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Abstract

We study the energy, latency and area characteristics of two
Counting Bloom Filter implementations using a commercial 0.13µm
technology and full custom layouts. The first implementation,
S-CBF, uses an SRAM array of counts and a shared counter. The
second, L-CBF, utilizes an array of up/down linear feedback shift
registers. Circuit level simulations demonstrate that for a 1K-entry
CBF with a 15-bit count per entry, L-CBF is 3.7 or 1.6 times faster
than the S-CBF depending on the operation. The L-CBF requires
2.3 or 1.4 times less energy per operation compared to the S-CBF.
However, the L-CBF requires 3.2 times more area. We demonstrate
that for one application of CBFs (early hit/miss detection for L1
caches [13] for an aggressive dynamically-scheduled superscalar
processor) the energy consumed by the L-CBF is 60% of the energy
consumed by the S-CBF for most of the SPEC CPU 2000
benchmarks. 

1  Introduction
An increasing number of architectural techniques rely

on hardware counting bloom filters (CBFs) to improve
upon the power, latency and complexity of various key
processor structures. For example, CBFs have been used
to improve the scalability of load/store scheduling
queues [11], to reduce replays by assisting in early
hit/miss determination at the L1 data cache [13], and to
improve performance and power in snoop-coherent
multiprocessor or multicore systems [9,10]. In these
proposals CBFs are used to avoid accessing much larger
and thus much slower and power-hungry content
addressable memories [11], or cache tag arrays [9,10,13],
or to avoid broadcasts over the interconnection network
in multiprocessor systems [9]. 

In all aforementioned applications, the CBF is used to
improve the energy and latency of membership tests (e.g.,
whether a memory block is currently cached). It does so
by providing a definite answer for most but not all tests.
Thus, the CBF does not replace the underlying
conventional mechanism (e.g., cache tags). Instead, the
CBF dynamically bypasses the conventional mechanism
as frequently as possible. Accordingly, the benefits
obtained through the use of a CBF depend on how
frequently it can be utilized and on the CBF’s energy and
latency characteristics. The more tests are serviced by the
CBF alone and the lower the power and latency of the
CBF the higher the benefits.

In this work we are concerned with implementations of
CBFs that improve on energy and latency. Conceptually,
a CBF is an array of counts for which three operations are
defined: increment by one, decrement by one, and test if

zero. We will refer to the first two operations as updates
and to the third as a probe. Previous work assumed a
straightforward SRAM-based implementation which we
will refer to as S-CBF (see Section 2.1). In this work we
investigate the energy, latency and area of this
implementation using a commercial 0.13µm CMOS
technology. However, the key contribution of this work is
L-CBF, a novel implementation of CBFs that relies on
up/down linear feedback shift registers (LFSRs). We
demonstrate that this implementation is significantly
faster and it requires significantly less energy than the
previously assumed SRAM-based implementation. Using
architecture level simulation of most of the SPEC CPU
2000 programs we demonstrate that L-CBF can
significantly reduce power for the early detection of L1
data cache misses [13].

In more detail, the contributions of this work are as
follows:
• L-CBF, an LFSR-based counting bloom filter

architecture is proposed.
• The energy, latency and area of L-CBF and S-CBF

are compared using their circuit level and full-custom
layouts in 0.13 fabrication technology.

• The relative energy dissipation of L-CBF and S-CBF
is compared for most SPEC CPU 2000 programs and
for the early detection of L1 data cache misses [13].

To the best of our knowledge this is the first work that
investigates the energy, latency and area of full-custom
implementations of CBFs using a commercial CMOS
technology. The idea of using LFSRs for the design of
CBF has been proposed before but no design or
evaluation of its characteristics were reported [9].

The rest of this paper is organized as follows. In
Section 2 we review CBFs and describe the S-CBF
implementation in Section 2.1. In Section 2.2 we present
the L-CBF design. In Section 3 we discuss our
experimental results. We conclude in Section 4.
2  Counting Bloom Filters

Without the loss of generality, we restrict our attention
to using CBFs for the early detection of L1 data cache
misses [13]. The concepts and implementations we
present are directly applicable to other CBF applications. 

