
Design Diagnosis Using Boolean Satisfiability ∗

Abstract

Recent advances in Boolean satisfiability have made it
an attractive engine for solving many digital VLSI de-
sign problems such as verification, model checking, op-
timization and test generation. Fault diagnosis and
logic debugging have not been addressed by existing
satisfiability-based solutions. This paper attempts to
bridge this gap by proposing a satisfiability-based so-
lution to these problems. The proposed formulation is
intuitive and easy to implement. It shows that satisfi-
ability captures significant problem characteristics and
it offers different trade-offs. It also provides new op-
portunities for satisfiability-based diagnosis tools and
diagnosis-specific satisfiability algorithms. Theory and
experiments validate the claims and demonstrate its po-
tential.

Alexander Smith Andreas Veneris Anastasios Viglas

University of Toronto University of Toronto University of Toronto

Dept ECE Dept ECE and CS Dept CS

Toronto, ON M5S 3G4 Toronto, ON M5S 3G4 Toronto, ON M5S 3G4

smith@eecg.toronto.edu veneris@eecg.toronto.edu aviglas@cs.toronto.edu

1 Introduction

The digital VLSI design cycle commonly starts with
a behavioral description (specification) coded in some
Hardware Description Language (HDL) (Fig. 1). This
specification is translated to a Register-Transfer Level
(RTL) description and synthesized into a gate-level
(logic) implementation. Design validation and optimiza-
tion steps guarantee the correctness of the product from
design errors as well as its performance according to the
specification. Subsequent steps involve placement, rout-
ing and physical optimization before the chip is fabri-
cated. Diagnosis and failure analysis are the last steps
before it is shipped to the customer. If the fabricated
chip fails testing, it undergoes failure analysis.

Recent years have seen an increased use of Boolean
Satisfiability (SAT) based tools in the design cycle. De-
sign verification and model checking [3] [4] [8] [10], test
generation [7], optimization [12] and physical design
[14], among others, have been successfully tackled with

∗The research of the first two authors was supported in part by
the Natural Sciences and Engineering Research Council of Canada
(NSERC) under Contract #227044–02.

SAT-based solutions. This is due to recent advances
in SAT solvers [9] [11] that make them efficient plat-
forms to solve these problems. It has also been reported
[10] that problems with SAT based formulations for in-
dustrial circuits are usually solved in polynomial time.
This is favorable because they are intractable and the
worst-case behavior of a complete algorithm today is
exponential.

Although SAT-based solutions have tackled many cir-
cuit design problems, design diagnosis has not yet been
addressed in existing literature. Given an erroneous de-
sign, a specification and a set of input test vectors, di-
agnosis identifies malfunctioning portions of the design.
Diagnosis is integral to failure analysis in helping to im-
prove the design cycle, increase manufacture yield and
shorten the time-to-market window [2] [6].

Depending on the stage of the design cycle, shown in
Fig. 1, and the type of malfunction (“soft” or “hard”),
diagnosis is required during design error diagnosis (logic
debugging) and during fault diagnosis. Design error di-

agnosis occurs in early stages of the design cycle where
the specification is some HDL (or RTL) description and
the design is a logic netlist. Malfunctions are caused by
specification changes, bugs in automated tools or the
human factor [1]. Logic debugging identifies lines and
corrections in the erroneous netlist that correct it ac-
cording to a specification. Fault diagnosis occurs when
a fabricated chip fails testing. Given a faulty chip and
a netlist, fault diagnosis identifies locations in the cor-
rect netlist by injecting faults into it until the netlist
emulates the behavior of the faulty chip. Since both
problems have similar goals, we describe this work in
terms of fault diagnosis unless otherwise stated.

It is notable that diagnosis is an inherently difficult
problem because the solution (search) space grows expo-
nentially with the number of circuit lines, the number of
faults and the various fault models : diagnosis space =
(# ckt lines)(# errors). This is because the specifica-
tion (HDL or the failing chip) is treated as a “black
box” controllable at the primary inputs and observable
at the primary outputs (Fig. 2). Due to this complex-
ity, development of efficient diagnosis tools remains a
challenging task.



