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Abstract

Technology dependent logic optimization is usually car-

ried through a sequence of design rewiring operations.

In [18] a new design rewiring method is proposed that

combines error diagnosis and correction techniques with

ATPG. In this work, we examine its complexity and we

arrive to a new set of results with interesting theoretical

and practical applications. We also present experiments

that confirm the competitiveness of the approach and

motivate future work in the field.
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1 Introduction

In logic optimization, the gate level implementation ob-

tained from high-level synthesis tools is modified to

meet different constraints such as minimizing the area

and power, satisfying timing constraints, or improving

the testability of the circuit. Recently, ATPG-based de-

sign rewiring techniques for technology dependent logic

optimization [3] [4] [5] [6] [7] [11] [16] have gained in-

creasing popularity.

In general, existing ATPG-based techniques optimize

a design through an iterative sequence of Redundancy

Addition/Removal (RAR) operations. At each step of

this sequence, a target wire is first identified that vio-

lates some optimization constraint(s). Next, some re-

dundant logic is added in the design to make the target

wire redundant so it can be removed. Finally, these

methods delete any newly generated redundancies to

further optimize the design.

∗This research was supported in part by the Natural Sciences

and Engineering Research Council of Canada (NSERC) under
Contract #227044–00.

For example, consider the circuit in Fig. 1(a) [5]

where dotted wire g5 → g9 is not part of the origi-

nal netlist. Assume that wire wT = g1 → g4, named

target wire hereafter, needs to be removed. To remove

it, these techniques identify new redundant connection

such as wA = g5 → g9 that makes wT redundant. Sub-

sequently, they add wA and delete wT as well as other

newly generated redundancies, such as g6 → g7, to ob-

tain an optimized circuit shown in Fig. 1(b).

In [18], a new ATPG/Diagnosis-based Design

Rewiring (ADDR) design rewiring operational frame-

work is presented. This new methodology combines ex-

isting Design Error Diagnosis and Correction (DEDC)

techniques [1] [18] with advances in ATPG [8] [10]. It

can be shown [18] that this methodology has a number

of significant characteristics that add and complement

to existing techniques.
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Figure 1: Optimization through rewiring

In this work we analyze the complexity requirements

of the method by Veneris et al. [18]. In detail, we

show that the unique features of the proposed approach



come at no additional complexity cost when compared

to existing techniques. To prove this, in Section 3 we

reduce the problem of design rewiring to the problem

of multiple and simultaneous self-masking pattern fault

[15] injection. This formulation allows us to draw the

conclusion that the complexity of the method equals to

this of existing techniques.

Moreover, the presented theory leads to the more

general conclusion that the complexity of redundancy

checking for a set of multiple pattern faults is no harder

than that for a single pattern fault, an interesting result

that stands on its own. Therefore, recent advances in

ATPG [8] [10] provide computationally efficient imple-

mentations for the method. Finally, we present experi-

mental data that confirm the effectiveness of simulation-

based DEDC as it helps design rewiring avoid unneces-

sary redundancy checks. The same experiments demon-

strate the competitiveness of the approach and motivate

future work in the field.

The paper is organized in five sections. In Sec-

tion 2 we briefly review DEDC and the design rewiring

method in [18]. A complexity analysis for this method

is presented in Section 3. Experiments are found in

Section 4 and Section 5 concludes this work.

2 Background

2.1 DEDC

Logic design errors are functional mismatches between

the specification and the gate–level description [1] [17].

Most literature uses a design error (correction) model,

i.e. a small predetermined set of possible error types,

proposed by Abadir et al. [1]. A list of common design

error types from this model is shown in Fig. 2. These

errors are related to the present work. Gate types in

Fig. 2 are indicative, similar errors can occur on other

gate types as well.

In simulation-based DEDC, given an erroneous de-

sign, a specification, a design error model and a set of in-

put test vectors, we need identify lines in the design that

are potential sources of error (diagnosis) and suggest

appropriate modifications from the design error model

used that rectify it (correction) [1] [17]. Note that the

set of corrections returned by a DEDC algorithm may

contain some equivalent corrections. For example, if we

introduce a design error by removing wT = g1 → g4 in

Fig. 1, DEDC returns corrections g1 → g4 (actual) and

g5 → g9 (equivalent).

Test vector generation and verification in DEDC are
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Figure 2: Design error types

inherently difficult problems [1] [17] because the error

location is not known. On the other hand, it has been

theoretically proven by Abadir et al. [1] and experi-

mentally confirmed in [17], that a complete test set for

stuck-at faults as well as a small set of random vectors,

detects the majority of single errors and it has a good

chance to detect the remaining ones. For example, the

first four errors in Fig. 2 are guaranteed to be detected

with such a test.

Most DEDC techniques simulate test sets for stuck-at

faults and random test vectors to diagnose and correct

a design. Provided vectors with erroneous responses,

these methods are very efficient, especially for single

errors where their complexity is linear to the number

of circuit lines [17]. Intuitively, these methods obtain

a solution by intersecting the solution space offered by

each vector, as shown in Fig. 3. In this work, we use a

simulation-based DEDC algorithm [17] for single errors

which is exhaustive on the solution space. The input

to the algorithm is an erroneous netlist, its specifica-

tion and a set of input test vectors. The output of the

algorithm is a list of all applicable corrections.
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Figure 3: Resolution of simulation-based DEDC

2.2 ADDR

To eliminate wT , ADDR [18] removes the wire artifi-

cially to introduce a “design error” and it uses DEDC

to get all equivalent corrections that rectify the design.

In general, this new view to design rewiring allows one

to arbitrarily resynthesize the function of a line(s) and

correct this discrepancy somewhere else. It also makes

the process of multiple logic transformations a straight-

forward process, provided the use of an efficient multiple

DEDC algorithm. Multiple transformations have been

computationally intensive for existing techniques [6] but

they are important as they may increase the solution

space in favor of optimization [4] [5]. