
Efficient Selection of Suspect Sets in Unreachable State Diagnosis

Ryan Berryhill and Andreas Veneris
University of Toronto, Department of Electrical and Computer Engineering

10 King’s College Road
Toronto, Ontario M5S 3G4

Abstract

In the modern hardware design cycle, correcting the de-
sign when functional verification reveals an erroneously
unreachable state can be a time-consuming manual pro-
cess. In order to mitigate this growing cost, this paper
presents an automated methodology that, given an un-
reachable target state, returns all design locations where
a change can be implemented to make it reachable. In
contrast to previous automated unreachability debug-
ging techniques, our approach avoids exhaustively ex-
amining all design locations, resulting in significant
run-time savings. The presented approach proceeds
through a series of iterations, each of which examines
a subset of the design locations (suspects) to determine
whether or not they are solutions to the problem. Based
on the results of each iteration, a new set of suspects
is considered in the subsequent iteration. However, in
practice a small portion of the locations in the design
are ever examined. Results are presented to prove that
when the initial suspect set is chosen appropriately, the
solution set returned by the methodology is complete.
Empirical results on industrial designs confirm the the-
oretical and practical gains of this approach, demon-
strating an impressive 33.7x speedup over the previous
approach while avoiding examining 76% of the design
locations on average.

1 Introduction
Functional verification has grown to become the primary
bottleneck in the modern hardware design cycle, account-
ing for up to 70% of the total design effort (Foster 2011).
Within the verification cycle, debugging accounts for up to
half of the time consumed (Foster 2008). A great deal of
automation is available to aid engineers in the verification
and debugging process, somewhat mitigating the substan-
tial resources they require. While invaluable to the debug-
ging process, some of these techniques can be difficult to ap-
ply in practice, particularly when considering large designs
which may require substantial computational resources to
verify and debug.

When functional verification reveals an error such as an
observation value mismatch, a scoreboard discrepancy, or
a firing assertion, an error-trace is returned that demon-
strates the problem. A SAT-based automated debugging
utility (Smith et al. 2005; Huang and Cheng 1998; Chang,

Markov, and Bertacco 2007; Fey et al. 2008) can be then
applied to aid the engineer in finding the root cause of the
error so it can be fixed. Functional verification may also
reveal that a state is unreachable in violation of the de-
sign specification. In this case an error is detected, but
no error-trace is available to guide traditional automated
debugging utilities. Specialized SAT-based automated de-
bugging techniques (Berryhill and Veneris 2015a; 2015b;
2016) exist to find the root cause of these errors. The ap-
proach of (Berryhill and Veneris 2015a) involves a series of
intertwined iterations of reachable state space approxima-
tion and traditional SAT-based debugging. While generally
effective it is not complete by nature, and may only return a
subset of the solutions to the problem. Conversely, the work
in (Berryhill and Veneris 2016) provides an approach that is
complete with respect to its input set of suspect locations.
That is, given a set of suspect locations, it is guaranteed to
return all locations where a change can be made to correct
the error (i.e., solutions) that are in that set. However, its
runtime performance may degrade substantially when the
suspect set is large, limiting its applicability in debugging
large designs with numerous potential suspect locations.

Towards the goal of alleviating this problem, this paper
presents a novel automated debugging methodology based
on the work of (Berryhill and Veneris 2016) that obviates the
need to specify a set of suspect locations. Given an unreach-
able target state, the methodology returns every location in
the circuit where a change can be made to make the target
state reachable. In contrast with the previous approach, it
does not require the user to specify a set of suspect loca-
tions and its runtime does not appear to explode with larger
suspect sets. The methodology proceeds through a series
of iterations, where each iteration executes the previous ap-
proach with a set of suspects that is small relative to the size
of the circuit. The key innovation is that the non-solution
suspects may indicate other locations that are also not solu-
tions and therefore can be safely ignored in future iterations.
In this manner, the algorithm is able to safely ignore many
suspect locations and thereby avoid the runtime explosion
characteristic to the previous approach. Experimental re-
sults show that the algorithm is able to discard 76% of the
circuit’s locations as non-solutions without providing them
to the underlying algorithm as suspects.

In greater detail, the algorithm works as follows. The only

input it requires is a predicate representing the target state.
First, the initial suspect set is constructed to include the reg-
isters that appear in the target state predicate and all loca-
tions in the circuit with fanout. The debugging algorithm
is then executed with this suspect set. When a solution is
found, it is recorded to later be returned to the user. Addi-
tionally, all of its fanins except for those that have already
been in the suspect set of a previous iteration are added to
the suspect set of the subsequent iteration. The algorithm
continues executing new iterations until either no locations
are left or an iteration runs and finds no solutions. In this
manner, any location that only appears in the fanin of known
non-solution locations is never included in a suspect set. In
practice, since the solution set of the problem tends to be
small, most locations are ignored and the size of the suspect
set at each iteration is small. However, as all ignored loca-
tions are known not to be solutions, the algorithm is com-
plete.

Experiments on industrial designs demonstrate the the-
oretical findings and the effectiveness of the proposed ap-
proach. In all cases, the proposed methodology finds the
same solution set as the previous approach, while providing
a geometric mean 33.7x speed-up. Additionally, it is found
that the average number of iterations is 5.1 and that an im-
pressive 76% of the circuit’s locations are safely ignored.

The remainder of this paper is organized as follows. Sec-
tion 2 presents background material regarding existing tech-
niques for debugging unreachable states. Section 3 presents
the proposed technique along with proofs of its soundness
and completeness. Section 4 presents empirical results that
confirm the effectiveness of the proposed technique. Finally
section 5 concludes the paper.

2 Preliminaries
2.1 Notation
The following notation is used throughout this paper. Each
assignment to the state elements of a sequential circuit C
represents a state of C. The transition relation of C is de-
noted by T . For a state pair 〈t, t′〉, 〈t, t′〉 ∈ T if and only if
there exists an assignment to the primary input that causes C
to transition from t to t′. The set of initial states of C is de-
noted I . For a predicate P over the state elements of C, any
state t ∈ P is referred in this paper as a P -state. A sequence
of states t0, ..., tn is a trace of C if and only if 〈ti, ti+1〉 ∈ T
for all 0 ≤ i < n and t0 ∈ I . A state t is reachable under
C if it appears in a trace of C. It is also i-step reachable if it
appears in a trace of i or fewer cycles.

A circuit can be represented by an And-Inverter graph
(AIG) (Brummayer and Biere 2006). In an AIG, the circuit
is represented by a directed acyclic graph (DAG) in which
each vertex represents either an AND-gate, a NOT-gate (in-
verter), an input, an output, or a sequential element (latch).
An AND-gate vertex has two in-edges representing the in-
puts to the gate and one or more out-edges representing its
output. Similarly, a NOT-gate vertex has a single in-edge
representing the input and one or more out-edges represent-
ing its output. An input vertex has an in-degree of zero and
one or more out-edges, while an output vertex has no out-

s1

x1

x2 l1

l2
DQ

FF

Figure 1: Circuit in which s1 = 1 is an unreachable state

edges and one in-edge. A latch is represented by two ver-
tices: its next-state input with has in-degree one and out-
degree zero, and its output with out-degree of at least one.

In a circuit C, a location refers to any vertex of the AIG.
For a location l, the set fanin(l) refers to all locations in
the fanin of l. In the AIG representation, this includes any
location l′ for which an edge (l′, l) exists. Additionally, if
l is the output of a latch, fanin(l) is the next-state input
of the latch. Similarly, the set fanout(l) refers to all loca-
tions in the fanout of l. These relations are symmetric. If
l ∈ fanout(l′), then l′ ∈ fanin(l) and vice versa. The
1-step cone-of-influence (COI) for a location l is the set of
all locations l′ for which the AIG contains a path from l′ to
l. The i-step cone-of-influence for a location l is the set of
all locations l′ for which a path exists from l′ to an element
of the (i− 1)-step cone-of-influence. The cone-of-influence
for l is the set of locations that appear in any i-step COI of l.

2.2 Prior Work
The work presented here extensively utilizes the automated
debugging approach of (Berryhill and Veneris 2016). Given
an erroneous circuit C, a set of suspect locations L (the sus-
pect set), and an unreachable target state predicate S, the
approach finds locations from L where a change can be im-
plemented to make some S-state(s) reachable. Any such lo-
cation is a solution. Any vertex of the circuit’s AIG rep-
resentation may be considered a suspect. The algorithm is
complete with respect to its input set. In other words, it re-
turns a solution set Lsol ⊆ L where all solutions from L are
included in Lsol. The algorithm is also sound, meaning that
all locations in Lsol are solutions. These facts also imply
that when the algorithm terminates, all locations in L \ Lsol