Motivated by these observations, we present a SAT-

based solution to design diagnosis of multiple faults. The
formulation is intuitive, straightforward to implement
and decouples diagnosis from fault modeling, if neces-
sary. Model-free diagnosis is a desirable characteristic
for modern devices where fault effects may have a non-
deterministic (unmodeled) behavior [2]. However, the
method is easily extended to model-based diagnosis when
fault models are available.

It should be noted that in this work we do not de-
velop a SAT solver, but propose a SAT-based solution
to fault diagnosis where existing solvers can be utilized.
We argue that SAT naturally captures essential char-
acteristics of diagnosis and structural circuit properties.
We also examine different implementation trade-offs and
heuristics. To the best of our knowledge, this is the first
work to examine design diagnosis using SAT. Experi-
ments with multiple faults demonstrate the efficiency
and practicality of the approach.

This paper is organized as follows. Section 2 con-
tains background information and definitions. Section 3
describes the proposed SAT-based formulation and its
characteristics. Section 4 contains experiments and the
last Section concludes this work.

2 Background

Traditionally, diagnosis techniques are classified as
cause-effect or effect-cause techniques [6]. Cause-effect
analysis usually compiles fault dictionaries. Given a
failing chip and a set of vectors v1, v2, . . . , vk from the
tester, the chip responses are matched with those in the
dictionary to return set of potential faults for each vec-
tor. Effect-cause analysis does not use fault dictionaries
but simulates input vectors and applies different tech-
niques to identify candidate faults.

In both cases, sets of candidate faults F1, F2, . . . , Fk

are returned. When each Fi is injected in the netlist,
it explains the (faulty or non-faulty) behavior of test
vector vi alone. These sets are later intersected F =
F1 ∩F2 ∩ · · · ∩Fk to return set F of faults that explains
the chip behavior for all vectors v1, v2, . . . , vk.

The quality of diagnosis is related to its resolution,
that is, its ability to return in F the line(s) where
fault(s) reside. Due to fault equivalence [6], a solution
may not be unique. Ideally, a solution contains only the
actual and equivalent fault sites to make it easier for the
designer to probe these sites.

In this work, we consider combinational circuits with
primitives AND, OR, NOT, NAND, NOR, XOR and XNOR gates
and full-scan sequential circuits with a fault-free scan-
chain. We use Conjunctive Normal Form (CNF) SAT
instances expressed as a logical AND (·) of clauses, each
of which is the OR (+) of one or more literals. A literal
is an instance of a variable x or its negation x′. We
use the procedure in [7] to translate logic circuits into

 HDL

Synthesis

Synthesis
RTL

Logic 

Physical
Design

 specification

Fault
Diagnosis

Diagnosis
Error
Design

CHIP

Figure 1: Digital VLSI design flow

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

SPEC

NETLIST

Figure 2: Fault diagnosis and logic debugging

CNF form. Given a CNF formula, a SAT solver finds
a variable assignment that satisfies the formula or it
proves that the formula cannot be satisfied.

Without loss of generality, we describe our algorithms
on circuits with m primary inputs X = x1, x2, . . . , xm

and a single primary output y = f(x1, x2, . . . , xm) =
f(X). The method is easily generalized to multiple
output circuits. We use the names L = {l1, l2, . . . , ln}
to represent internal circuit lines including stems and
branches. The method in Section 3 adds circuitry to
the original circuit. This new hardware requires two ex-
tra lines per original circuit line. We use the notation
S = {s1, s2, . . . , sn} and W = {w1, w2, . . . , wn} to label
these lines.

In this presentation, variables for all circuit lines
xi, li, wi and y are defined to model circuit constraints
under simulation for each vector vj . To avoid confusion,

we use the notation x
j
i , l

j
i , w

j
i and yj for these variables

and Xj , Lj and W j for the respective sets (vectors) of
variables. Under this notation, superscript j matches
the index of simulated test vector vj . The notation
S = {s1, s2, . . . , sn} is used to indicate both variable
and line names. Variables for lines S are common to all

test vectors.



