K increases appears less intuitive. This occurs because
the presence of solutions tends to lead to several reachability
checks. Obviously a solution’s presence in L requires at least
one reachability check to verify that it is a solution. In practice,
it tends to be the case that there are multiple FK-states that
can transition to the target state if a solution’s corresponding
error-select register is activated. Some of those states may not
be K-step reachable, and which one the SAT solver chooses
is essentially random. If the SAT solver chooses a non-K-step
reachable state, the suspect is discarded as a spurious solution.
This can happen several times before a K-step reachable state
is chosen, resulting in a suspect being detected as spurious
several times before finally being proven as a real solution.

Table III demonstrates this phenomenon. The first column
shows the name of the benchmark. The next two show the
values for K and N, respectively. Columns 3 and 4 contain
the number of spurious solutions discarded and the number of
spurious solutions discarded that were not later found to be
real solutions. The final column shows the number of distinct
locations that were found to be spurious solutions. That is, if a
location is found to be a spurious solution multiple times, it is
only counted once. It can be seen that in many cases, a large
majority of the solutions detected as spurious were later found
to be real solutions. This demonstrates how the presence of
solutions in L can lead to more reachability checks than might
be expected. Additionally, from the small number of unique
spurious solutions, it can be seen that in many cases, a small
number of troublesome locations give rise to a large number
of spurious solutions, and therefore reachability checks.

B. Exact Approach

As it returns the complete solution set, the exact approach
has no parameters that allow it to tradeoff runtime versus the
number of solutions found. However, two key performance
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TABLE III
SPURIOUS SOLUTIONS FOUND FOR SELECTED BENCHMARKS

(a) (b)

Fig. 11. Solutions and runtime versus K for shift1add512 (N = 2).

optimizations are proposed in this paper. Section IV-C pro-
poses the use of incrementality and Section IV-D proposes
a performance optimization, where bad lemmas are pruned.
Table II displays runtime for the incremental approach with-
out bad clause pruning. This is because incrementality is
consistently a performance gain, whereas bad lemma prun-
ing introduces extra overhead and in some cases can result in
increased runtime.

Table IV compares the runtime of the exact approach with
various optimizations turned on. The first column shows the
name of the benchmark. The second shows the level at which
a proof is discovered during model checking using PDR.
The next six show the runtime and speedup for the incre-
mental approach, the incremental approach with bad clause
pruning, and the nonincremental approach without pruning,
respectively. It can be seen that the pruning causes sub-
stantial speedups in some cases (e.g., shift1add256) and
slowdowns in other cases (e.g., sudoku).

As mentioned in Section IV-D, it appears to be effective
in cases, where a long inductive trace is needed, such as the
shift1add256 benchmark. With a long inductive trace, not
pushing bad clauses forward saves substantial runtime. While
the optimization appears to be effective in limited situations,
problems involving long inductive traces can be particularly
expensive. The optimization may have substantial value in
these cases. As we expect our approaches would be applied
after model checking to prove the target state unreachable,
the level at which a proof is discovered could provide a

TABLE IV
COMPARISON OF EXACT APPROACH OPTIMIZATIONS

rough proxy for the applicability of this optimization. If model
checking requires a long inductive trace, we expect our debug-
ging approaches to require the same, providing guidance as to
whether or not to apply this optimization.

On the other hand, incrementality is a consistent
performance benefit. While it does introduce some overhead
as there are potentially more clauses in the inductive trace, in
all cases this is more than compensated for by the saved effort.
Evidently, many of the clauses that were learned in earlier calls
to PDR remain relevant for later calls. Incrementality appears
to offer a greater benefit to problem instances with more solu-
tions (e.g., wb). This is as expected, as in the nonincremental
version of the approach, each solution results in a new call to
PDR. Without incrementality, each call starts with no induc-
tive trace, and therefore must learn all new clauses. In practice,
since very little changes are made to the model between sub-
sequent calls, it is expected that many of the clauses from the
previous run must be relearned, resulting in significant repeti-
tion. Additionally, the presence of clauses from previous runs
increases the accuracy of the inductive trace, and allows PDR
to learn “better” clauses. This occurs because fewer unreach-
able states satisfy each Fi, and therefore generalization is more
effective. Across all circuits, incrementality offers a 23.9x
speedup.

VI. CONCLUSION

Modern verification environments often seek to verify
liveness properties in addition to safety properties. While
automation is available to aid in debugging failed safety prop-
erties, debugging failed liveness properties is a predominantly
manual task. This paper presents methodologies to diagnose
erroneously unreachable states. The first is an approximate
approach that uses steps of state space approximation, SAT-
based debugging, and spurious solution detection to find a
subset of all solutions to the problem. The second is an
exact approach that solves unbounded model checking prob-
lems using an enhanced FSM model of the circuit to find
all solutions to the problem by making extensive use of
incremental PDR. Experiments are presented demonstrating
the tradeoffs between the presented approaches. The exact
approach provides a means of finding the entire solution
set to the problem, but may require substantial runtime.
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The approximate approach provides the user with a config-
urable tradeoff between runtime and resolution. The experi-
ments further demonstrate the substantial benefits achieved by
applying PDR in an incremental fashion.
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