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Abstract— In the modern design cycle, significant manual
resources are dedicated to fix a design when verification shows
that a state is not reachable. Today there is little automation to
aid an engineer in understanding why a state is not reachable and
how to correct it. This paper presents a novel methodology that
automates this task. In detail, a process that involves intertwined
steps of state approximation, reachability analysis and traditional
debugging is developed to identify design locations where fixes
can be applied so the target state becomes reachable. An initial
formulation identifies such error locations that, when corrected,
can make the target state reachable directly from the existing
reachable set of states. This is later extended for the cases
where more than one state transition is required to reach an
unreachable state from the existing reachable set. Empirical
results on industrial level designs show a performance which is
an order of magnitude faster than the state-of-the-art confirming
the practicality of the proposed automated methodology.

I. INTRODUCTION

Functional verification has grown to be the major bottleneck in
modern hardware design taking more than 70% of the overall design
effort [1]. Debugging, the task of localizing the error source, accounts
for a hefty 60% of the verification cycle [2]. Most verification and
debugging tasks have been automated or semi-automated. Despite
these advances, once static or dynamic verification shows that a state
is not reachable, identifying the root cause of the failure remains a
predominantly manual effort with little automation available.

Traditionally, when verification detects an error such as an observa-
tion signal value mismatch, a scoreboard discrepancy, or a firing as-
sertion, an error trace (counter-example) is returned that demonstrates
that failure. This error trace is later used by a debugging tool [3]–
[6] to identify the root cause of the problem so the engineer can fix
it. On the other hand, when verification fails because a state is not
reachable, an error is clearly detected but no such error trace exists, in
the traditional definition of the term, to guide automated debugging.
As a result, correcting the root cause for an unreachable state today
remains a largely manual process that consumes significant resources
and engineering effort. In the context of coverage analysis, the work
in [7] discusses the problem of unreachable code. While unreachable
code may be a symptom of an unreachable state(s) and vice versa,
in practice they often manifest themselves separately. Therefore,
automated techniques to aid the engineer in fixing a design when
a state is shown to be unreachable are of paramount importance to
reduce the verification burden and improve the design cycle.

Towards this direction, we present an automated methodology to
identify suspect locations where fixes can be implemented so that a
design reaches a target unreachable state. Initially, the methodology
tackles unreachable states that can be reached within one cycle (i.e.,
transition) from the existing reachable set of states. This is done
by utilizing formal techniques to compute an over-approximation
of the reachable states for a specific operational design cycle. This
over-approximation essentially provides a set of constraints for that
particular cycle that is debugged by modifying the input set of a
traditional Boolean satisfiability (SAT) debugger. Due to the inherent
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nature of the state-space approximation, spurious solutions may be
present. These solutions are identified and discarded in an effort
to refine the input constraint model and increase the accuracy of
the approximation. In practice, the accuracy of the approximation
increases rapidly and spurious solutions occur infrequently. These
intertwined steps of state-space approximation and debugging are
repeated increasing the number of cycles from the initial set of states
until a solution is found, that is, a design location where a fix can
be performed so the target state becomes reachable.

This automated methodology is later extended to tackle cases
where multiple transitions are required from the reachable set of
states to reach the target unreachable state. Furthermore, as the
solution space may grow significantly larger with more iterations,
the algorithms are enhanced with a set of techniques that provide a
configurable tradeoff between run-time and resolution.

Experiments on sequential designs with injected design errors
confirm the performance and validity of the approach. Furthermore,
results demonstrate that the approximations used in the algorithm
improve in accuracy very rapidly, making spurious solutions infre-
quent and inexpensive to detect. The initial technique provides an
average speedup of 2x when compared to the current state-of-the-
art debugging technique. An additional optimization is presented that
achieves an impressive 26x speedup.

The remainder of this paper is organized as follows. Background
on reachability analysis and automated debugging is presented in
Section II. Section III describes the initial approach. Section IV
presents an extension to the initial approach. Section V describes a
performance optimization. Section VI presents experimental results,
and finally, Section VII concludes the paper.