3 SAT-based Design Diagnosis

Given a logic netlist and a set of vectors v1, v2, . . . , vk,
the algorithm introduces new logic and compiles a CNF
formula Φ. This formula has two components.

The first component is the conjunction of k CNF for-
mulas Cj(Lj , W j , Xj , yj , S), 1 ≤ j ≤ k. Each such Cj

enforces constraints of test vector vj on the logic netlist
and potential fault sites. Fault locations are encoded
in the circuit with extra hardware. The second compo-
nent EN (S) encodes constraints for the cardinality N

of injected faults. These constraints are also coded with
new hardware. The value of the number of faults N is
a user-specified parameter.

The complete formula Φ is expressed as:

Φ = EN (S) ·

k∏

j=1

Cj(Lj , W j , Xj , yj , S)

Intuitively,
∏k

j=1 Cj(Lj , W j , Xj , yj , S) requires that

every candidate set of faults satisfies every Cj constraint
for all vectors vj . In other words, faults are intersected

for all vectors as in traditional diagnosis (Section 2). In
the subsections that follow, we describe how to com-
pile each component of Φ with theory and examples for
model-free diagnosis. We also discuss memory require-
ments and propose a number of heuristics to improve
run-time performance as well as memory utilization. We
finally argue how the proposed methodology can be ex-
tended to perform model-based diagnosis.

3.1 Test Vector Constraints

This component of Φ is comprised of k CNF formulas
Cj to model circuit and fault location constraints for
vector vj . First, the circuit is modified to reflect the
potential presence of faults at various circuit lines. To
model the presence of a fault on line li, a multiplexer
with select line si is attached to this line as explained
in [13]. This multiplexer is later translated into CNF
format and added to the formula.

Consider the circuit in Fig. 3(a), for example. The
presence of a fault on line l = g → h can be represented
by a multiplexer with select line s, as shown in Fig. 3(b).
The first input of the multiplexer is connected to the
output of gate g and the second input of the multiplexer
is connected to a new line w to model the potential
fault. The output of the multiplexer is connected to the
original output of g. Observe that the functionality of
the original or faulty circuit is selected when the value
of the select line is 0 or 1, respectively [13].

The CNF for the multiplexer logic is given in Fig. 3(c).
It can be seen that only 4 clauses are required. Hence,
the CNF formula for the complete circuit in Fig. 3(b) is
C = (x1 + l′) · (x2 + l′) · (x′

1 +x′
2 + l) · (s+ l′+z) · (s+ l+

z′)·(s′+w′+z)·(s′+w+z′)·(x3+y)·(z+y)·(x′
3+z′+y′).

Once multiplexers are introduced at every line, the
new circuit is translated to CNF. To get the final Cj ,
we need to insert clauses to represent input/output cir-
cuit behavior constraints for the test vector vj . This
can be done with a set of unit-literal clauses for the set
of primary input variables x1, x2, . . . , xm and primary
output y. These literals agree with the respective logic
values of the vector vj ; that is, if vj assigns a logic 1 (0)

to input xj then x
j
i (xj

i
′) appears in the formula and so

on.

Example: Recall the circuit in Fig. 3(a) and assume
there is a single stuck-at 1 fault on line l. The input
test vector v = (x1, x2, x3) = (1, 0, 1) detects the fault
as a logic 1 appears at the output of the good circuit
while a logic 0 appears at the output of the faulty one.
The construction requires unit-literal clauses x1, x2, x3

and y′ to be added to C. Hence, the final CNF formula
for vector v is Cv = C · x1 · x

′
2 · x3 · y

′.

This process is repeated for every test vector vj , j =
1 . . . k to get CNFs Cj(Lj , W j , Xj , yj , S). Note that
each such formula requires a new set of variables (and
literals) for primary inputs (Xj), primary outputs (yj),
internal circuit lines (Lj) and fault sites (W j). This
is because every input test vector may translate into a
different set of constraints for circuit lines and fault lo-
cations. However, only one set of select line variables
S = s1, s2, . . . , sn is used because the fault(s) of a solu-
tion must satisfy all vector constraints simultaneously.
The second component, described next, constrains the
cardinality N of these faults.

