Efficient SAT-based Boolean Matching for
FPGA Technology Mapping

Sean Safarpour, Andreas Veneris
Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON, Canada

{sean, veneris} @eecg.toronto.edu

Abstract— Most FPGA technology mapping approaches either
target Lookup Tables (LUTs) or relatively simple Programmable
Logic Blocks (PLBs). Considering networks of PLBs during
technology mapping has the potential of providing unique op-
timizations unavailable through other techniques. This paper
proposes a Boolean matching approach for FPGA technology
mapping targeting networks of PLBs. To overcome the demand-
ing memory requirements of previous approaches, the Boolean
matching problem is formulated as a Boolean Satisfiability
(SAT) problem. Since the SAT formulation provides a trade-off
between space and time, the primary objective is to increase the
efficiency of the SAT-based approach. To do this, the original
SAT problem is decomposed into two easier SAT problems. To
reduce the problem search space, a theorem is introduced to
allow conflict clauses to be shared across problems and extra
constraints are generated. Experiments demonstrate a 340%
run time improvement and 27% more success in mapping than
previous SAT-based approaches.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are integrated
devices composed of a matrix of Programmable Logic Blocks
(PLBs) and programmable routing resources. Unlike custom
integrated circuits, the functionality of FPGAs can be defined
after fabrication. The flexibility of FPGAs is due to the
reconfigurability of the functionality and the connectivity of
the PLBs. Modern PLBs usually include a network of simple
gates, multiplexers (MUX) and k-input Lookup Tables (k-
LUTs). A k-LUT is a logic block that can be programmed
to implement any function of k-input variables.

A crucial step in the overall FPGA Computer Aided Design
(CAD) flow is technology mapping [1]. This step converts a
circuit into a network of PLBs. The circuit function can be
given in terms of a synthesized multi-level netlist, input/output
functional relationship, or other representations. Depending
on the technology mapping approach, the resulting network
can exhibit different area, delay, and power costs. Today,
much interest is placed in developing technology mapping
techniques that minimize combinations of these optimization
factors [1], [2], [3], [4].

One approach to technology mapping is known as Boolean
matching [1], [2], [5]. Informally, Boolean matching for
FPGAs can determine whether a function f can be imple-
mented by a LUT or a PLB. Boolean matching can be
employed as an integral part of technology mapping [6], during
the re-synthesis effort [4], [7], or as a means to evaluate
different FPGA architectures [2], [7].

Most of the previous FPGA technology mapping and
Boolean matching work is concerned with mapping a function
f into individual LUTs or “simple” PLBs [1], [2], [3], [4],
[8]. Many of today’s commercial FPGAs contain complex
PLBs composed of a network of interconnected LUTs, MUX,
and simple gates [9], [10]. To effectively use the available
resources and improve performance, efficient technology map-
ping tools targeting complex PLBs or networks of PLBs are

Gregg Baeckler, Richard Yuan
Synthesis Group
Altera Corp.
San Jose, CA, USA
{gbaeckle, ryuan}@altera.com

j
—— {3-LUT
—_—3-LUT }»

® (ii)

Fig. 1.

Two different mapping options

needed. For instance, recognizing that a function f can be
mapped into the network of PLBs shown in Figure 1 (i)
may result in a smaller delay than the network of PLBs in
Figure 1 (ii).

Current Boolean matching techniques are very effective
when targeting simple PLBs or LUTs but they may be
impractical when targeting networks of PLBs. The primary
reason is that popular Boolean matching techniques based on
functional decomposition [2], [3], [4] or on canonicity and
Boolean signatures [1], [5] are limited in the input size of
the functions they can handle. For instance, most functional
decomposition techniques using BDDs target functions with
five to eight inputs [2], [4]. Much larger input functions
required for networks of PLBs may demand a prohibitive
amount of memory for building the BDDs. Recently, an
approach was proposed formulating Boolean matching as a
Boolean satisfiability (SAT) problem [7]. The SAT formulation
may alleviate the memory explosion problem at the cost of
long run times associated with searching the solution space.

In this paper, we propose a novel SAT-based Boolean
matching approach for FPGA technology mapping targeted
for networks of interconnected PLBs. Since networks of PLBs
may have more inputs than a single PLB, the approach is
viable for functions with greater than ten inputs. The bene-
fit of targeting larger input functions and PLB networks is
that unique optimization opportunities unexplored by previous
techniques may arise. In this paper we are only concerned
with the Boolean matching aspect of technology mapping.
We further assume that any area, delay, and power evaluation
techniques can be used to determine the best mapping for the
given specifications [2], [3].

To effectively map larger input functions into a network
of PLBs, we develop theory and heuristics that enhance and
improve the performance of the SAT-based Boolean matching
procedure from [7]. The major contributions of this paper are
as follows.

e We develop a SAT-based two stage iterative approach
where we perform a coarse pin assignment followed by
a detailed pin assignment. An approximate mapping is
quickly found during the coarse pin assignment while the
detailed pin assignment refines or rejects this approximate
solution. In this manner, we decompose the original com-
putationally “hard” problem into two relatively “easier”

subproblems. Furthermore, if the original problem does
not have a solution for a given PLB network the method
quickly aborts instead of exhaustively exploring the non-
solution space. Intuitively, this process is analogous to
the global and detailed routing techniques [11].

o We prove a theorem that allows the reuse of the highly
valuable conflict clauses from different instances of
Boolean matching problems for a given set of PLBs. By
collecting and reusing this information, future problems
may benefit and be solved more efficiently.

e We enrich the original SAT formulation with additional
constraint clauses to reduce the SAT solver’s search
space. These additional clauses restrict the SAT solver
from exploring regions of the non-solution space.

Extensive experiments demonstrate that these contributions
result in a run time improvement of 340% while finding 27%
more solutions over previous approaches. The reduction in
run time makes the proposed approach viable for re-synthesis
of critical regions and FPGA architecture evaluation [2], [7].
The results also encourage further effort in SAT-based FPGA
Boolean matching techniques.

This paper is organized as follows. The next section pro-
vides background information used throughout this paper.
Section III presents the proposed SAT-based Boolean matching
approach while Section IV develops search space reduc-
tion techniques. Section V demonstrates the benefits of the
contributions through extensive experiments and Section VI
concludes this work.

II. PRELIMINARIES
A. Boolean Matching

In this paper we refer to a network of interconnected
PLBs as a configuration. For instance, Figure 1 (i) and (ii)
depicts two different configurations. A configuration H(P)
has m input pins where P = {p1, p2, ..., pm } - To distinguish
between the n inputs of function f(X), X = {z1,z9,...,z,},
and the configuration input pins, we refer to the latter simply as
pins. We also use H to refer to H(P). Using this terminology,
the problem of interest can be now defined as follows:

Problem Definition: Boolean matching is the process of
determining whether a configuration H(P) can implement a
function f(X) for | X|=n <m = |P)|.

For the simple case where H is a k-LUT, any function f(X)
where | X| < k can be implemented by the k-LUT. For PLBs
such as those shown in Figure 2 (i) and (ii), for example, it
is not obvious what 7-input functions and 11-input functions
can be implemented in each configuration, respectively. As
discussed earlier, it may be beneficial from an area and delay
point of view to implement all 7 and 11-input functions via
the configurations in Figure 2 (i) and (ii) whenever possible.

B. Boolean Satisfiability

Boolean satisfiability is the problem of determining whether
there exists a variable assignment to a Boolean formula ¢
such that it evaluates to true. Formula & contains a set
of variables and connectives such as —(not), - (and), + (or),
— (implies), etc. If such a variable assignment exits, ® is
said to be satisfiable or SAT, otherwise it is unsatisfiable or
UNSAT. For most modern SAT solvers the problem formula
® is provided in Conjunctive Normal Form (CNF), that is, a
conjunction of clauses where each clause is a disjunction of
literals. A literal is an instance of a variable or its negation.
The size of a clause ¢, denoted by |c| is equal to the number
of literals in the clause. Since a formula is SAT if all its
clauses evaluate to true, at least one literal in each clause