II. PRELIMINARIES

A. Notation
The following notation is used throughout this paper. Given a se-

quential circuit C, the set of primary input, primary output, and state
elements (flip flops) of C are denoted by X = {x1, x2, ..., x|X|},
Y = {y1, y2, ..., y|Y |}, and S = {s1, s2, ..., s|S|}, respectively. In
an iterative logic array (ILA) [8] representation of the circuit, super-
scripts distinguish between clock cycles where Si = {si1, si2, ..., si|S|}
represents the values or the actual state elements in cycle i. Similar
notation is used for the primary input and output. We let the set of
initial states for C be I(S).

The transition relation of C is denoted as T (Si, Si+1, Xi, Y i). It
evaluates to 1 if and only if given current state Si, applying Xi to the
primary input of C it yields next state Si+1 and primary output Y i.
We say that a state is k-reachable if there is a sequence of Boolean
values that can be applied to the primary input to cause the circuit to
reach the state in k or fewer cycles. If there is a value of k for which
a state is k-reachable, then we also say that the state is reachable.
This paper denotes the set of k-reachable states as Rk. Finally, we
let S be the target unreachable state.

B. Background
In the context of this work, reachability analysis refers to the pro-

cess of approximating the set of k-reachable states for a given value
of k. Calculating the set Rk is intractable, but efficient algorithms
exist to over-approximate it [9], [10]. In particular, this work does
not introduce new techniques related to reachability analysis. It deals
exclusively with the problem of how to fix an erroneous design when
a verification tool shows that a particular state is unreachable in



violation of its specification. To tackle this problem, it utilizes three
by-product aspects of the work in [9], namely reachability analysis,
reachability checking, and approximation strengthening. Due to their
relevance in this paper, we describe them in greater detail.

The work in [9] performs reachability analysis directed towards
proving a given safety property. This is accomplished by constructing
a sequence of sets F = 〈F0, F1, F2, ..., Fk〉 where F0 = I(S) and
each Fi is an over-approximation of the set of i-reachable states (i.e.
Ri ⊆ Fi). Each set Fi can be represented by a propositional formula
over the state elements of the circuit [9]. In this paper, given some
state Si, we define function Fi(S

i) = 1 iff state Si is in the set Fi.
Given a state and a cycle i, reachability checking determines if the
state is in the set Ri. Finally, strengthening improves the accuracy
of Fi by returning a smaller over-approximation that excludes some
states that can be proven not to be i-reachable. Given a particular
state that is not i-reachable, strengthening returns clauses that can be
conjoined to Fi to reduce its size [9]. The improved approximation
excludes the given state, and may also exclude additional states
proven not to be i-reachable.

The work presented here also iteratively utilizes the SAT-based
automated debugging framework from [3]. In detail, [3] identifies
suspect locations that when corrected, fix the erroneous behavior
exposed by a counter-example. Let Xi denote the primary input
values from the counter-example in cycle i and allow Y i to denote
the reference primary output logic values in cycle i, as defined earlier.
Let B = {b1, ..., b|B|} denote the RTL blocks in the circuit, where
the output of block bj in cycle i is bij . An enhanced transition relation,
Ten(Si, Si+1, Xi, Y i, e) is constructed with added error-select lines
e = {e1, ..., e|B|}. If ei = 0, the behavior of bi is unchanged, while
setting ei = 1 replaces bji with a free variable wj

i for all values of j.
Additional input and output constraints are then derived from the

counter-example to set the primary input to the values from the
counter-example and to force the primary output to the reference logic
values for cycle i, respectively. Further, constraint I(S0) ensures that
the circuit begins at a particular initial state. Finally, the number of
simultaneously-active error-select lines is limited to a user-specified
value N with a cardinality constraint ΦN .

As such, for a k-cycle counter-example, the problem encoding is:

D = I(S0) ∧
k∧

i=0

(
Ten(Si, Si+1, Xi, Y i, e)

)
∧ ΦN (1)

Where Xi represents the primary input values from cycle i of the
counter-example and Y i is set to the reference primary output values
for cycle i. Each satisfying assignment of Eq. 1 corresponds to an
N -tuple of suspect locations that can be corrected to fix the erroneous
behavior of the counter-example.