(s’+w’+z)(s’+w+z’)

(a) (b)

hg
l y

hg
x

y3

w

0

1

s

(s+l’+z) (s+l+z’)

x
x1 x3 x

x
2
1

2

l
w

S

0

1
z

(c)

Figure 3: Modeling Fault Sites

3.2 Fault Cardinality Constraints

This component attaches additional hardware to the cir-
cuit that enforces constraints EN (S) and requires a solu-
tion set with at most N faults. When the circuit and the
added hardware from subsections 3.1 and 3.2 are trans-
lated into CNF, we obtain formula Φ. We use an exam-
ple to provide the intuition for the single fault (E1(S))
case first. Later, we give the hardware construction that
generalizes results to multiple faults.



Example: Consider the formula Cv computed by the
first component. This formula models the circuit in
Fig. 3(b) under simulation of test vector v = (1, 0, 1).
Assume s (multiplexer select line) is introduced as an
additional unit-literal clause so that the formula be-
comes Cv = C · x1 · x′

2 · x3 · y′ · s. Given this new
Cv , a SAT solver will attempt to find a satisfying vari-
able assignment for the circuit lines and the variable w

so that the circuit emulates the faulty chip behavior for
vector v. The multiplexer will be forced to select line w

and the solver will return w = 1 to indicate a stuck-at
1 fault on line l.

The general idea to code EN (S) is an extension of
the example above. That is, formula Φ can be updated
with clauses that enumerate exhaustively all possible
sets of fault sites. These clauses will enforce subsets
si1 , si2 , . . . , siN

of S to be set to a logic 1 and indicate
that N faults are excited. Although this formulation for
EN (S) is intuitive, it requires an exponential number of
clauses to be inserted explicitly into the formula.

To overcome a memory explosion with increasing val-
ues of N , we follow a different approach and encode
EN (S) using the hardware construction shown in Fig. 4.
This hardware acts as a counter, forcing the SAT solver
to “enumerate” sets of N fault sites. In that figure,
thick lines indicate buses of O(logn) bit-width (N ≤ n)
and all other lines represent single bit buses.

The hardware in Fig. 4 performs a bitwise addition of
the multiplexer select lines S = s1, s2, . . . , sn and com-
pares the result to the user-defined number of faults N .
The output of the comparator is “forced” to logic 1 with
a unit-literal clause so that the bitwise addition of the
members of S (that is, the set of fault sites enumerated)
is always equal to N . As with the select lines themselves,
the variables introduced for this hardware are common
to all vectors vj .

It can be shown that the number of CNF clauses intro-
duced with this hardware construction is linear O(n) but
we omit the proof due to lack of space. Intuitively, this
implicit hardware representation for EN (S) provides a
trade-off between time and space. In the section that
follows, we argue that modern SAT-solvers take advan-
tage of this trade-off in practice and that they avoid an
exponential explosion in the time domain. Experiments
in Section 4 confirm this observation.

3.3 Implementation Details

As explained, a multiplexer requires 4 additional clauses
and the counter construction in Fig. 4 is done with O(n)
clauses. Therefore, space requirements for Φ are linear

O(nk) in both the number of circuit lines n and the
number of vectors k.

Although space efficient, for large industrial circuits
the formula Φ may grow quickly with the number of
vectors. To further reduce space requirements yet pre-

OUT=1

logn
logn

..

.

S

2

1

S

Sn
compare

N

+

Figure 4: Hardware for multiple errors

track
back

solution
current 

solutions
other

Figure 5: Implementation heuristics

serve efficiency, one may compile a set of formulas
Φ1, Φ2 . . . , Φd k

p
e. Each formula encodes constraints for

p distinct test vectors to keep the memory requirements
low. Intuitively, Φ is the conjunction of all these for-
mulas Φi. To create Φi we place multiplexers only on
the fault sites that qualified Φi−1. The rationale of the
heuristic lies in the fact that in diagnosis a small number
of vectors (such as p = 10 vectors) usually screens the
majority of invalid candidates [5] [13]. Consequently,
only a few fault sites and respective multiplexers (in
our experiments less than 10% of the circuit lines on
the average) are introduced in subsequent phases of the
algorithm. As the discussion in Section 2 indicates, the
number of fault sites progressively reduces as i increases.