® (i)

Fig. 2.
must evaluate to t rue. The following is an example of a CNF
formula ¢ and a satisfying variable assignment.
®=(a+b+c)-(b)-(@+7) - (a+d)
1

a = = ’C: y =

Industrial FPGA PLBs

)

There exist fast procedures to convert circuits composed of
primitive gates to CNF in linear time [12]. For this reason,
we do not distinguish between a circuit and its corresponding
SAT formulation as the latter can be obtained from the former.
Modern SAT solvers implement well-studied algorithms with
optimized branch-and-bound procedures such as intelligent de-
cision making, conflict based learning, and non-chronological
backtracking to solve large SAT problems with hundreds of
thousands of clauses and variables in an efficient manner [13].

During the SAT solving procedure, most SAT solvers
“learn” from their mistakes when exploring part of the non-
solution space by generating conflict clauses. Once a conflict
is discovered by the SAT solver, a conflict clause is generated
and added to ® to prevent re-exploring this part of the non-
solution space. As an example, consider a situation where the
SAT solver has made the unsatisfiable variable assignments
{a = 0,b = 1,c = 1}. As a result of this assignment, the
conflict clause (a 4+ b + ¢) is added to the CNF @ to prevent
this combination from re-occurring in the future.

C. Basic SAT-based Boolean Matching

In this section we describe the basic formulation of the
Boolean matching problem as a SAT problem and refer to it
as the standard approach. The standard approach presented
here is a slight variation of the one proposed in [7]. To
determine whether an n input function can be implemented
in a configuration with m pins, we must consider all possible
function input to pin mappings. For the simple case where
n = m, there are n! possible mappings since each function
input can be mapped to each configuration pin.

Formulating this problem in CNF requires O(n!) clauses.
For example, an 11-input function generates more than 39
million clauses. To avert this large memory requirement,
a hardware block, MUX(X), is used to represent the n!
mappings. This hardware consists of a multiplexer for every
configuration pin, where the inputs of the multiplexer are the
function inputs and the output of the multiplexer is a configu-
ration pin. The select line of the multiplexers “represent” the
mapping of the function inputs onto the configuration pins.
The CNF of the target hardware configuration H with the
multiplexers is given by CNF(H) - CNF(MUX (X)).

The next step consists of constraining the hardware config-
uration to implement the desired behavior of function f(X)
for all possible values of the input X. For example, if f(X)
is a function of 2 variables, then the hardware configuration
must implement the correct output for all input combinations
X=00,X=01X =10, X =11.

These constraints are formulated in CNF by replicating 2/
times the formula CNF(H)-CNF(MUX (X)). We refer to
each replication as a stamp. For each stamp d, where d =

: j
. + | PLB Configuration — f(0...000)
urs
0 —
0 —]
0 B
MUX — . .)
. « | PLB Configuration — £(0...001)
o | [m
0 —
)
°
)
Lo
1 B
1 B
. + | PLB Configuration — f(1...111)
o om
21X1_1
&= [] CNF(Hy)-CNF(MUX(X)q4)-BIN(d)- f(d)
d=0
Fig. 3. Standard Boolean Matching formulation

0..21%1 — 1, the input of the MUX (X)q multiplexers are
constrained to the binary value corresponding to d denoted as
BIN(d) and the output of the H, is constrained to binary
value f(d). Note that for each configuration pin, the select
lines of each MU X (X) are tied together for all stamps. This
allows for a consistent mapping across the stamps. Figure 3
represents the different blocks of the standard formulation and
the entire CNF formula ®.

If the CNF formula ® is found to be UNSAT by a SAT
solver, it means that the hardware configuration H cannot
implement the function f. If the problem is SAT, then the SAT
solver also returns a satisfying assignment to all the formula
variables thus providing a solution to the Boolean matching
problem (i.e., logic values for the select line of MUX (X)
and the k-LUT configuration bits, if H contains k-LUTs).