are also proven not to be solutions.
For example, consider the circuit of Figure 1, and assume

the initial state has s1 = 0. One can observe that it is im-
possible for the circuit to reach a state in which s1 = 1. The
algorithm can be executed with S = (s1) as a target state
and L = {l1, l2} as its suspect set. The algorithm returns
a set of solutions Lsol ⊆ L such that it is possible to im-
plement a change at any location in Lsol so that a state in
which the predicate S is true is made reachable. In this ex-
ample, the solution set is Lsol = {l2} indicating that l2 can
be modified to correct the error. Indeed, it is possible to re-
place the AND-gate with an OR-gate to make the target state
reachable. Other corrections are also possible. The fact that
l1 6∈ Lsol indicates that no correction is possible at l1. This
is easily verified as in the initial state s1 = 0, so no matter

what the output of l1 is, the AND-gate will never output a 1
and the circuit will never enter the target state.

The algorithm works by constructing an enhanced model
of the circuit with added hardware to facilitate debugging.
The model is constructed such that any S-state is reachable
under the model if and only if one or more of the suspect
locations is a solution. The algorithm uses the unbounded
model checking technique of Property-Directed Reachabil-
ity (PDR) (Bradley 2011) to determine if any S-state is
reachable. PDR is a model checking technique that solves
multiple SAT instances in order to either prove that S is un-
reachable or compute a counter-example trace that causes
the circuit to reach an S-state.

If an S-state is reachable, the answer from PDR will also
indicate a suspect location that is a solution. Subsequently,
this location is removed from L and the process is repeated
until no more solutions exist. In this manner, the algorithm
finds all solutions to the problem.

In this paper, it is assumed this approach exists as the
algorithm UNREACHABILITY(C,L,S). The algorithm ac-
cepts a circuit C, set of suspect locations L, and an unreach-
able target state condition S, and it returns Lsol as described
above.

3 Selecting Suspects Efficiently
This section presents a technique based on the work
of (Berryhill and Veneris 2016) that localizes bugs that cause
unreachable states. Given an erroneous circuit C and an un-
reachable target state condition S, the proposed technique
finds all locations in the circuit where a change can be im-
plemented to make an S-state reachable. The target state
condition S is a predicate defined by a Boolean formula over
the state elements of the circuit and is specified by the user.

3.1 Methodology
The algorithm involves a series of iterations of the previous
technique in which each iteration’s suspect set is chosen to
limit the number of suspects considered across all iterations.
In a given iteration, each solution found is used to add sus-
pect locations to the suspect set of the subsequent iteration.
Conversely, a location proven not to be a solution may indi-
cate that other locations are also not solutions and can safely
be ignored.

Towards this end, the algorithm begins with a preprocess-
ing step. The circuit is converted into its AIG represen-
tation and the set of all fanout points in the AIG is com-
puted. A fanout point is simply a vertex with an out-degree
greater than 1. Figure 2 depicts this concept graphically for
both a circuit and its equivalent AIG. It can be seen that a
fanout point is simply a location that fans out to the inputs
of more than one other vertex (latch, gate, or output). Let
F = {l : |fanout(l)| > 1} denote the set of all fanout
points. Additionally, the set R of all latches that appear in
the target state predicate S is computed. The exact rationale
and importance of these sets is explained later in this section.

After preprocessing, the algorithm proceeds through a se-
ries of iterations, each of which makes one call to the al-
gorithm UNREACHABILITY. Each iteration uses a different

(a) (b)

Figure 2: (a) Example circuit with fanout points highlighted
(b) Equivalent AIG

suspect set, constructed to limit the total number of suspects
examined across all iterations. We denote the suspect set of
an iteration i as Li. The initial suspect set is constructed
as L1 = R ∪ F , to include all fanout points and all latches
that appear in the target state predicate. The debugging al-
gorithm is then executed using this suspect set, returning a
set of solutions S1. A new suspect set L2 is computed from
S1 and used in the subsequent iteration. In general, after it-
eration i, the new suspect set Li+1 is computed as shown in
Eq. 1 below.

Li+1 = {l ∈ Si : fanin(l)} \
i⋃

j=1

(Lj) (1)

where fanin(l) denotes the set of all fanin for a location
l. Note that Li+1 contains the fanin of every solution found
in iteration i minus the union of all suspect sets for previ-
ous iterations. In other words, Li+1 does not include any
locations used as suspects in a previous iteration. This both
ensures that no location is a suspect in multiple iterations,
and guarantees that the algorithm terminates.