We conclude this section with a brute-force automated approach
to debug a design for an unreachable state. As to the best of our
knowledge there is no prior work for us to compare, we will later
contrast this approach with the methodology developed in this paper.
Such a brute-force approach can use the state-of-the-art methodology
from [3] to generate a debugging problem aimed at correcting a
design error that causes an unreachable state. It creates an ILA of i
cycles which is later constrained using the initial set of states and by
placing the target unreachable state S as a final state constraint. In
essence, this approach annotates Eq. 1 as follows:

B(i,S) = I(S0) ∧
i∧

j=0

Ten(Sj , Sj+1, Xj , Y j , e)

∧ (Si+1 = S) ∧ ΦN

(2)

By solving the constraint satisfaction problem in Eq. 2 for increasing
values of i ≤ k, the method essentially searches for error locations
where fixes can be performed to make the target state (i + 1)-
reachable. By construction, the method is exhaustive, that is, it
will return all solutions to the problem. On the other hand, as the
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Fig. 1. Model of (a) B(i,S) (b) U(i,S)

state-space explodes with increasing values of i, its performance
may deteriorate as the SAT solver gradually explores a much larger
solution space. This fact motivates for the development of novel
methodologies tailored to the problem of state unreachability.

III. UNI-CYCLE UNREACHABILITY

This section presents an algorithm to localize bugs that cause a
design to have unreachable states. Given an erroneous circuit C and
an unreachable target state S, the algorithm finds suspect locations
that can be changed to make S reachable with one transition from
some already-reachable state.

The algorithm consists of a sequence of iterations, each of which
models and debugs a single state transition from an already-reachable
state to S. As calculating the exact reachable set of states is
an intractable problem, at each step of the algorithm an over-
approximation is utilized to model the potential set of reachable
states. Spurious solutions that arise from the use of an approximation
are detected and discarded. For simplicity, the initial formulation
presented in this section only identifies error locations for which the
target can be made reachable directly from an already-reachable state.
The next section extends the method to handle the cases where other
unreachable states must be reached prior to reaching the target state.

Specifically, the i-th iteration searches for solutions that may make
the target state (i+1)-reachable. Each iteration consists of two steps:
reachability analysis and debugging. Reachability analysis calculates
an initial approximation Fi of the set of i-reachable states using
the reachability analysis procedure of [9], described in Section II-B,
where S is used as the safety property to prove. For the purposes
of this formulation, reachability analysis can be treated as a “black
box,” and so the remainder of this section focuses on debugging.

The debugging step constructs a SAT-based debugging instance,
with the goal of finding suspect locations that can be changed to
allow for a state transition from a state in Ri to the target state S.
Towards this end, the instance utilizes a single copy of the transition
relation constrained by set Fi at its input and the target state S at its
output. Intuitively, the current set of states for the debugging instance
is constrained using Fi while the next state is constrained to S. The
primary input and output variables are left unconstrained, allowing
the SAT solver to find solutions for any input assignment. As such,
the resulting debugging instance can be expressed as follows:

U(i,S) = Fi(S
i) ∧ Ten(Si, Si+1, Xi, Y i, e) ∧ (Si+1 = S) ∧ ΦN

(3)

Note that solutions to Eq. 3 merely indicate locations where a change
can be applied to make the target state reachable. The engineer
must make an informed decision as to how to implement these
changes while maintaining the required functionality. As is the case
for traditional debugging based on a set of counter-examples [3], a
full verification step is required to confirm the correctness of the
modified design.

It is instructive to compare the proposed formulation to the brute-
force approach. Towards this end, Fig. 1 illustrates the models
represented by Eq. 2 and Eq. 3. In solving the ILA behind B(i,S),
the SAT solver is given the freedom to set values for all the primary



Ri

Fi

Si

(a)

Ri

Fi

Si

(b)

Fig. 2. Set Fi (a) initially (b) after strengthening with state Si′

input variables and the error-select lines. By construction, the state
elements (shown as slices between copies of the transition relation in
Fig. 1(a)) for the ILA with i+ 1 copies of the transition relation will
assume values to represent a sequence of states so that the overall
problem reaches the target state S. As noted earlier, with increasing
values of i the state-space grows exponentially for the SAT solver
to find proper values for the state elements to reach S. Nevertheless,
the solutions returned are exact as the method in [3] is exhaustive.