III. SAT-BASED BOOLEAN MATCHING APPROACH

In general, the standard formulation may suffer from long
execution times. The main reason for the long run times is that
the SAT solver must search through all the possible mapping
combinations and permutations to find a satisfying assignment
to the LUT configuration bits. In this section we reduce the
complexity of the standard formulation by proposing a novel
SAT-based Boolean matching approach.

Consider the case where a k-input function is mapped to a
simple k-LUT. In this case, the exact mapping of the function
inputs to configuration pins is not necessary since a valid set
of LUT configuration bits can be found for all permutations
of the function inputs to the k-LUT pins. For instance, a
function f(z1,x2) = T1 - 22 can be mapped to a 2-LUT with
configuration bits {0,1,0,0} where 1 and x5 are assigned to
pins 1 and 2 of the LUT. Similarly a second mapping requires
configuration bits {0,0, 1,0} where x5 and z; are assigned to
the LUT pins 1 and 2, respectively.

As demonstrated by the above example, for configurations
composed of only k-LUTs the problem consists of finding
which function inputs are mapped to which k-LUTs (if many
k-LUTs exist). In other words, partitioning the function inputs
into groups corresponding to the k-LUTs (without determining
the individual mapping onto the k-LUT pins) guarantees the

l i=0

Build coarse pin assignmem}

problem CNF

Block partitions
No solution exists

Ye:

s
Generate partitions

[Build detailed pin assignmem}

Undetermined

problem CNF

increment i

Done
mapping info +
LUT mask bits

Fig. 4. Proposed Boolean matching approach

existence of a solution. Based on the above observation,
we propose a new SAT-based Boolean matching approach
which breaks the problem in two easier stages: a coarse pin
assignment stage and a detailed pin assignment stage.

In the coarse pin assignment stage, the targeted configu-
ration H is simplified by replacing all k-input PLBs with k-
LUTs. That is, we compute an approximation by assuming
that every k-input PLB can implement any function of k
inputs. These k-LUTs are used to create the 21| stamps
of the standard approach as described in Section II-C. The
resulting CNF is essentially a much easier problem which is
independent of any mapping permutations. The solution of
the coarse pin assignment determines how the function inputs
may be partitioned among the different PLBs within a given
configuration.

In the detailed pin assignment stage, a fine grain mapping
is performed for the given sets of partitions in the first stage.
The partition restrictions are encoded in CNF and added
to the standard formulation. The added restrictions ensure
that each function input is mapped to a PLB pin in the
assigned partition. As a result of the partition restrictions,
much fewer permutations are allowed in the second stage than
that of the standard formulation. For instance, partitioning 11
input variables into two equal sets leads to O(]X/2|!)=720
permutations for each problem which is orders of magnitude
less than O(]X!)=39,000,000 in the standard approach.

The above approach has an additional advantage. Since the
coarse pin assignment stage performs an over-approximation,
an UNSAT outcome in the first stage signifies that function
f cannot be implemented in configuration H. A fast UNSAT
response is very beneficial in practice because functions that
do not have a feasible mapping to a given configuration
are ruled out relatively quickly thus avoiding unnecessary
computations. If the outcome is SAT, then the approach
proceeds to the detailed pin assignment stage. An UNSAT
result in the second stage indicates that there does not exist a
mapping given the current partitions and another partitioning
is sought by iterating back to the coarse pin assignment stage.
On the other hand, if the result of the second stage is SAT,
a valid mapping and corresponding LUT configuration bits
are returned by the SAT solver thus completing the process.
Note that due to performance concerns it may be desirable
to terminate this process after a limited number of iterations.
Figure 4 illustrates the proposed framework described above.

« |1 input pins 1 output pin
11
124
5-LUT 5-LUT
i 0 i i
| 1 |
E E
5-LUT 5-LUT
PLB A PLB B
Fig. 5. Configuration with two Stratix II PLBs
A. Example

The following example illustrates the coarse and detailed
pin assignment stages of the Boolean matching approach.