In the remainder of this subsection, we discuss time

requirements and speed-up heuristics. We also explain
why the proposed SAT-based formulation performs (but
it is not limited to) model-free diagnosis.

Modern SAT-solvers [9] [11] are enriched with clause-
learning and backtracking techniques to help prune the
solution space. To take advantage of these techniques,
the SAT solver is modified as follows.

For every multiplexer with select line si and inputs li
and wi, clause (si +w

j
i
′) is added for vector vj to denote

the logic implication si
′ → w

j
i
′. This has the desirable

effect that when fault on line li is not selected (si = 0),
then the value on wi is immediately set to logic 0 to
prevent unnecessary branching of the SAT solver on wi.

Additionally, as soon as the solution of fault sites
si1 , si2 , . . . , siN

is returned, the SAT-solver does not re-
set and start to search for another solution from scratch.
Instead, the clause (s′i1 + s′i2 + · · · + s′iN

) is immedi-
ately added as a learned clause. This is illustrated in



Fig. 5 where dotted lines indicate explored portion of
the solution space. Upon discovery of a solution, the
tool backtracks and may reuse part of the past compu-
tation to identify other solution(s) or return unsatisfia-
bility (no additional solutions). This is useful in fault
diagnosis where all actual and equivalent solutions need
be probed by the test engineer. Experiments show that
this heuristic can improve performance substantially.

To improve performance further, the algorithm origi-
nally inserts multiplexers only at structural dominators

[6] of the circuit. This is sufficient for model-free diagno-
sis since any fault effect on a line covered by a dominator
will also be present at the dominator. This has the ben-
efit that the size of the set W is smaller and easier to
tackle by the solver. Once a set of dominator-solutions
is identified, a second pass is run to find solutions in
their respective fan-in cones.

We now elaborate on the model-free/model-based di-
agnosis nature of the approach. The SAT-based formu-
lation does not make any assumption on the logic value
of the fault for each vector vj . Therefore, it performs
model-free diagnosis. This is a desirable characteristic
because it may capture faults with “non-deterministic”
behavior [2]. However, it is interesting to reason about

the logic assignments to variables w
j
i1

, w
j
i2

, . . . , w
j
iN

on
circuit lines li1 , li2 , . . . , liN

of a solution for all vectors
vj .

As explained, these logic line assignments are required
to guarantee that the netlist emulates the behavior of
the specification for vj . The test engineer may use these
values to determine the behavior of the fault during fault
modeling [6]. Notice that proper reasoning on the val-
ues of W j allows for modeled diagnosis as well. This
is achieved if the solver enumerates fault models on the
suspicious lines “on the fly” during execution. For ex-
ample, a stuck-at 1 fault on line li is emulated if we set
w

j
i = 1 for all values (vectors) of j. This can be done

by adding w
j
i , ∀j, as unit-literal clauses into Φ.

Because of all these desirable characteristics, we con-
clude that SAT provides an attractive platform for fault
diagnosis. Experiments presented in the Section that
follow confirm its robustness in practice.

4 Experiments

In this Section we present experiments for a prototype
tool implemented with the SAT-solver described in [9].
Experiments are conducted for single and double stuck-
at faults in the ISCAS’85 and ISCAS’89 benchmark
circuits. We use optimized versions of the ISCAS’85
circuits in order to simulate a typical fault-diagnosis
environment. For the ISCAS’89 circuits, we used full-
scan versions of the original benchmark circuits. Using
the original, non-optimized versions makes the diagno-
sis process harder because of redundancies present in
the circuits.