The reasoning behind this approach is fairly intuitive. If
a location l is a solution, it means that l can be replaced
by a different Boolean function to make an S-state reach-
able. It may also be possible to do the same at one of its
fanins, so the algorithm must check if its fanins are also so-
lutions. On the other hand, if l is not a solution then there
is no way to modify the design at location l and fix the er-
ror. In some cases, this may imply that elements in the set
fanin(l) also are not solutions. In particular, if l is not a
solution, l′ ∈ fanin(l), and l′ 6∈ (F ∪ R), then l′ is not
a solution. This important result is proven in the next sub-
section. From this result and the construction of the initial
suspect set, the algorithm does not need to check if such a
location is a solution. Therefore, none of these locations are
included in the suspect set.

The steps of the approach are shown in Algorithm 1.
In that description, algorithm UNREACHABILITY is as de-
scribed in section 2.2. Lines 1 and 2 construct the sets R
and F , respectively. Line 3 constructs the initial suspect set.
Lines 5-8 contain the main loop that repeatedly calls UN-
REACHABILITY. Within the loop, the set of suspects for the
next iteration is constructed on line 6 according to Eq. 1. Fi-
nally, line 9 constructs the solution set from the solution sets
of each iteration, which is returned on line 10.

Algorithm 1 UNREACHABILITYENHANCED(C,S)
1: R = state elements in the formula defining S
2: F = {l : |fanout(l)| > 1}
3: L1 = F ∪R
4: i = 1
5: while Si =UNREACHABILITY(C,S, Li) 6= ∅ do
6: Li+1 = {l ∈ Si : fanin(l)} \

⋃i
j=1(Li)

7: i = i+ 1
8: end while
9: S =

⋃i
j=1 Sj

10: return S

3.2 Soundness and Completeness
In the previous subsection, the approach and the rationale
behind the construction of the suspect sets is described. This
subsection elaborates on these details and proves the sound-
ness and completeness of Algorithm 1.

Towards the goal of demonstrating that the construction
of the suspect sets as defined in Eq. 1 is reasonable, consider
a location l that is also a solution. As l is a solution, the
Boolean function at l can be replaced by a different Boolean
function to solve the problem. One can observe that this im-
plies one of two possibilities. First, it may also be possible
to replace one of its fanins with a different Boolean function
to correct the problem, and therefore one or more of its fanin
locations may also be solutions. This occurs if the needed
change at l is equivalent to making a change at only one of
its fanin locations. Alternatively, it may not be possible to
correct the problem at one of the fanins, and therefore l is a
solution but no element of fanin(l) is. This occurs if there
is no way to modify the fanin locations of l individually to
correct the issue. As a result, the fact that l is a solution does
not imply whether or not the elements of fanin(l) are solu-
tions. It is necessary to include these locations in the suspect
set of a subsequent iteration to prove whether or not they are
solutions.

Conversely, if a location l′ is not a solution then this may
imply that some elements of fanin(l′) are not solutions.
Consider a location l ∈ fanin(l′). If l has other fanouts be-
sides l′, it may be possible for l to be a solution even if all of
its fanouts are not. This case can occur if multiple fanouts of
l need to be simultaneously corrected to fix the error. Simi-
larly, if l ∈ R, then it may be the case that l is a solution but
none of its fanouts are. However, if |fanout(l)| = 1, l 6∈ R,
and the single fanout of l is not a solution, then l also is not
a solution. The following lemma formalizes this notion.

Lemma 1. For a location l 6∈ R with |fanout(l)| = 1, if
the single element of fanout(l) is not a solution, then l is
not a solution.

Proof. Suppose that l is a solution and that the single ele-
ment l′ ∈ fanout(l) is not a solution. This implies that it
is possible to replace l by some other Boolean function to
make some S-state reachable. Also, since l 6∈ R but l is a
solution, l is in the COI of R and either l′ ∈ R or l′ is in the
COI of R. Otherwise, a change at l would not be observable
at R and could not correct the error.

However, there is no way to replace l′ with a different
Boolean function to make an S-state reachable. Since l′ is
the only fanout of l, this implies that it is possible to replace l
in a manner that changes the behavior at R but not at l′. This
is clearly a contradiction, since the behavior of the circuit
must also change at l′ to be observable at R.