In the application we consider, the CBF determines
whether a particular block of memory is currently cached
in the L1 data cache. Given a block address A the CBF
reports whether A appears in any of the tags of the data
cache. The CBF provides two possible answers: (1) “no,
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the block is definitely not cached”, and (2) “maybe the
block is cached”. In the first case, we determine that A is
not cached and hence this access will miss. Provided that
the CBF is much faster and dissipates much less power
than the L1 tag arrays, we manage to obtain the desired
answer much faster and to save power. In the second case,
the CBF cannot provide a definite answer and thus we do
have to access the L1 tags. In this case, we incur a power
penalty since we had to also access the CBF. We may also
incur a latency penalty if the CBF and the L1 tag accesses
are serialized (we may avoid this latency penalty if we
probe the CBF and the L1 tags in parallel, in which case
power benefits will be possible only if we can terminate
the L1 tag access in progress when the CBF provides a
definite answer).

As shown in Figure 1, the CBF can be thought of as an
array of counts that is indexed via a hash function of the
address A and where three operations are defined:
(1) increment count, (2) decrement count, and (3) test if
count is zero, or probe. The first two operations
increment or decrement the corresponding count by one,
while the probe operation tests if the count is zero and
returns true or false (single bit output). Simply using a
portion of the address and not a more elaborate hash
function has been shown to work well [9,13].

Initially, all CBF counts are zero and the L1 is empty.
When a block is allocated into the L1, the corresponding
CBF entry is incremented by one. When a block is evicted
from the L1, the corresponding CBF entry is decremented
by one. To test whether A currently exists in the L1, we
inspect the corresponding CBF count. If the count is zero
then A is definitely not in the L1 since we would have
incremented the count the moment it was cached. If the
count is non-zero then A may be cached. Since many
blocks can map onto the same CBF count, it is possible
that some other cache block incremented the count1.
Therefore, in this case we need to check the L1 tags to
determine whether A is cached. It is for the latter reason

that a CBF is an imprecise representation of the cached
blocks as it represents a superset of the cached blocks. 

A CBF is characterized by the number of entries it
contains and the width of the count of each entry.
Multiple CBFs with different hash functions can be used
to improve accuracy [10,13]. Also, count values are
bounded. Since the same count entry is incremented and
decremented on a block’s allocation and eviction
respectively, a count can never become negative and can
never exceed the number of the total cache blocks.
Counting bloom filters also have applications in
software [7].

2.1  S-CBF: SRAM-Based CBF 
Previous work assumed a straightforward CBF

implementation comprising an SRAM array to hold the
counts, a shared up/down counter, a zero-comparator and
a small controller [10]. This is shown on Figure 2.
Updates are implemented as read-modify-write sequences
as follows: (1) the count is read from the SRAM, (2) it is
adjusted using the counter, and (3) it is written back to
the SRAM. The probe operation is implemented as a read
from the SRAM and then a comparison with zero using
the zero-comparator. A small controller coordinates all
actions necessary to implement these CBF operations.

An optimization was proposed to speedup probe
operations and to reduce their power [10]. Specifically,
an extra bit, Z, is added to each count. When the count is
incremented from zero the Z is set to false and when the
count is decremented to zero the Z is set to true. Probes
can now simply inspect Z. The Z-bits can be implemented
as a separate SRAM structure which is faster and requires
much less power. We observe that this optimization can
be applied to both the S-CBF and the L-CBF.

2.2  L-CBF
As we demonstrate in Section 3, much of the energy in

S-CBF is consumed on the bitlines and wordlines.

Figure 1: A CBF for cache block address test membership. 

1 Ideally, a separate entry would exist for every possible block address A.
However, this would result in a prohibitively large table (e.g., a table with
32 million entries for a processor with a 4Gbyte address space and 32-byte
cache blocks) and would negate any benefits. Accordingly, a small table is
used and addresses are hashed onto the table. Hence multiple addresses
may map onto the same table entry.
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Figure 2: S-CBF architecture: An SRAM holds the CBF counts 
and updates are implemented as read-modify-write sequences.
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Latency and energy suffers also because updates require
two SRAM accesses per operation. Finally, the shared
counter further increases energy and latency.

We could avoid accesses over long bitlines by building
an array of up/down counters. Then there would be no
need to read the value of each counter and updates would
be localized. Unfortunately, up/down arithmetic counters
require many gates and are slow, e.g., [12]. We make the
following two observations: (1) the actual count sequence
used in a CBF is not important, and (2) externally, we
only care whether a count is “zero” or “non-zero”.