On the other hand, Fig. 1(b) depicts the formulation of U(i,S).
We observe that the proposed method is given the freedom to select
candidate current states from the set Fi in its effort to reach the target
state. In this context, a solution of cardinality N to this debugging
instance consists of a set of N active error-select lines and a state in
the set Fi. As set Fi is an approximation of the set of Ri, inherent
to the method is the fact that the set of solutions returned may not
be exact. This means that some solutions that satisfy Eq. 3 may not
be actual solutions to the unreachability problem as expressed by
Eq. 2, which is exhaustive. We therefore define a spurious solution
as a solution that satisfies U(i,S) but does not satisfy B(j,S) for
any value of j ≤ i. Note, the term spurious here is distinct from the
term used in a traditional abstraction/refinement context [11].

Evidently, spurious solutions may be returned when solving Eq. 3
if the chosen current state is a member of set Fi − Ri and it is
not i-reachable. Spurious solutions do not represent design locations
that can be changed to make the target state reachable. Therefore,
the algorithm must detect such cases and reject them. On the other
hand, any solution for U(i,S) when the current state is indeed i-
reachable is non-spurious. Therefore, when a solution is found the
reachability checking procedure of [9] is used to determine if the
current state is i-reachable or not. If it is, the solution is proven
to be non-spurious and it is added to the final set. Alternatively,
if the current state is shown not to be i-reachable, it is discarded.
When this happens, the strengthening procedure of [9] is used to
strengthen the approximation Fi. At a minimum, strengthening will
remove the current state that was found not be i-unreachable from Fi.
This prevents the SAT solver from finding further spurious solutions
with the same current state in the current iteration.

In practice, the work of [9] may remove many other states that
can be proven not to be reachable resulting in a rapid increase of the
accuracy of the approximation and hence our method. This is shown
in Fig. 2 where state Si has been proven to be spurious in the current
iteration of the algorithm. As a result of the strengthening process,
a more accurate approximation is derived shown in Fig. 2(b). An
accurate approximation provides numerous benefits to the algorithm.
During the current iteration it reduces the number of potential
spurious solutions, and in future iterations it can both increase the
accuracy of the initial approximation of the reachable set and improve
the overall run-time performance.

Although the process above removes spurious solutions and
strengthens the approximation, it should be noted that not all elements
of Fi−Ri may generate spurious solutions for U(i,S). If a solution
is derived from a current state that is not i-reachable, it may be the
case that a single fix in this location can make both the current state
and the target state S reachable. Although we should expect this to be
a rare case, the extension in the next section handles these situations.

Pseudo code for the entire procedure is shown in Algorithm 1.

Algorithm 1 UNIUNREACHABILITY(C,S, k)
1: solutions = ∅
2: for i in 0, 1, ..., k do
3: Fi = REACHABILITYANALYSIS(i)
4: U = DEBUGGINGINSTANCE(C,S, Fi)
5: while (Solution = SAT (U)) 6= UNSAT do
6: if REACHABILITYCHECK(Solution, Fi) then
7: solutions = solutions ∪ {Solution}
8: else
9: NewClauses = STRENGTHEN(Fi, Solution)

10: Fi = Fi ∧NewClauses
11: U = U ∧NewClauses
12: end if
13: end while
14: end for
15: return solutions

It assumes the existence of procedures REACHABILITYANALYSIS,
REACHABILITYCHECK, and STRENGTHEN from the work in [9].
Further, procedure DEBUGGINGINSTANCE generates the proposi-
tional formula in Eq. 3. Line 3 of the algorithm constructs the
initial approximation Fi, which is utilized to construct the debugging
instance on line 4. After a solution is found by the SAT solver, line
6 attempts to prove it is non-spurious. Finally, lines 9-11 apply the
strengthening procedure if the current state of the solution is found
not to be i-reachable.

The theorem that follows proves the correctness of the algorithm.

Theorem 1 In iteration i, the algorithm finds exactly the set of all
solutions that make the target state S reachable in one cycle from
an i-reachable state.

Proof: The debugging instance of Eq. 3 uses Fi as its current
state set. Throughout the iteration, Fi is updated, but Ri ⊆ Fi always
holds. Therefore, the current state set of the debugging instance
always includes all states in Ri, implying that the algorithm finds
every solution that reaches the target state and has a current state in
Ri. Furthermore, solutions with a current state that is not in Ri are
rejected, implying that all solutions found have a current state in Ri.
This implies that it finds exactly the set of all solutions that allow
for a state transition from a state in Ri to the target state S.

Theorem 1 proves that the algorithm works when S can be reached
with one transition from a state that is i-reachable. However, the target
state may not be the only erroneously unreachable state. It may be the
case that it can be reached through a sequence of states that are all
erroneously unreachable. The following section extends the algorithm
to find solutions in these cases.

