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Abstract—The Move language provides superior security and
verifiability compared to existing smart contract languages such
as Solidity. As the language becomes more popular, gas op-
timization will become an important field of research. This
paper presents the first work on gas optimization in the Move
language. We chose Aptos as the underlying platform for our
analysis since it is the leading Move-enabled blockchain platform,
and it was the first to develop a gas meter. In this paper, we
describe Aptos’ gas meter in detail. Then, we analyze the vast
research on gas optimization in Solidity, and explore how it
can be implemented in the Move language. Finally, this paper
proposes 11 gas optimization patterns and principles for the Move
language, presents 5 patterns that decrease the time complexity
of the smart contract but have no effect on gas consumption,
and implements a sample smart contract for each proposed gas
optimization pattern. Our results show that the proposed patterns
reduce gas consumption in a typical smart contract by 7− 56%.

Index Terms—Aptos; Move; Smart Contract; gas optimization

I. INTRODUCTION

The gas of a smart contract is the cost of executing its logic
on the blockchain. The gas meter refers to the mechanism
that determines how much gas should be charged for a given
smart contract. Gas optimization is a highly researched area
in Solidity [1]–[13], but as of the time of writing, there is no
equivalent work done for the Move language [14]. This paper
presents the first work in the field of gas optimization in Move.

We have chosen Aptos as the underlying platform for study-
ing gas optimization of the Move language. It is currently the
leading blockchain platform that utilizes the Move language,
and most importantly it was the first Move-enabled blockchain
platform to implement a gas meter. Other platforms, such as
OpenLibra [15] and StarCoin [16], have yet to implement gas
meters. Sui [17] has modified core Move and integrated its
own features. Thus, its gas analysis is left as future work.

The contribution of this work is summarized as follows:
• Detail the nuances of Aptos’ gas meter for Move.
• Enumerate gas optimization patterns for Move.
• Enumerate patterns that reduce contract time complexity,

but have no effect on the gas cost.
• Provide concrete examples which implement the pro-

posed optimization patterns and evaluate their effective-
ness in typical Move smart contracts.

The rest of the paper is organized as follows. In Section II,
we detail the gas calculation of Move smart contracts in
Aptos. Section III summarizes prior work on gas optimization
in Solidity, and discusses how it can be applied to Move.
Sections IV and V provide the proposed gas optimization and
non-optimization patterns in Move. Section VI gives empirical
results of sample smart contracts to validate, evaluate, and
quantify the optimization patterns proposed in Section IV.
Finally, Section VII concludes the work.

II. THE APTOS GAS METER

The gas of a smart contract is the cost of storing its items
and executing its logic on the blockchain. It is necessary

to pay for the use of blockchain resources and to avoid
excessive consumption of resources. The gas meter refers
to the mechanism that determines how much gas should be
charged for a given smart contract deployment and invocation.

In Aptos, the native token is APT and the unit of gas is
Octa. However, the Aptos gas meter operates using internal
gas units where

100 internal gas units = 1 Octa = 10−8 APT (1)

This gives a more fine-grain measurement of gas, which is
then rounded after all calculations have been completed.

When a transaction is submitted, the user must include,
among others, the following fields:

• max_gas_amount: The maximum number of gas units
that the transaction sender is willing to spend to execute
the transaction. This determines the maximum computa-
tional resources that can be consumed by the transaction.

• gas_price: The gas price per unit the transaction
sender is willing to pay, determined by the market.

When the transaction is executed by the MoveVM, it keeps a
tally of the amount of gas used according to the gas meter.
The total gas charged for the transaction is

total gas fee = (gas used)× gas_price (2)

If the gas used surpasses max_gas_amount, then the trans-
action is aborted. Thus, the maximum amount a user can be
charged is (max_gas_amount)× (gas_price).