The L-CBF offers the benefits that are possible with an
array of up/down counters while avoiding the overheads
associated with using arithmetic counters. L-CBF uses
up/down LFSRs. As we demonstrate in Section 3, L-CBF
significantly reduces energy and latency compared to
S-CBF albeit at the expense of increased area. However,
this is a minor concern in modern processor designs for
two reasons: (1) there is an abundance of resources, and
(2) the CBF is tiny compared to most other processor
structures (e.g., caches and branch predictors). It is
unlikely that the same resources could improve
performance if applied to other processor structures that
are already much larger and optimized.

In the rest of this section, we review LFSRs, the
construction of up/down, or reversible LFSR counters and
finally present the organization of L-CBF.
2.2.1  Linear Feedback Shift Registers

In this section, we review LFSRs and the construction
of up/down LFSR counters. An appropriately designed
LFSR counter, or maximum-length LFSR of n bits
sequences through 2n-1 states. Without the loss of
generality we restrict our attention to the Galois
configuration of LFSRs [1]. Figure 3 shows a maximum-
length LFSR of 8-bits. The LFSR comprises a shift
register and a few XNOR gates. Each bit of the shift
register is either shifted as-is to the next bit (no tap) or is
XNORed with the output of bit 7 (tap). By appropriately
selecting the tap locations it is always possible to build a
maximum-length LFSR of any width that has either two
or three taps [1,5]. Furthermore, ignoring wire length delays
and the fan-out of the feedback line, the delay of the
maximum-length LFSR is independent of its size [12]. As we
show in Section 3.2, latency increases only slightly as the
number of bits increases, primarily as a result of increased
capacitance on the control lines. 

The tap locations for a maximum-length LFSR can be
represented as a primitive polynomial g(x). Figure 3
shows an example of such a polynomial. In general, an
LFSR can be expressed as:

where Xi corresponds to the output of the ith bit of the
shift register and where the constants Ci are either 0 (no
tap) or 1 (tap). This formula represents a uni-directional
(“up”) LFSR. If the primitive polynomial for a maximum-
length n-bit LFSR is g(x) (as defined by the preceding
formula), then the primitive polynomial h(x) of an LFSR that
generates the reverse sequence is [5]: 

The superposition of the two LFSRs (the original and
its reverse) forms a reversible, or an up/down LFSR. This
reversible LFSR can be implemented using the same shift
register, a 2-to-1 multiplexer per bit to control the
direction of the shift and several XNOR gates one per tap.
Figure 4 shows the construction of a 3-bit up/down
LFSR. In general, it is possible to construct a maximum-
length up/down LFSR of any width with either two or six
XNOR gates (i.e., four or eight taps). 

2.2.2  L-CBF Implementation
Figure 5 shows the high level organization of the

L-CBF. The L-CBF includes a hierarchical decoder and
several partitions each containing an array of up/down
LFSRs. In each partition there are local zero detectors per
LFSR counter. A hierarchical mux collects these local
“is-zero” signals and provides the single “is-zero” output.
The L-CBF accepts three inputs and produces a single
output “is-zero”. The 2-bit input operation encodes any of
the three possible operations or none. The address wires
are used to specify the address in question and the reset
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Figure 3: A 8-bit maximum-length LFSR (sequence length = 255)

Figure 4: A 3-bit maximum-length up/down LFSR.
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signal is used once to initialize all LFSRs to the “zero”
state. An external clock source is needed. The LFSRs use
two non-overlapping phases which are generated
internally using this external clock signal.  

 We use hierarchical decoders for the address lines to
minimize energy and delay [2]. The decoder consists of a
predecoding stage, a global decoder that selects the
appropriate partition and a set of local decoders, one per
partition. Each partition contains an array of up/down
LFSRs. Each row in each partition contains an up/down
LFSR and a zero detector. Finally, we use a hierarchical
multiplexer for selecting the appropriate zero-detector
output for the “is-zero” operation. Figure 6 shows the
custom cells that we used to implement each LFSR.
Shown are the flip-flop we utilized for the shift register
cells, the multiplexers used to control the direction of
change (“up”/”down”), the XNOR gate of the up/down
LFSR, and a bit-slice of the zero-detector. Due to space
limitations we do not provide additional details on the
L-CBF implementation.