IV. MULTI-CYCLE UNREACHABILITY

To obtain solutions that reach the target state S in more than
one cycle from an already-reachable state, the approach presented
here models a sequence of n state transitions that originates from
a reachable state and ultimately transitions to S. To do this, the
corresponding debugging instance is expressed as follows:

M(i, n,S) = Fi(S
i)

∧
i+n−1∧
j=i

Ten(Sj , Sj+1, Xj , Y j , e)

∧ (Si+n = S) ∧ ΦN

(4)

The parameter i represents the number of clock cycles modeled by
the approximation Fi, while n represents the window size, that is the
number of state transitions the algorithm is allowed to “look forward”
for unreachable states so that it reaches S. Rather than finding
solutions that make the target state (i+ 1)-reachable, M(i, n,S) can
return solutions that make the target state (i + n)-reachable. As was
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the case for Eq. 3, a solution to M(i, n,S) of cardinality N consists
of N active error-select lines and a current state in the set Fi.

One may observe that the brute-force approach and the single-cycle
approach are merely orthogonal special cases of Eq. 4. A window size
of one makes this approach equivalent to the uni-cycle approach,
that is, M(i, 1,S) = U(i,S). Conversely, using a window of k + 1
cycles and constraining the current state to the initial states of the
circuit makes this approach equivalent to the brute-force approach
as M(0, i + 1,S) = B(i,S). Again, Fig. 3 illustrates the model of
M(i, n,S) to demonstrate features shared with Eq. 2 and Eq. 3.

Due to the use of approximation, some solutions to to M(i, n,S)
may not be solutions to the unreachability problem. That is, solutions
to M(i, n,S) exist that are not solutions to B(j,S) for any j < i+n.
Therefore, a means of rejecting these spurious solutions is needed.
Intuitively, a solution for which the current state is i-reachable is
non-spurious by the same argument used in the previous section.
Therefore, the extended algorithm uses the same mechanism used
in Algorithm 1 to reject spurious solutions, that is when a solution
is found, the current state is checked for i-reachability. If it is
found not to be i-reachable, it is discarded and used to improve the
approximation Fi. Otherwise the solution is added to the final set.

Pseudo code for the procedure is shown in Algorithm 2. In addition
to the procedures used in Algorithm 1, it assumes the existence of
a procedure MULTICYCLEDEBUGGINGINSTANCE, which generates
the propositional formula of Eq. 4. In the algorithm, line 5 calculates
the initial approximation of the reachable set. In iterations prior to
iteration n this is simply F0 (i.e. the initial states). In later iterations,
it is an approximation of the (i − n + 1)-reachable set. Lines 7-15
essentially perform an iteration of Algorithm 1 using the n-cycle
debugging instance of Eq. 4 in place of the single-cycle debugging
instance of Eq. 3. Note that in iterations 0 ≤ i < n the algorithm
models only (i+1) ≤ n clock cycles, allowing it to still find solutions
that make the target state (i+1)-reachable in these iterations. Further,
the current state set is restricted to the set of initial states, essentially
making it equivalent to the brute-force approach.

The following theorem shows the algorithm correctly returns all
solutions. We omit its proof which is similar to that of Theorem 1.

Theorem 2 The solution set of M(i, n,S) is exactly the set of all
solutions that make the target state S reachable n cycles after an
i-reachable state.

Theorem 2 proves the completeness of the solution set, which
we now examine in more detail. By Theorem 2, after iteration k
Algorithm 2 finds all solutions that make the target state reachable n
or fewer cycles following a (k−n+1)-reachable state. This includes
all solutions that make the target state reachable one cycle after a
k-reachable state, and therefore the solution set of Algorithm 2 is a
superset of the solution set of Algorithm 1.

In particular, the solution set of Algorithm 2 can include solutions
that would be discarded in Algorithm 1. As mentioned in Section III,
a solution to U(i,S) with a current state that is not i-reachable may
not be spurious if a fix at the same location can make both its current
and next states reachable. By modeling multiple state transitions, it
is possible for Algorithm 2 to solve such rare cases. Specifically,
any solution discarded in Algorithm 1 that can make its current state
reachable in fewer than n cycles from a (k − n + 1)-reachable state
will be in the solution set of Algorithm 2.