Consider the 11-input configuration H based on two Altera
Stratix II PLBs shown in Figure 5. Notice that the inputs to
PLB B can be any of the 11 inputs as well as the output
pin of PLB A. This configuration has been found to provide
area, delay or power benefits for many common 11-input
functions [9]. However, not all 1l-input functions can be
implemented using this configuration.

The first step of the proposed approach is to convert the
5-LUT and MUX combinations of each 7 input PLB into a
7-LUT. The resulting configuration, shown in Figure 6, is used
to generate the 2! stamps described in Section II-C and the
corresponding CNF formula &.

11 input pins 1 output pin T
w
11
\l
7-LUT 7-LUT |
PLB A PLB B

Fig. 6. Transformation of two Stratix II PLBs in first stage

Assuming that the result of the first stage is SAT, the
SAT solver returns a partitioning for each 7-LUT. The first
partition corresponds to the function inputs assigned to PLB
A, and the second partition corresponds to the function inputs
assigned to PLB B. Notice that partition B only contains 6
inputs because the output of PLB A is always an input to
PLB B. The partitions are shown below.

PartitionA = xl,x6,$9,$2,$479€379€8}
PartitionB = {x3, x5, X10, T9, T7, T11 }

In the detailed pin assignment stage, constraints are gener-
ated to prevent the function inputs assigned to PartitionA
(PartitionB) to map to PLB B (PLB A). The CNF of the
standard formulation is enriched with the partition constraints
and solved by the SAT solver. In this stage, the SAT solver
finds a “detailed” mapping of the function inputs in each
partition to the pins of the corresponding PLB. For this
example, the SAT solver returns SAT leading to an assignment
to the LUT configuration bits and to the following mapping.

Mapping for Partition A Mapping for PartitionB

xz: PLB Apinl T3 : PLB B pin |
zg : PLB A pin 2 Z10 : PLB B pin 2
zg: PLB A pin 3 T5 PLB B pin 3
zg : PLB A pin 4 PLB A output: PLB B pin 4
zg: PLB ApinS T7 - PLB B pin 5
z1: PLB A pin 6 T11 - PLB B pin 6
z3: PLB A pin 7 Tg : PLB B pin 7

IV. SEARCH SPACE REDUCING

The two stage coarse and detailed pin assignment approach
can increase the efficiency of the overall Boolean matching
problem. Performance can be further improved by reducing
the SAT solver’s search space. In this section we present two
methods of increasing its efficiency based on enriching the
problem CNF & with additional constraining clauses.

A. Reusing Conflict Clauses

During the search procedure, a SAT solver may run into
conflicts due to unsatisfiable variable assignments. Modern
SAT solvers learn from these conflicts by generating conflict
clauses that prevent them from re-exploring these non-solution
regions. It is well accepted that conflict clauses guide SAT
solvers efficiently towards their final SAT or UNSAT out-
come [13]. Conflict clauses are usually specific to the instance
of the problem solved and cannot be always shared between
different problems.

In this section, we show that the Boolean matching
SAT formulation allows us to reuse conflict clauses across
problems for a given configuration H. The following theorem
formally states that it is safe to share conflict clauses across
different problems as long as only the clauses representing
the output value of the function f are different (the f(d)
components of ®).

Theorem: Consider two CNF formulae ®; and ®, such that
Y clause ¢ € {®1 — Py, P — D1}, |¢| = 1 and J¢; = € where
c€ ® and ¢; € &5 or ¢ € $5 and ¢; € 1. Further assume
that CNF &, represents the conflict clauses deduced from @4
[14]. The CNF {®; U ®.} is satisfiable if and only if the
CNF &, is satisfiable.

Proof: This theorem is similar to the claim in [15] stating
that conflict clauses deduced from {®; N ®3} may be used in
either ®; or ®5 without modifying the satisfiability outcome.
The proof in [15] is based on the fact that all literals in the
conflict clauses of ®. are deduced from common clauses to
both problems, ®; and ®,. In our case, we want to consider
the above case plus the condition where literals many not be
deduced from common clauses as long as they are deduced
from clauses with size 1 (single literal).