Table 1: Single stuck-at faults

ckt # of # of # fault sites CPU (sec)
name vectors clauses dom. all dom. all

C432 10 11, 112 2 5 0.08 0.01
C499 10 28, 644 2 8 0.54 0.04
C880 10 22, 814 1 6 0.23 0.03
C1355 10 27, 904 1 9 0.62 0.04
C1908 10 21, 849 2 9 0.23 0.02
C2670 10 36, 284 1 30 0.26 0.08
C3540 10 50, 731 1 6 1.55 0.07
C5315 10 86, 121 2 13 2.27 0.17
C6288 10 173, 860 1 5 39.39 0.23
C7552 10 117, 928 4 14 3.37 0.19
S13207 20 641, 425 2 28 34.88 1.26
S15850 20 728, 890 2 16 10.70 1.55
S35932 20 1, 500, 907 1 12 29.71 2.74
S38417 20 1, 758, 242 3 17 28.87 7.85
S38584 20 1, 765, 807 2 10 21.71 7.78

Due to lack of space, we present results only for stuck-
at faults. Since most common design errors are modeled
in terms of stuck-at faults [1], experiments presented
here are expected to be representative for logic debug-
ging as well. The locations of the faults are selected
at random. We run experiments on a SUN Blade 100
workstation with 512MB of memory. Ten experiments
are performed for each circuit and for each fault case.
Average values are reported in the next paragraphs and
run-times are in seconds.

Table 1 contains results on single stuck-at faults and
Table 2 shows information in a similar manner for dou-
ble faults. The first column of each table has the circuit
name and the second column contains the number k of
test vectors used in diagnosis. This set contains mainly
vectors with failing responses. Test vector generation
is not the subject of this work [7]. The third column
has the number of initial clauses for the dominator pass
before learned clauses are added. These numbers con-
firm that memory requirements are linear to circuit size
and to the number of vectors. For example, C432 re-
quires approximately half the number of clauses of C880
because it has nearly half the number of lines.

The number of fault sites returned are found in
columns 4 and 5. Column 4 shows the number of fault
sites at structural dominators and column 5 shows the
number of equivalent fault sites returned. These num-
bers confirm the accuracy and resolution of the ap-
proach. The last two columns have CPU times. Col-
umn 6 contains the average runtime per fault location
for the dominator step. Column 7 contains the average
runtime per fault for each solution in the second pass.
The total runtimes for the first and second pass can be
determined by multiplying the numbers in columns 4
and 6 and columns 5 and 7 respectively. These numbers
suggest that SAT is very efficient at performing diagno-
sis.



Table 2: Double stuck-at faults

ckt # of # of # fault sites CPU (sec)
name vectors clauses dom. all dom. all

C432 20 20, 592 4 14 0.25 0.06
C499 20 53, 814 3 19 2.06 0.30
C880 20 42, 644 3 13 1.05 0.17
C1355 20 52, 504 3 13 1.17 0.26
C1908 20 40, 939 10 34 0.51 0.29
C2670 20 69, 004 4 27 0.41 0.31
C3540 20 95, 511 3 11 8.93 0.23
C5315 20 166, 211 2 10 1.70 0.54
C6288 20 324, 560 6 17 76.34 19.72
C7552 20 222, 208 3 16 9.48 1.46
S13207 20 641, 425 3 31 11.01 7.62
S15850 20 728, 890 3 22 34.94 7.40
S35932 20 1, 500, 907 2 31 40.78 19.63
S38417 20 1, 758, 242 3 17 42.12 10.73
S38584 20 1, 765, 807 3 20 44.76 15.48

The benefit of the heuristics in Section 3 is depicted
in Fig. 6 that shows the difference in run-times for single
faults when they are used. Recall that the first heuristic
requires variable w

j
i on line li immediately to assume a

logic 0 once si is not selected for vector vj . The second
heuristic backtracks once a solution is found to reuse
previous computation and return the remaining solu-
tions. Run-times indicate that the added clauses allow
the SAT solver to prune the solution space.