This demonstrates the rationale behind constructing the
initial suspect set as F ∪ R. The set F includes every lo-
cation l with |fanout(l)| > 1. As a result, every l 6∈ L
satisfies l 6∈ R and |fanout(l)| ≤ 1, meaning that Lemma 1
can remove it from consideration if the single element of
fanout(l) is not a solution. This allows the algorithm to re-
move a large number of locations from consideration with-
out passing them to UNREACHABILITY. Essentially, the ini-
tial suspect set is constructed to cover all of the cases that the
lemma cannot.

We now turn our attention to proving the soundness and
completeness of Algorithm 1. In this context, soundness im-
plies that every location it returns is indeed a solution. Com-
pleteness requires that it also returns every solution. The
following theorem shows that the approach is sound. We
omit its proof because it follows trivially from the soundness
of UNREACHABILITY as proven in (Berryhill and Veneris
2016).

Theorem 1. Every location in S is a solution.

Since the set S only includes locations identified as solu-
tions by UNREACHABILITY, every location in S is a solu-
tion. Because S is the set of solutions in Algorithm 1, The-
orem 1 proves the soundness of the algorithm. Theorem 2
below proves that the algorithm is complete, which follows
from the construction of the initial suspect set and Lemma 1.

Theorem 2. When Algorithm 1 terminates, S includes every
solution.

Proof. The initial suspect set is F ∪ R. Since UNREACH-
ABILITY is complete, S includes all solutions from F ∪ R.
For every location l not in the initial suspect set, l 6∈ R and
|fanout(l)| ≤ 1. If l 6∈ R and |fanout(l)| = 0, l is not a
solution as it is clearly not in the COI of R. Therefore, by
Lemma 1, these locations are only solutions if they are in the
fanin of other solutions. On Line 6, the algorithm constructs
a new suspect set including the fanin of all solutions found
in the previous iteration. It continues in this manner until it
reaches an iteration in which no solutions are found. As a
result, any location in the fanin of any solution is included
in a suspect set passed to UNREACHABILITY. Therefore, by
the completeness of UNREACHABILITY, all of these solu-
tions are found as well and S contains every solution when
the algorithm terminates.

Since S is the solution set of Algorithm 1, Theorem 2
proves that the algorithm is complete. In contrast with the
previous approach, the algorithm does not require the user
to specify a set of suspect locations. Since the algorithm
carefully selects the suspect sets it examines, it essentially
performs this step for the user. However, it is possible for
the user to have additional knowledge regarding the source
of the error. For instance, if the user were to introduce a bug

Table 1: Experimental Results
Benchmark Previous Approach Algorithm 1

benchmark #gates #latches |L| #sol time (s) #sol #iter |
⋃
Li| time (s) |

⋃
Li|/|L| speedup

mrisc core 8165 1328 9573 18 276.9 18 6 1708 6.1 17.8% 45.6x
design1 1070 147 1208 9 11.4 9 4 232 0.4 19.2% 25.9x
divider 3555 360 3915 38 419.6 38 3 1056 12.2 27.0% 34.3x
spi 1009 132 1156 23 7.9 23 7 246 0.7 21.3% 11.6x
wb 390 61 451 193 10.0 193 8 237 0.5 52.5% 19.7x
usb core 4856 534 5545 6 631.4 6 3 1140 3.5 20.6% 194.3x
ac97 ctrl 12607 2325 14967 13 496.4 13 4 2697 17.9 18.0% 27.8x
GEOMEAN 23.4% 33.7x
MEDIAN 20.6% 27.8x

when modifying a specific module, it may be beneficial to
restrict the suspect set to locations within that module in or-
der to improve the algorithm’s runtime. While Algorithm 1
does not provide this functionality, it is easily achieved by
adding a set of trusted locations that are never allowed to be
included in the suspect set constructed on line 6. Empirical
results presented in the next section demonstrate that this is
not necessary in most cases, as the algorithm only considers
a relatively small portion of the circuit as suspects.