The cases that we need to prove are (i) if {®o U P .} is
UNSAT then ®5 is UNSAT and (ii) if {®2 U ®.} is SAT
then ®, is SAT. For both these cases, it is sufficient to
show that ®. evaluates to true in the CNF {®5 U &.}.
To proceed, we show that any conflict clause c¢. € ®. that
contains a variable v which is also a clause ¢, such that
ley] = 1 and ¢, € @y is satisfiable in ®5. Assuming without
loss of generality that the literal for variable v appearing
in the conflict clause is [, then the literal [must appear in
¢y € ®1 [14]. Since the clause ¢, € {®; — P5}, then there
exists a clause ¢, € {®2—P1} such that ¢,, = ¢,. As a result,

the literal [= [must be satisfied in ®5 which will also satisfy
the conflict clause ®. (since [appears in the conflict clause). B

1000 *

1000 - o« g

750 750 -

500 - 500 -

250 250 -

o . o0

400

*e

300 o

200

» * . .
0 0% . . 0¥ : . . .
0 250 500 750 1000 0 250 500 750 1000 o 100 200 300 400 500
@) (i1) (iii)
Fig. 7. Run time comparison (s) of proposed approach (x-axis) with standard approach (y-axis)

The above theorem allows us to generate a database of
conflict clauses using k-input functions for each configuration
of interest and reuse these clauses when matching any k-input
functions on the given configurations.

B. Constraining the Search Space

Given the SAT formulation for Boolean Matching described
in Section III, extra constraints can be developed to reduce the
search space explored by the SAT solver. These constraints
encoded in CNF reduce overall complexity of the problem by
limiting the assignment possibilities of the MU X select lines.

First, we develop a set of constraints to ensure that each
function input is mapped to a configuration pin. In other words,
a function of n inputs mapped to a configuration with m >
n pins must indeed uses all n inputs. The CNF formulation
demands that each of the n function inputs be selected by
at least one of the m configuration pins. The overall space
complexity of these constraints is thus O(n x m) clauses. For
values of n and m < 100, the benefits associated with adding
the extra clauses outweigh the overhead introduced as shown
in the experiments.

Next, we develop an additional set of constraints concerned
with distributing the function inputs across the available PLBs.
For instance, assigning the same function input to two different
pins on the same k-LUT does not use the full capacity of the
k-LUT. As a result, we generate CNF formulae to ensure that
no two configuration pins on the same LUT use the same
function input. For a k-LUT, this leads to an O(k?) number
of additional clauses. Similar to the first set of constraints, for
relatively small values of m < 100, the benefits of reducing
the search space are much greater than the costs associated to
the extra clauses.

Note that both these sets of constraints are applied to the
coarse and detailed pin assignment stages of the Boolean
matching approach.

V. EXPERIMENTS

In this section we present a summary of the experimental
results obtained for the SAT-based Boolean matching approach
presented here. We evaluate the run time performance of the
approach on 50 11-input functions extracted from the Altera
customer design database. The experiments are conducted on
a 3GHz Xeon processor with 1GB of memory and the SAT
solver used is zChaff version 2004.5.13[13]. Each function
is mapped to the three hardware configurations (a), (b) and
(c) shown in Figure 5 and Figure 9 (i) and (ii), respectively.
These configurations are based on the Altera Stratix II FPGA
PLBs [9]. Configuration (a) is of interest because it provides a
feasible implementation of many common 11-input functions.
Configuration (b) may implement more functions than config-
uration (a) due to the extra 4-LUT. Configuration (c) is also
desirable as it can provide delay or power benefits for many
functions.

To demonstrate the benefit of the proposed approach against
the standard approach, we execute both tools on all the
functions using the three configurations. The results are plotted
in Figure 7 (i), (ii), and (iii) for configurations (a), (b), and (c),
respectively. Each point in the figures represents the run time
in seconds taken by the standard approach (the y-coordinate)
and by the proposed approach (the x-coordinate). Points lying
above the diagonal line represent functions for which our
proposed approach outperforms the standard approach. Notice
that points aligned across the top of the graphs represent
cases where the standard approach times out. Due to the over-
approximation of the proposed approach, UNSAT problems
which correspond to functions that cannot be mapped to a
given configuration can be quickly identified without resulting
in a timeout. Since approximately 90% of points in Figure 7
are above the diagonal lines, it is clear that proposed Boolean
matching approach results in better run time performance than
the standard approach.