The gas used by a transaction consists of summing the gas
associated with the size of its payload, the virtual machine
instructions it executes, and the global storage it accesses. This
is explicitly expressed as follows.

gas used = (payload gas)+ (instruction gas)+ (storage gas)
(3)

Each gas consumption type is discussed next.

A. Payload Gas
The payload gas is the cost associated with publishing

a transaction to the blockchain, i.e. the transaction size.
In Move, modules define functions and custom data types.
Transactions are submitted via transaction scrips, which im-
port modules and utilize their definitions. When publishing a
module, the bytecode is stored on the blockchain. Thus, the
transaction size only depends on the length of the bytecode.
When publishing a transaction script, module functions and
their inputs need to be stored on the blockchain. Thus,
the transaction size also depends on the size of the input
parameters.

Equations 4 and 5 show the payload gas calculation. Every
transaction is automatically charged 1, 500, 000 internal gas
units (15, 000 Octas). This is sometimes called intrinsic
gas. If the bytecode is greater than 600 bytes, the transaction



is charged 2, 000 internal gas units for each of the excess
bytes [18]. This is to prevent abuse of the network.

large tx penalty = max(0, (tx size−600 bytes)×2, 000) (4)

payload gas = 1, 500, 000 + large tx penalty (5)

B. Instruction Gas
The instruction gas is the gas associated with the execution

of the virtual machine operations of a transaction. Each
instruction of the MoveVM has been assigned a gas cost.
Typically, each operation charges both a fixed base gas and
a variable amount of gas proportional to the parameter sizes
associated with the operation [19].

Since the MoveVM is a 64-bit stack-based virtual machine,
instructions operate on exactly 64 bits. Thus, operations such
as arithmetic, bitwise, boolean, and comparison charged per 64
bits. As a result, from the perspective of the MoveVM, there
is no distinction between u8 and u64 integers. Operations on
u8 and u64 integers will result in the same gas consumption.
Conversely, operations on u128 integers will generally require
more gas, since they require at least one additional register.

Move modules are not executed when published to the
blockchain. However, the instruction gas associated with a
module function will be considered as the amount of gas it
consumes when a transaction script executes it.

C. Storage Gas
The storage gas is the gas associated with accessing global

storage on the blockchain. In Aptos, the global state of the
blockchain consists of a set of accounts, containing of a set
of items, which are key-value pairs. Move smart contracts
can access global storage via move_to, borrow_global,
borrow_global_mut, and move_from, which create,
read, write, and delete items, respectively.

The gas consumed by each access type (except deletion) is
calculated via Equation 6. Deletion of a resource from global
storage does not consume gas [20].

storage gas = items× (per item gas)+bytes× (per byte gas)
(6)

The first term is the base cost for accessing an item. This
amount is the constant up-front cost of the access type. The
second term accounts for the size of the item, charging more
gas if more bytes are accessed. Note that bytes in Equation 6
refers to the total number of bytes in all fields of a resource,
even if only once field was accessed. Table I gives the amount
of gas charged for each access type [20].

TABLE I
STORAGE GAS FEES

Operation Internal Gas Units Octas
per-item read 300, 000 3, 000
per-item write 300, 000 3, 000
per-item create 300, 000 3, 000
per-byte read 300 3
per-byte write 5, 000 50
per-byte create 5, 000 50

III. RELATED WORK

To date, this paper is the first work that analyzes gas
optimization for the Move language. The majority of the
research on gas optimization is done for Solidity on the
Ethereum blockchain [1]–[3].

Broadly, there are three ways to frame gas optimization.
The first is in the field of vulnerability detection. An out-of-
gas exception occurs when the smart contract uses more gas

than the allowed gas limit. The authors of [4] use symbolic
execution to detect specific out-of-gas exception patterns. The
authors of [5] use fuzzing techniques in order to find inputs
that cause a high gas output.