Experiments demonstrate the effectiveness, flexibility
and practicality of the SAT-based solution to design di-
agnosis. Our formulation can be scaled to larger indus-
trial circuits, by using the approach described in section
3.3. For example, it can be experimentally shown that
using two passes of 10 vectors each for S35932 reduces
the formula size for each pass to approximately 788,447
clauses with a runtime overhead of only 6% . Moreover,
it is possible that in some cases the total runtime may
actually be shorter because most of the locations are
screened out in the first pass [5] [6] [13].

In the future, we plan to enhance the technique with
structural circuit information to improve performance.
We also intend to develop diagnosis-specific satisfiabil-
ity algorithms and techniques that use the information
returned by SAT to perform fault modeling.

5 Conclusions

A satisfiability-based formulation of multiple fault diag-
nosis and logic debugging was presented. The method
is intuitive and practical within an industrial environ-
ment. Theoretical and experimental results on multiple
faults confirm that Boolean satisfiability provides an ef-
ficient and effective solution to design diagnosis. This
offers new opportunities for satisfiability-based diagno-
sis tools and diagnosis-specific satisfiability algorithms.

2.61

6.37

8.62

6.11

9

14.5

c2670 c5315 c7552

T
im

e
(s

e
c

)

Without Heuristic With Heuristic

Figure 6: Performance speed up

References

[1] M. S. Abadir, J. Ferguson and T. E. Kirkland, “Logic
Verification Via Test Generation,” in IEEE Trans. on

CAD, vol. 7, pp. 138–148, Jan. 1988.
[2] R. C. Aitken, “Modeling the Unmodelable: Algorithmic

Fault Diagnosis,” in IEEE Design and Test of Comput-

ers, pp. 98-103, July-Sept. 1997.
[3] P. Bjesse, T. Leonard and A. Mokkedem, “Finding

Bugs in an Alpha Microprocessor Using Satisfiability
Solvers,” in Proc. of CAV, Lecture Notes in Computer

Science, Springer-Verlag, vol. 2102, pp. 454-464, 2001.
[4] E. Goldberg, M. Prasad and R. Brayton, “Using SAT

for Combinational Equivalence Checking,” in Proc. of

IEEE DATE, pp. 114-121, 2001.
[5] S. Y.Huang, “Towards the Logic Defect Diagnosis for

Partial-Scan Designs,” in Proc. of IEEE ASP-DAC,

pp. 313-318, 2001.
[6] N. Jha and S. Gupta, Testing of Digital Systems, Cam-

bridge University Press, 2003.
[7] T. Larrabee, “Test Pattern Generation Using Boolean

Satisfiability,” in IEEE Trans. on CAD, vol. 11, no. 1,

pp. 4-15, Jan. 1992.
[8] K. L. McMillan, “Applying SAT Methods in Un-

bounded Symbolic Model Checking,” in Proc. of CAV,

Lecture Notes in Computer Science, Springer-Verlag,

vol. 2402, pp. 250-264, 2002.
[9] M.H. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang and

S. Malik, “Chaff: Engineering an Efficient SAT Solver,”
in Proc. of DAC, pp. 530-535, 2001.

[10] M. R. Prasad, “Propositional Satisfiability Algorithms
in EDA Applications,” Ph.D. Thesis, University of Cal-

ifornia, Berkeley, 2001.
[11] J. P. M.-Silva and K. A. Sakallah, “GRASP – A Search

Algorithm for Propositional Satisfiability,” in IEEE

Trans. on Computers, vol. 48, no. 5, pp. 506-521, May
1999.

[12] P. Tafertshofer, A. Ganz and M. Henftling, “A SAT-
Based Implication Engine for Efficient ATPG, Equiva-
lence Checking and Optimization of Netlists,” in Proc.

of ICCAD, pp. 648-657, 1997.
[13] A. Veneris and M. S. Abadir, “Design Rewiring Using

ATPG,” in Proc. IEEE Trans. on CAD, vol. 21, no. 12,

pp. 1469-1479, Dec. 2002.
[14] R. G. Wood and R. A. Rutenbar, “FPGA Routing and

Routability Estimation via Boolean Satisfiability,” in
IEEE Trans. on VLSI Systems, vol. 6, no. 2, pp. 222-

231, June 1998.