J 11 input pins 1 output pf

J 11 input pins 1 output pinf

L IPLBB

PLB B

®

Fig. 9. Configurations (b) and (c)

(ii)

Next, we evaluate the benefit of the search space pruning
techniques discussed in Section IV. Here extra clauses are
generated and added to the problem CNFs. Conflict clauses
are collected from executing the proposed approach on ten
random functions with a timeout limit of 200 seconds. Of
all the conflict clauses deduced, only those with fewer than 5
literals are recorded and added to the problem CNF. Constraint
clauses used to reduce the problem search space are generated
one time and reused for all problems. Note the time required to
generate these clauses is negligible. The resulting performance
with and without the search space reduction techniques is
presented in Figure 8.

Figure 8 (i), (ii), and (iii) represent the results for config-
urations (a), (b), and (c), respectively. There are two curves
plotted on each graph; the higher curve represents the tool
with the search space reduction techniques while the lower
curves represents the tool without these techniques. These
curves demonstrate what fraction of functions can be mapped
to the corresponding configuration under a given time limit.

0.45

0.40 0.50
040 —_— 035 /./' 0.45 1
035 0.30 .‘/ z:g P
0.30
/4./“. 0.25 Hx‘“/)’“_' 0.30 -
0.25 — i 0.20 N‘/‘/‘ 0.25
0.20 0.20
0.15 ‘/ _,/'/ 01 0.15 /
0.10 {/ 010 0.10 4
0.05 0.05 q / 0.05 -
0.00 0.00 0.00 ; :
0 100 200 300 400 500 600 0 200 400 500 800 1000 0 100 200 300 400 500
@) (i1) (iii)
Fig. 8. Impact of search space pruning techniques: percentage of functions mapped (%) vs. run time (s)
standard basic proposed complete proposed
conf. | Max # sols #sol [CPU(s) | #i1tr | #sol [CPU(S) | ommp sol | % imp time | #itr | #sol | CPU (s) | % imp sol | % improv.
() 26 15 805 4.02 14 182 442 3.75 21 166 40 485
(b) 30 18 776 3.41 13 231 -38 336 3.24 19 301 6 258
(©) 26 17 400 1.65 19 175 12 227 1.47 23 141 35 284
[avg.] 273 [16,7 1 6603 1303 153] 1960] -11 [335 [280 T 21.0 T 2027] 27 [3423 |
TABLE 1

RESULTS OF PROPOSED BOOLEAN MATCHING APPROACH

For example, the point (200, 0.30) on the top curve of Figure 8
(i), states that running the proposed approach for 200 seconds
results in 30% of the functions being mapped. Similarly,
allowing the tool to run for an extra 100 seconds will result in
approximately 40% of the functions being mapped. Generally,
higher curves and steeper slopes before reaching a plateau
indicate a more efficient tool since it can map more functions
in shorter time. As illustrated in Figure 8, at approximately
100 seconds, the search space reduction techniques result in
about 60% more mappings.

Table I summarizes the performance results of the standard
method, the basic proposed approach, and the one with the
search space reduction techniques on the three configurations
and the 50 11-input functions. Each row of the table cor-
responds to a configuration stated in column one. Column
two displays the maximum number of functions that can be
possibly mapped to the configurations. The columns labeled
“# sol” and “CPU (s)” present the number of mapped solutions
found and the average time required to find the solutions in
seconds for each of the three approaches. For the proposed
basic and the complete approaches, the columns labeled “# itr”
state the average number of iterations required by each ap-
proach. This value corresponds to the number of times the
coarse and detailed pin assignment stages are performed. The
columns labeled “% imp time” and “% imp sol” indicate the
percentage improvement for the run time and the improvement
in number of solutions of the proposed technique over the
standard approach.