A second way to frame gas optimization is to abstract
the problem to code optimization [6], [8]–[12]. If the smart
contract code is optimized, then the virtual machine will
perform fewer operations, and thus gas consumption will be
reduced. The authors of [6] developed the static analyzer tool,
GASPER, which applies parallelized symbolic execution to
Solidity bytecode to identify specific patterns such as dead
code, opaque predicates, and expensive operations in loops.
The authors of [12] identify three loop patterns to reduce
the number of virtual machine operations and global storage
accesses.

Finally, gas optimization can be viewed as its own unique
subject. The gas meter is not isomorphic to “the number of vir-
tual machine operations”. For example, addition and division
are often given the same gas price per operation, even though
division typically requires more virtual machine operations
to compute. Some techniques will make the smart contract
less efficient in the strict sense of virtual machine operations
but nonetheless, reduce gas consumption. The authors of
GASPER extended their work to develop GASREDUCER [7],
which identifies 24 different optimization patterns in bytecode.
The authors of [13] created a tool called GASOL, which
targets optimizing gas consumption associated with the usage
of storage operations by replacing multiple accesses to global
memory with local variable operations.

In this paper, we wish to see how this large body of work can
be applied to the Move language. Generally, code optimization
techniques that operate on the source-code level can be directly
applied. However, code optimization techniques that operate
on the bytecode level cannot be directly applied, since the
EVM and MoveVM are fundamentally different. Finally, some
techniques related to reducing the number of global storage
accesses can be modified for Move.

IV. GAS OPTIMIZATION PATTERNS

Generally, gas optimization stands very close to time and
space complexity optimization. The aim is to minimize the
number of virtual machine operations and the amount of
global storage accessed during a transaction. However, there
is often a trade-off between time and space complexity with
many ways to implement the same specification. Decreasing
memory use may result in more virtual machine operations,
and decreasing virtual machine operations may require an
increase in memory use; in which case, it is not clear how
to minimize gas consumption.

This section gives both general principles and concrete
design patterns for optimizing the gas consumption of Move
smart contracts on Aptos. For each gas optimization, an ex-
ample smart contract has been constructed which demonstrates
how it can be applied (see Section VI).

A. Payload Gas
The gas associated with the payload is typically much less

than the gas associated with instructions and global storage.
Thus, for most applications, its contribution is negligible.
However, if the payload greatly exceeds 600 bytes, then it
may cause a noticeable increase due to Aptos’ large transaction
penalty. We give the following general principles for payload
gas optimization.

1) Minimize the Length of Modules: The code of a pub-
lished module is stored on the blockchain, which consumes
gas. Minimizing the length of the module, i.e. the number
of bytes required to store its bytecode, reduces the total gas
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cost. Some instances include removing dead or unnecessary
code, reducing redundant code, avoiding unnecessary addi-
tional variables, using standard libraries, and separating out
the module into multiple smaller modules. Note that comments
do not have an effect on this calculation, since the blockchain
stores the bytecode and not the source code.

2) Minimize the Size of Parameters in Transaction Scripts:
When executing a transaction script, the payload may contain
the values of the parameters given by the user, which are
stored on the blockchain and thus consumes gas. Minimizing
the number and size of these parameters will reduce the total
gas cost. For example, combining many small functions that
require a lot of parameters into one larger function, and also
avoiding passing resources as parameters into functions.

B. Instruction Gas
The gas associated with virtual machine instructions is akin

to the time complexity of the smart contract. In general,
less virtual machine operations mean less gas consumption.
However, this is not always possible without sacrificing the
necessary functionality. We give the following general princi-
ples for instruction gas optimization.

1) Limit Function Calls: One of the most expensive in-
struction gas operations are function calls [19]. The gas saved
from the lack of a function call is always larger than the gas
gained from a larger module size. Therefore, abstracting smart
contract functionality into helper functions should be avoided
as much as possible. For instance, it is very common for
programmers to write getter functions which are a single line
or very few lines of code. Removing these is a small change,
which saves a large percentage of gas (see Table II). However,
having large and complicated functions makes testing more
difficult. It is up to the developer to find an acceptable balance.