V. PERFORMANCE OPTIMIZATION

In this section we discuss a performance-driven enhancement for
the methodologies presented earlier. The enhancement is presented as

Algorithm 2 MULTICYCLEUNREACHABILITY(C,S, k)
1: solutions = ∅
2: for i in 0, 1, ..., k do
3: n′ = min(n, i + 1)
4: t = i− n′ + 1
5: Ft = REACHABILITYANALYSIS(t)
6: M = MULTICYCLEDEBUGGINGINSTANCE(C,S, Ft, n

′)
7: while (Solution = SAT (M)) 6= UNSAT do
8: if REACHABILITYCHECK(Solution, Ft) then
9: solutions = solutions ∪ {Solution}

10: else
11: NewClauses = STRENGTHEN(Ft, Solution)
12: Ft = Ft ∧NewClauses
13: M = M ∧NewClauses
14: end if
15: end while
16: end for
17: return solutions

a modification to Algorithm 1, but can also be applied to Algorithm 2.
Given iteration limit k, Algorithm 1 must solve k + 1 debugging

instances. Each iteration finds a new over-approximation enlarging
the set of current states to be considered. This implies that each
iteration has the potential to find a larger set of solutions than previous
iterations. The proposed modification simply skips the first k itera-
tions and starts by executing the final iteration directly. It computes
F0, F1, ..., Fk using the reachability analysis procedure from [9]
without strengthening any of the intermediate approximations. It then
proceeds to solve U(k,S), rejecting potentially spurious solutions
and strengthening the approximations as done in Algorithm 1.

While this approach returns the same solution set as the original
algorithm, it may sacrifice resolution. In particular, a solution that
Algorithm 1 finds in iteration i but not in any earlier iterations can
make the target state reachable in a minimum of i + 1 cycles. The
modified approach will find the same solution, but it will not indicate
the minimum number of cycles in which the solution can reach the
target state. The benefit of course is that the algorithm solves only one
problem instance when compared to the k + 1 incremental instances
of the original algorithm. Hence, this modification presents a tradeoff
between run-time and resolution.

Further, as the optimized approach does not strengthen the in-
termediate approximations, reachability analysis may compute in-
accurate approximations. This can produce more spurious solutions
and increase the run-time of the reachability checking procedure
of [9], making it more expensive to identify potentially spurious
solutions. Nevertheless, empirical results presented in the next section
demonstrate that strengthening tends to rapidly improve the accuracy
of the approximations removing such spurious solutions quickly. As a
result, the modified algorithm exhibits a run-time performance which
is an order of magnitude better than that of the original approach.

VI. EXPERIMENTAL RESULTS

All empirical results presented in this section are run on a single
core of an i5-3570K 3.4 GHz workstation with 16GB of RAM
using a timeout of 14400 seconds. The presented algorithms are
implemented using a state-of-the-art SAT-based debugger [3] with
a Verilog frontend and MINISAT v2.2.0 [12] as the underlying SAT
solver. Reachability analysis/checking and strengthening are based
on the implementation of property directed reachability [13] within
ABC release 1.01 [14]. Five designs from OpenCores [15] and
one commercial design from an industrial partner are utilized as
benchmarks. Each problem instance is created by injecting a design
error such as complementing conditions in if-statements, introducing
incorrect state transitions, changing operators in expressions, etc.
These are typical design errors observed in industry. Each design
error is chosen such that it makes at least one state unreachable.



TABLE I
EXPERIMENTAL RESULTS

Benchmark Brute- Uni-Cycle Optimized Multi-Cycle Optimized Multi-Cycle
Force Uni-Cycle n = 5 n = 5

benchmark k time #sol- time #sol- spee- time #sol- spee- time #sol- spee- time #sol- spee-
(s) utions (s) utions dup (s) utions dup (s) utions dup (s) utions dup