4 Experimental Results
All results presented in this section are run on a single core
of an i5-3570K 3.4 GHz workstation with 16GB of RAM.
The proposed algorithm is developed on top of a reference
implementation of PDR (Bradley 2011). For comparison the
approach of (Berryhill and Veneris 2016) is implemented us-
ing the same PDR implementation. Six designs from Open-
Cores (OpenCores.org 2007) and one commercial design
from an industrial partner are utilized as benchmarks. Each
problem instance is created by injecting a design error that
makes at least one state erroneously unreachable. Examples
of design errors include incorrect operators in expressions,
complemented conditions in if-statements, added incorrect
state transitions, etc. These are all typical design errors ob-
served in an industry setting. When executing the approach
of (Berryhill and Veneris 2016), the suspect set L is chosen
to include every location in the circuit.

Table 1 shows comprehensive results. The first three
columns show the name of the problem instance, the num-
ber of gates in the design, and number of latches, respec-
tively. The number of gates and latches are derived from the
AIG representation of the design. The next three columns
show the size of the suspect set, number of solutions found,
and runtime for the previous approach. The remaining five
columns relate to Algorithm 1. They show the number of so-
lutions found, number of iterations executed, total number of
suspects considered across all iterations, runtime, total per-
centage of suspects considered (|

⋃
Li|/|L|), and speedup

relative to the previous approach, respectively.
It can be seen that both approaches always find the same

set of solutions, as expected. Across all experiments, the
proposed approach offers a geometric mean speedup of
33.7x with a median of 27.8x. The proposed approach
is able to safely ignore a majority of all design locations.

1 2 3 4 5 6 7
Iteration Number

S
us

pe
ct

s
0

5
10

15
20

Solutions
Non−solutions

222
|̂

Figure 3: Solutions and non-solutions per iteration for spi

●

● ● ● ● ● ●

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

Iteration Number

Ite
ra

tio
n

R
un

tim
e(

s)

Figure 4: Runtime for each iteration for spi

Across all experiments, the proposed approach is able to use
Lemma 1 to ignore a geometric mean of 76.6% of all lo-
cations, and a median of 79.4%. Since the runtime for the
previous approach appears to be heavily influenced by the
size of the suspect set, eliminating the majority of locations
from consideration seems to yield a substantial reduction in
runtime.

Figure 3 plots the number of solutions and non-solution
suspects for each iteration for the design spi. It can be seen
that the suspect set of the first iteration is drastically larger
than that of subsequent iterations. This occurs because the
majority of locations are not solutions. Many suspects are
considered in the first iteration, and only a small portion of
them are found to be solutions. In the subsequent iterations

Table 2: Number of suspects and solutions in each iteration
benchmark |S1|/|L1| |S2|/|L2| |S3|/|L3| |S4|/|L4| |S5|/|L5| |S6|/|L6| |S7|/|L7| |S8|/|L8|
mrisc core 4/1688 4/4 2/2 3/4 3/6 2/4 - -
design1 4/225 3/3 2/2 0/2 - - - -
divider 10/1028 10/10 18/18 - - - - -
spi 7/229 2/2 2/2 2/2 4/4 5/6 1/2 -
wb 33/76 33/34 33/33 34/34 4/4 8/8 16/16 32/32
usb core 3/1136 1/2 1/1 1/1 - - - -
ac97 ctrl 5/2689 2/2 2/2 2/2 2/2 - - -

only a subset of the locations in the fanin of previously-
found solutions can be part of the suspect set. In most cases
this represents a very small portion of the design. In the
case of spi, it can be seen that the first iteration uses a sus-
pect set with 229 locations, only 7 of which are found to be
solutions. In the following iteration, only locations in the
fanin of these 7 solutions can be considered, giving a much
smaller suspect set.

Table 2 shows the number of solutions and number of
suspects per iteration for each design. It demonstrates that
in most cases, the initial suspect set contains few solutions,
meaning that very few suspects are considered in subsequent
iterations. The design wb appears to be the only exception.
In this case, a fairly large portion of the design locations are
solutions. Even so, the algorithm appears to be highly effi-
cient at ignoring non-solutions locations, as it only considers
a total of 237 suspect locations in order to find 193 solutions.
Even in this somewhat pathological case, the proposed algo-
rithm is able to ignore nearly half of the design locations and
achieve a 19x speedup over the previous approach.