2) Minimize Vector Element Operations: Vector operations
charge gas on a per-element basis, and are more expensive
than operations on local variables. Thus, accessing vectors
can be treated like accessing the global state, allowing us to
apply principles 1) and 3) from Section IV-C analogously for
vectors. If one wishes to operate on an element from a vector
more than once, then it should be copied to a local variable
and then updated after all calculations are performed. Lastly, a
vector element should be directly updated, rather than deleted
and recreated.

3) Short Circuit: When using the logical connective
AND (&&), if the first expression evaluates to false, then
the second expression will not be evaluated. Likewise, when
using the logical connective OR (||), if the first expression
evaluates to true, then the second expression will not be
evaluated. Thus, continued expressions in if-statements and
while-loops should be ordered by increasing gas cost. If a
cheap expression short-circuits the condition check, then we
save on evaluating the more expensive expressions.

4) Write Values Explicitly: Since virtual machine opera-
tions consume gas, any constant values should be written ex-
plicitly rather than implicitly computed via the smart contract.

5) Avoid Redundant Operations: Since virtual machine op-
erations consume gas, redundant operations should be avoided.
For example, Move has a bytecode verifier that checks for
common vulnerabilities such as integer overflow/underflow.
Thus, checking for this in a smart contract is redundant and
unnecessary.

C. Storage Gas
The gas associated with global storage is akin to the space

complexity of the smart contract. In general, less accesses
to global storage will result in less gas consumption. More-
over, storage gas will typically dominate both payload and

instruction gas. Thus, it should be given the most attention
when optimizing smart contract gas. The following general
principles are given for storage gas optimization.

1) Operate on Local Variables: Operating directly on re-
sources and resource fields consumes significantly more gas
than operating on local variables. Whenever a smart contract
is operating on the values of a resource, its ownership should
be borrowed by a local variable. If necessary, those values can
be transferred back to the resource at the end of the function.

This pattern can be implemented when accessing a resource
field value in a loop. One should first store its field value in
an intermediate local variable and do all loop operations on
this local variable. At the end of the function, the resource is
updated. This limits the number of accesses to the resource to
a maximum of two, rather than the number of loop iterations.

2) Variable Packing: There are two facts about Move’s gas
meter that this pattern utilizes. First, global storage access
consumes the most gas of any operation. Thus, we should aim
to make as few as possible. Second, when accessing a resource,
the per-byte charge consists of all fields in the resource, not
just the ones that were accessed.

Variable packing refers to representing many variables of
data using a single resource field. For example, consider
variables x8, x32, and x24 that will only ever store 8, 32, and
24 bits of information, respectively. The naive way of storing
these is to separate them each into their own field. However,
we can save on storage by packing these variables into a single
u64 integer, and use bitwise masking to unpack the variables.
Thus, saving on per-item global accesses.

3) Resource Update: There is currently no incentive to
deallocate global storage. Thus, in order to minimize gas
consumption, unused resources should be overwritten rather
than deallocating and creating new resources.

4) Read Instead of Write: Writing to a resource is more
expensive per byte than reading. Thus, a resource should only
be written to if necessary.

V. NON-OPTIMIZATION

In addition to giving principles that will minimize gas
consumption, it is equally useful to know what does not affect
gas consumption.

1) Operation Types: Basic arithmetic operations (add, sub,
mul, div, mod) cost the same amount of gas, even though
division, for example, typically requires more computation
than addition. Bit-wise operations (and, or, xor, left shift, right
shift) cost the same amount of gas. Similarly, the comparison
operations (<,>,≤,≥) cost the same amount of gas, and the
operations (=, ̸=) both cost slightly less.

2) Reads/Writes are Never Partial: Reading or writing only
one field from a resource may save a little gas with respect to
the instruction gas, but it does not save any gas with respect
to storage gas. When borrow_global_mut is called and
a resource field is updated, the per-byte cost of the update is
for the entire resource, not just the updated field.