The over-approximation technique used in the first stage is
crucial for the overall performance of the proposed approach.
If the approximation is too loose, then time is wasted by
performing many iterations of the approach only to reject the
unsuitable solutions in the second stage. On the other hand,
if the approximation is too tight, then problem is similar to
solving the standard problem which may be computationally
expensive. The relatively small number of iterations performed
along with the reduction in run times demonstrates that the
approximation technique developed is quite effective.

The final row of Table I presents the average numbers of the
above data. Comparing the average values of “% imp time”
and “% imp sol” for the complete proposed approach and
the standard approach, we notice an approximate run time
improvement of 340% while providing 27% more mappings.

VI. CONCLUSION

We develop a two staged SAT-based formulation for the
FPGA Boolean matching problem for networks of PLBs.
In the first stage the function inputs are partitioned into
groups corresponding to PLBs while in the second stage the
function inputs are mapped to PLB pins. We further develop
a theorem which allows us to reuse beneficial conflict clauses
from different problems and reduce the problem search space
by enriching the problem CNF with additional constraints.
Experiments demonstrate a 340% run time improvement and
27% more mappings by the proposed approach over previous

methods. VII. ACKNOWLEDGMENT
We would like to thank Dr. Jason Anderson for his insightful
comments and helpful suggestions in organizing and present-

ing this work. REFERENCES

[1] L. Benini and G. D. Micheli, “A survey of Boolean matching techniques
for library binding,” ACM Trans. Des. Autom. Electron. Syst., vol. 2,
no. 3, pp. 193-226, 1997.

J. Cong and Y. Y. Hwang, “Boolean matching for LUT-based logic
blocks with applications to architecture evaluation and technology
mapping,” IEEE Trans. on CAD, vol. 20, no. 9, pp. 1077-1090, 2001.
C. Scholl, Functional Decomposition with Application to FPGA Synthe-
sis. Kluwer Academic Publishers, 2001.

N. Vemuri, P. Kalla, and R. Tessier, “BDD-based logic synthesis for
LUT-based fpgas,” ACM Trans. on Design Automation of Electronic
Systems, pp. 501-525, 2002.

A. Abdollahi and M. Pedram, “A new canonical form for fast Boolean
matching in logic synthesis and verification.” in Design Automation
Conf., 2005, pp. 379-384.

K. Keutzer, “DAGON: Technology binding and local optimization by
DAG matching.” in Design Automation Conf., 1987, pp. 341-347.

A. Ling, D. Singh, and S. Brown, “FPGA technology mapping: a study
of optimality.” in Design Automation Conf., 2005, pp. 427-432.

J. cong and Y. Ding, “An optimal technology mapping for delay
optimization in lookup-table based fpga designs,” in Int’l Conf. on CAD,
1992, pp. 48-53.

[2]

[3]
[4]

[5]

[6]
[7]
[8]

[9] Altera Corp., “Statix II device family data sheet,” 2005,
http://www.altera.com/literature/hb/stx2/stx2_s1i5v1_01.pdf.
[10] Xilinx, “Virtex-4 user guide,” 2005,

http://direct.xilinx.com/bvdocs/userguides/ug070.pdf.

S. Brown, J. Rose, and Z. Vranesic, “A detailed router for field-
programmable gate arrays,” /[EEE Trans. on CAD, vol. 11, no. 5, pp.
620-628, 1992.

T. Larrabee, “Test pattern generation using Boolean satisfiability,” /IEEE
Trans. on CAD, vol. 11, pp. 4-15, 1992.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Design Automation Conf., 2001,
pp. 530-535.

J. Marques-Silva and K. Sakallah, “GRASP — a new search algorithm
for satisfiability,” in Int’l Conf. on CAD, 1996, pp. 220-227.

O. Strichman, “Pruning techniques for the sat-based bounded model
checking problem.” in CHARME, 2001, pp. 58-70.

(11]

[12]
[13]

[14]
[15]