The runtime of the the previous approach appears to be
heavily-dependent on the suspect set it is given. It can be
seen in Figure 4, which plots the runtime of each iteration
for spi, that the first iteration consumes substantially more
runtime than later iterations. This appears to confirm that
larger suspect sets require more runtime to solve. This is
unsurprising, as a larger suspect set substantially increases
the complexity of the PDR instances solved by UNREACH-
ABILITY. It is additionally expected that suspect sets with
many non-solutions impact the algorithm’s runtime more
substantially than those with many solutions. To find a solu-
tion, PDR simply needs to find a counter-example trace that
reaches a target state. Conversely, to prove locations are not
solutions PDR must prove that no such counter-example ex-
ists. This seems to be an inherently difficult problem. When
a large number of non-solution locations are in the suspect
set, proving no counter-examples exist can be an expensive
operation due to increased complexity of the model used in
PDR.

Figure 5 confirms this intuition. It plots the number of
solutions found over time for spi for both approaches. It
can be seen that the previous approach appears to find many
solutions towards the beginning of the run. These solutions
result from counter-examples that PDR is able to find more
easily. After exhausting the easy counter-examples, it begins
to take longer to find later solutions. Finally, after finding all
solutions, the algorithm also takes a substantial amount of

0 2 4 6 8

0
5

15
25

Time (s)

S
ol

ut
io

ns
 F

ou
nd

(a)

0.0 0.2 0.4 0.6

0
5

15
25

Time (s)

S
ol

ut
io

ns
 F

ou
nd

(b)

Figure 5: Solutions found for spi vs. running time for
(a) the previous approach (b) Algorithm 1

time to prove no further solutions exist before terminating.
Conversely, Figure 5(b) shows that Algorithm 1 finds few

of its solutions at the start of the run. This is because the first
iteration has a large suspect set. It can be seen that after find-
ing 7 solutions (all of the solutions for iteration 1), there is a
substantial gap before finding the eighth solution. This gap
represents the time required to prove that the non-solution
locations in the set L1 are in fact not solutions. As L1 is a
relatively large suspect set, this takes a significant amount of
time. After the conclusion of iteration 1, the suspect sets are
all much smaller than L1. As a result, each iteration requires
very little runtime and many solutions are found in a short
period of time. This confirms that using Lemma 1 to limit
the suspect sets is a highly effective means of accelerating
the debugging process.

5 Conclusion
This work presents an algorithm to diagnose errors that
cause unreachable states. It is complete by nature and re-
turns the complete solution set of the problem. It improves
upon the previous technique by ignoring a large portion of
the design locations that are provably not solutions. Empir-
ical results confirm that a majority of design locations are
safely ignored resulting in a substantial runtime improve-
ment.

References
Berryhill, R., and Veneris, A. 2015a. Automated rectifica-
tion methodologies to functional state-space unreachability.
In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, DATE ’15, 1401–1406.

Berryhill, R., and Veneris, A. 2015b. Diagnosing unreach-
able states using property directed reachability. In Proceed-
ings of the 2015 Workshop on Constraints in Formal Verifi-
cation, CFV ’15.
Berryhill, R., and Veneris, A. 2016. A complete approach to
unreachable state diagnosability via property directed reach-
ability. In Proceedings of the 2016 Asia and South Pacific
Design Automation Conference, ASP-DAC ’16.
Bradley, A. 2011. Sat-based model checking without un-
rolling. In Intl Conf. on Verification, Model Checking, and
Abstract Interpretation, 70–87.
Brummayer, R., and Biere, A. 2006. Local two-level and-
inverter graph minimization without blowup. In Proceed-
ings of the 2nd Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science, MEMICS ’06.
Chang, K.-H.; Markov, I.; and Bertacco, V. 2007. Automat-
ing post-silicon debugging and repair. In Computer-Aided
Design, 2007. ICCAD 2007. IEEE/ACM International Con-
ference on, 91–98.
Fey, G.; Staber, S.; Bloem, R.; and Drechsler, R. 2008. Au-
tomatic fault localization for property checking. Computer-
Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 27(6):1138–1149.
Foster, H. 2008. Assertion-based verification: Industry
myths to realities (invited tutorial). In Intl Conference on
Computer-Aided Verification (CAV), 5–10.
Foster, H. 2011. From volume to velocity: The transforming
landscape in function verification. In Design Verification
Conference.
Huang, S.-Y., and Cheng, K.-T. 1998. Formal Equivalence
Checking and Design DeBugging. Norwell, MA, USA:
Kluwer Academic Publishers.
OpenCores.org. 2007. http://www.opencores.org.
Smith, A.; Veneris, A.; Ali, M. F.; and Viglas, A. 2005.
Fault diagnosis and logic debugging using boolean satisfia-
bility. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst 24(10):1606–1621.