wb 10 206 246 29 2 7.1x 3.7 2 55.3x 211 246 1.0x 19 246 10.5x
wb 25 4020 246 70 2 57.1x 3.7 2 1078.0x 510 246 7.9x 20 246 203.1x
wb 50 - - 139 2 - 3.8 2 - 1012 246 - 20 246 -
wb 100 - - 277 2 - 3.8 2 - 2024 246 - 20 246 -
wb 200 - - 554 2 - 4.1 2 - 4056 246 - 20 246 -
mrisc core 10 100 8 408 8 0.2x 190 8 0.5x 743 8 0.1x 130 8 0.8x
mrisc core 25 305 8 751 8 0.4x 665 8 0.5x 2223 8 0.1x 829 8 0.4x
mrisc core 50 1069 8 1956 8 0.5x 1095 8 1.0x 5606 8 0.2x 951 8 1.1x
mrisc core 100 13699 8 10250 8 1.3x 1394 8 9.8x - 8 - 1924 8 7.1x
mrisc core 200 - 8 - 8 - 2117 8 - - 8 - 3699 8 -
design1 10 69 30 39 21 1.8x 4.2 21 16.5x 75 25 0.9x 6.7 25 10.3x
design1 25 268 30 95 21 2.8x 4.3 21 61.9x 186 25 1.4x 7.4 25 36.1x
design1 50 809 30 189 21 4.3x 4.7 21 173.9x 389 25 2.1x 7.8 25 103.6x
design1 100 3003 30 394 21 7.6x 4.8 21 623.5x 847 25 3.5x 8.0 25 375.5x
design1 200 - 30 877 21 - 5.5 21 - 1840 25 - 8.4 25 -
usb core 10 160 28 742 27 0.2x 122 27 1.3x 796 27 0.2x 262 27 0.6x
usb core 25 769 28 - - - 234 - 3.2x - - - - - -
divider 10 39 52 35 4 1.1x 3.7 4 10.8x 45 25 0.9x 4.6 25 8.6x
divider 25 117 52 77 4 1.5x 3.7 4 31.7x 105 25 1.1x 4.7 25 24.6x
divider 50 258 52 146 4 1.8x 3.8 4 67.1x 205 25 1.3x 4.6 25 55.4x
divider 100 583 52 283 4 2.1x 3.8 4 152.9x 404 25 1.4x 4.7 25 123.8x
divider 200 1413 52 561 4 2.5x 3.9 4 365.7x 806 25 1.8x 4.8 25 291.9x
spi 10 14 22 14 22 1.0x 1.8 22 7.8x 24 22 0.6x 2.0 22 7.0x
spi 25 64 22 35 22 1.8x 2.1 22 30.6x 50 22 1.3x 2.1 22 29.5x
spi 50 267 22 70 22 3.8x 2.7 22 99.5x 92 22 2.9x 2.3 22 116.6x
spi 100 1399 22 147 22 9.5x 3.4 22 410.4x 186 22 7.5x 2.5 22 546.2x
spi 200 - 22 334 22 - 3.0 22 - 411 22 - 3.5 22 -
AVERAGE 2.0x 26.6x 1.1x 20.8x

Table I shows comprehensive results. All experiments are con-
strained with error cardinality N = 1. The first column contains the
name of the problem instance, while the second shows the number
of cycles for which solutions are pursued. The next two columns
show the run-time and number of solutions found using the brute-
force approach. The next three columns show the run-time, number
of solutions found, and speedup (relative to brute-force) using the
uni-cycle approach. The following nine columns show similar data
for the optimized uni-cycle approach, the unoptimized multi-cycle
approach and the optimized multi-cycle approach, respectively.

Note that the optimized and unoptimized approaches always find
the same solutions. However, over the entire set of experiments,
the optimized uni-cycle approach provides a speedup of 21.2x when
compared to the uni-cycle approach. At k = 10, the speedup is only
6.1x, demonstrating that the optimization is more effective for larger
values of k. Similarly, optimizing the multi-cycle approach gives a
29.6x speedup, reduced to 7.9x at k = 10.

Fig. 4 plots the number of solutions found by each approach using
k = 10. The uni-cycle approach returns on the average 37% of the
complete solution set of the brute-force approach, while the multi-
cycle approach with n = 5 finds an average of 91%. The algorithm
finds a particularly useful subset of the complete solution set, that
is the subset of all solutions that require reaching n or fewer non-
k-reachable states in order to reach a target state. It is expected that
some of the unreachable states may be intended to remain invalid
by the specification. That is, the design being debugged is expected
to satisfy some invariant properties required by the specification.
Therefore, limiting the solution set using the window size n is a
desirable feature, as it may exclude solutions that are likely to violate
these invariants. Modifying our formulation to automatically exclude
solutions that violate specification invariants is a target of future work.