3  Experimental Results
In this section, we compare the energy consumption,

delay, and area of the S-CBF and L-CBF
implementations. We first compare the designs on a per

operation basis and then report energy savings with
L-CBF over S-CBF for L1 hit/miss detection using
architectural simulation of several SPEC 2000
benchmarks. We made the layout of all designs using
Cadence(R) tools and for a commercial 0.13µm
fabrication technology. We did not use an automated
process to generate the designs. Instead, we used full-
custom design and attempted to optimize the energy and
latency of both designs as much as possible. We used the
Spectre simulator for circuit simulations. This is the
vendor recommended simulator for design validation
prior to manufacturing.

The rest of this section is organized as follows. We
initially consider a 1K-entry CBF with 15 bit entries as it
is representative of the CBFs used in previous
proposals [10,13]. In Section 3.1 we compare the energy,
delay and area of the two designs for each of the three
operations (increment, decrement and probe). In
Sections 3.2 we study how energy and delay change as we
vary the number of entries, the width of the counters and
the number of taps. In Section 3.3 we demonstrate that
L-CBF can reduce energy to 60% compared to S-CBF
when used for early L1 cache hit/miss determination.

3.1  Delay and Energy per Operation
We compare implementations of a 1K-entry, 15-bit

count per entry CBF. For S-CBF, we use an SRAM with a
total capacity of 15Kbits. We partitioned the SRAM in
order to minimize its power/delay product. For the S-CBF
we do not consider the delay and energy overhead of the
shared counter since our goal is to demonstrate that the L-
CBF consumes less energy and it is also faster. To further
reduce energy for probes in the S-CBF design, we
introduce an extra bit per entry which is updated only
when the count changes from or to zero as described in
Section 2.1 (z-bits). On a probe, we only read this bit.
Furthermore we applied a number of latency and power
optimizations on the S-CBF [2,3,8,4] as follows. The
Divided Word Line (DWL) technique which adopts a
two-stage hierarchical row decoder structure was used to
improve speed and power. We also used pulse operation
techniques for word-lines, periphery circuits and sense
amplifiers to reduce power. Also to reduce power more,
multi-stage static CMOS decoding and current-mode read
and write operations based on current-based circuit
techniques were utilized. For the L-CBF implementation
we use 16-bit LFSRs so that the LFSR can count at least
215 values.

Table 1 shows the delay in picoseconds, the energy
(static and dynamic) per operation in picojoules and the
area in square micrometers for both the L-CBF and the
S-CBF. The last column reports the ratio of S-CBR over
L-CBF per metric. We report two rows per category, one
for the update operation and one for the probe operation.

Figure 5: L-CBF architecture.

Figure 6: The cells used to implement each up/down LFSR: (a) the          
two-phase flip-flop (b) the 2-to-1 mux cell (c) XNOR gate, (one cell 

per bit of the LFSR) (d) a bit-slice of the embedded zero detector 
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For delay and energy we report the worst case which we
measured selecting appropriate input vectors. Given that
we do not consider the overhead (latency and energy) of
the shared counter, the measurements for the S-CBF are
optimistic and in practice will be worse. The L-CBF is
3.7 and 1.6 times faster than the S-CBF during updates
and probes respectively. In addition, the L-CBF
consumes 2.3 and 1.4 times less energy compared to the
S-CBF for updates and probes respectively. These
significant gains in speed and energy consumption come
at the expense of increased area. The L-CBF is about 3.2
times larger than the S-CBF.As we explained in
Section 2.2 this is less of a concern in modern processor
designs. 

Figure 7 shows a per component breakdown of energy
consumption for the two designs and for the two
operation categories. For the S-CBF, we can observe that
most of the energy (79% and 74% respectively for
updates and probes) is consumed by the memory core
(worldlines, bitlines and SRAM cells). The decoder and
the sense-amplifiers consume considerably less energy.
This is expected as we applied aggressive energy and
latency optimizations to these components. Finally, a
small percentage of overall energy is consumed by
peripheral circuitry such as the precharge and write logic.

3.2  Sensitivity Analysis
Thus far we have focused on a specific CBF. In this

section we consider varying the number of entries and the
width of the counts. Figure 8 reports the energy per

operation for CBFs of 64 through 1K entries in power of
two steps. We observe that the L-CBF always consumes
less energy than the S-CBF. The relative difference
increases slightly for larger entry counts. 