3) u8 Integers: There is no difference between doing
operations with u8 integers and u64 integers, both locally
and globally. This is because MoveVM has 64-bit registers.
However, doing operations with u128 integers will cause an
increase in gas usage.

4) Ordering Fields in Resources: The order of the fields of
the resource does not matter. All fields of a resource occupy
their own space in storage. One can pack variables within a
field, but not between fields.

5) Deallocation of Resources: Currently, Aptos is lacking
any mechanism for rewarding the destruction of resources
via move_from. Although, they have expressed interest in
adding this in the future.
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VI. EXPERIMENTS

This section presents the results of an experimental evalu-
ation of the gas optimization patterns that were identified in
Section IV. Through this, we validate, evaluate, and quantify
the gas savings of each gas optimization pattern. While Move
is rapidly gaining popularity, it has yet to become a standard in
decentralized application development. As a result, there are
fewer examples of smart contracts deployed to Aptos as well as
a lack of developer tools and standardized benchmarks. Thus,
we have created a set of sample smart contracts1 designed
to isolate each gas optimization pattern. Table II compares
the gas consumption of the original and optimized smart
contracts measured in Octa. The rightmost column is the
percent decrease of gas in the optimized contract. The patterns
“Minimizing the Length of Modules”, “Minimizing the Size of
Parameters in Transaction Scripts”, and “Avoiding Redundant
Operations” were omitted as these are general principles rather
than concrete design patterns.

TABLE II
GAS SAVINGS COMPARISON OF OPTIMIZATION PATTERNS

Gas Optimization Pattern Original
Cost

Optimized
Cost

Gas Savings
Percent

Limit Function Calls 47 26 44.7
Minimize Vec Element Ops 41 30 26.8
Short Circuit 2372 2 99.9
Write Values Explicitly 410 2 99.5
Operate on Local Variables 62 27 56.5
Variable Packing 746 630 15.5
Resource Update 130 120 7.7
Read Instead of Write 3663 56 98.5

The gas optimization patterns “Minimize Vector Element
Operations”, “Short Circuit”, “Write Values Explicitly”, and
“Read Instead of Write” heavily depend on the particular smart
contract. The gas optimization patterns “Variable Packing”
and “Resource Update” depends on the size of the global
storage that is being accessed. The sample smart contracts use
moderately sized resources, and we see the percent decrease
is small. For applications with large global variables, these
patterns are effective at reducing gas consumption. However,
for applications with small global storage values, the impact
may be negligible. Lastly, the gas optimization patterns “Limit
Function Calls” and “Operate on Local Variables” are the most
stable with respect to changes in the smart contract. Both
patterns result in a substantial percent gas decrease.

VII. CONCLUSION

Move is a new smart contract language that offers superior
security and verifiability compared to existing smart contract
languages. This paper is the first to apply the vast research
on gas optimization in Solidity to the Move language using
Aptos as the underlying platform. We proposed 11 gas opti-
mization patterns and identified 5 patterns that decrease the
time complexity of a smart contract but have no effect on
gas consumption. We implemented sample contracts for each
proposed gas optimization pattern. Our results showed that our
gas optimization patterns reduce gas consumption on a typical
smart contract by 7− 56%.

As Move becomes more popular, future work includes
surveying deployed Move smart contracts to analyze the
frequency of these design patterns, and empirically determine
their impact on gas optimization. Subsequently, tools for de-
tecting and optimizing these design patterns can be developed.

1https://github.com/Veneris-Group/Move-Gas-Optimization-Patterns

Another avenue for future work includes an analysis of gas
optimization on Move bytecode. This work focused purely on
optimizations at the source-code level; however, there is a great
deal of research on Solidity bytecode gas optimization to pull
from. A final prospect for future work includes performing
a similar analysis on Sui’s version of Move and doing a
comparison with Aptos. Likewise can be done with StarCoin
and OpenLibra provided they develop their own gas meters.
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