For all designs except for wb and divider, the uni-cycle ap-
proach proved sufficient to find the solution corresponding to the
actual location where the error was introduced. This confirms the
intuition that limiting the window size n is a desirable feature.
Furthermore, using the multi-cycle approach with n = 5 proved
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sufficient to find this solution for every experiment.
Notice in particular that the algorithm finds very few solutions for

divider and wb with the uni-cycle approach. This implies that
the design errors in these circuits make multiple states unreachable,
and most of the debugging solutions can only reach the target state
through a sequence of unreachable states. Fig. 5 plots the number of
solutions found for wb and divider using different window sizes.
It can be seen that wb has 244 more solutions at n = 5 than at n = 4.
This suggests that correcting the design error will result in reaching a
sequence of four unreachable states prior to reaching the target state.
Conversely, divider exhibits steady and constant growth in the
number of solutions with increasing n and then it plateaus. This is
because the design error occurs in a pipelined portion of the design.
Increasing the window size essentially allows the algorithm to find
error locations in earlier pipeline stages.

Fig. 6 shows the run-time of the brute-force and uni-cycle ap-
proaches against k for the design spi. It can be seen that with
increasing k, the brute-force approach appears to exhibit exponential
run-time growth. Conversely, the presented approach appears to
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exhibit linear run-time growth for this design. This confirms the
effectiveness of our method.

Table II shows the number of spurious solutions rejected for the
designs mrisc_core and spi. The first two columns show the
design and the value of k used. The next four columns show the
number of spurious solutions rejected for the unoptimized uni-cycle
approach, unoptimized multi-cycle approach (n = 5) optimized
uni-cycle approach, and optimized multi-cycle approach (n = 5),
respectively. As explained earlier, in theory, the algorithm may reject
a non-spurious solution that also makes its unreachable current state
reachable. Across all experiments this rare case never occurred.

It can be seen that earlier iterations find more spurious solutions
than later ones. This suggests that the approximated reachable sets
become sufficiently accurate to prevent most spurious solutions in a
relatively small number of iterations. Obviously, this is dependent on
the difficulty of approximating the reachable state space for individual
designs, as evidenced by the wide variation in the number of spurious
solutions found between designs.

Notice that after 25 iterations, the algorithm finds very few
spurious solutions for spi. This suggests that the reachable set
is approximated with sufficient accuracy to prevent many spurious
solutions after this point. In particular, it is likely that few states
require more than 25 cycles to be reached in this design. Further-
more, note the difference in spurious solutions found between spi
and mrisc_core. The algorithm continues to find many spurious
solutions up to iteration 200 for mrisc_core, suggesting that its
reachable set is more difficult to approximate. This further explains
the difference in run-time behavior observed between the two designs.

A similar pattern appears with the optimized approaches, where
the run-time for mrisc_core grows substantially with increasing
values of k, but for spi remains near-constant. This is also explained
by the nature of the reachable state sets for these designs. Since the
set for spi is relatively well-approximated after 25 iterations, the
optimized algorithm solves a very similar problem at k = 25 and at
k = 100. However, for mrisc_core, the problem is substantially
more difficult at k = 100 than at k = 25.

TABLE II
SPURIOUS SOLUTIONS

Unoptimized Optimized
benchmark k uni-cycle multi-cycle uni-cycle multi-cycle
mrisc core 10 1706 2645 121 385
mrisc core 25 1869 2953 206 199
mrisc core 50 2219 3221 125 212
mrisc core 100 3014 - 170 101
mrisc core 200 - - 128 100
spi 10 235 464 29 63
spi 25 379 599 32 11
spi 50 437 624 28 11
spi 100 487 674 33 6
spi 200 587 774 11 6

This is also the reason the optimized approach is able to achieve
such large speedups in certain cases. After the reachable set of states
stops expanding significantly, increasing k only negligibly impacts
the run-time of the optimized algorithm. However, the brute-force
approach always solves a much larger problem when k increases,
and the speedup can therefore become substantial in these cases.

VII. CONCLUSION

This work presents an algorithm to localize bugs that manifest
themselves as unreachable states. This is done by combining an
approximated reachability analysis procedure with state-of-the-art
SAT-based debugging. An optimization is also presented to improve
performance. Experimental results confirm the effectiveness and
practicality of the presented approach against the state-of-the-art.
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