Figure 9 reports the energy per operation as a function
of count width in the range of four to 16 bits. In this
experiment we limit our attention to a 64-entry CBF.
Along the L-CBF measurements we also report the
number of taps needed by each count width (either four or
six). We observe that L-CBF’s energy scales better than
S-CBF’s. L-CBF energy increases slightly for wider
counts. Communication in the L-CBF is primarily
between adjacent cells. For this reason, increasing the
number of cells does not impact overall energy
significantly. S-CBF’s energy increases at a greater rate
because additional bitlines and sense amplifiers are
introduced and to a lesser extent because the wordlines
become longer. As it can be seen in Figure 9 changing the
number of taps in an L-CBF does not significantly impact
energy.

3.3  Energy Savings for Early Hit/Miss detection
Finally, we demonstrate that L-CBF can reduce energy

significantly compared to a S-CBF for a practical
application. We consider early L1 data cache hit/miss

Table 1. Energy, delay and area of the S-CBF and L-CBF 
implementations of an 1K-entry, 15-bit CBF.

Operation L-CBF S-CBF S-CBF/
 L-CBF

Delay (ps) inc/dec 447.26 1670 3.7
probe 580.32 910.12 1.6

Energy (pj) inc/dec 38.73 88.98 2.3
probe 30.36 41.02 1.4

Area (um2) 945825 295570 0.31

Figure 7: Per component energy consumption for the S-CBF and 
the L-CBF designs. Two sets of results are shown per design, one for 

the update operations (Inc/Dec) and one for the probe operation.
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Figure 9: Energy per operation as a function of count width for a 
64-entry CBF.
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detection as proposed by Peir et. al. [13]. Early hit/miss
detection can significantly reduce the number of
instruction scheduling replays due to L1 data cache
misses and hence improve performance. 

We used Simplescalar v3.0 [6] to simulate the
processor detailed in Table 2. We compiled the SPEC
CPU 2000 benchmarks for the Alpha 21264 architecture
using HP’s compilers and for the Digital Unix V4.0F
using the SPEC suggested default flags for peak
optimization. All benchmarks were ran using a reference
input data set. To obtain reasonable simulation times,
samples were taken for five billion committed
instructions per benchmark. We skipped 100 billion
committed instructions prior to collecting measurements
for all benchmarks except for art and parser for which we
only skipped 20 billion instructions. 

We simulate a 512-entry CBF with 11-bit counts. The
CBF is indexed using nine continuous address bits
starting immediately after the last bit that is used as an
offset within a cache block. Figure 10 shows the ratio of
the energy consumed by the L-CBF over the energy
consumed by the S-CBF for this application. A
breakdown also in terms of updates and probes is shown.
Overall, L-CBF reduces energy by about 40%. Should a
larger CBF was used, the energy savings would be higher.
Moreover, in this experiment we do not consider any
energy savings that would be possible by voltage scaling
in the L-CBF. Because the L-CBF is faster than the S-
CBF it may be possible to reduce power further by
scaling its voltage supply. 

4  Summary
We presented two designs of CBFs, one based on a

SRAM array of counts and one based on an array of linear
feedback shift register counters. We evaluated the energy,
latency and area of the two implementations of CBFs
using a commercial semiconductor technology. Finally,
we studied energy consumption for a practical application
of CBFs using architectural simulation. The L-CBF
design is superior than the previously SRAM-based

design in both latency and energy at the expense of more
area.
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Table 2. Base processor configuration
 Branch Predictor Fetch Unit

8K-entry GShare and 8K-entry bi-modal 
16K selector

2 branches per cycle

Up to 8 instr. per cycle 
64-entry Fetch Buffer
Non-blocking I-Cache

Issue/Decode/Commit Scheduler
any 8 instr./cycle 128-entry64-entry LSQ 

FU Latencies Main Memory
Default simplescalar values Infinite, 200 cycles

L1D/L1I Geometry UL2 Geometry
64KBytes, 4-way set-associative with 64-

byte blocks
2Mbytes, 8-way set-associative 

with 64-byte blocks
L1D/L1I/L2 Latencies Cache Replacement

3/3/16 cycles LRU
Fetch/Decode/Commit Latencies
4 cycles + cache latency for fetch

Figure 10: Energy ratio of L-CBF over S-CBF for a 512-entry, 11-
bit count CBF for early L1 data cache hit/miss detection.
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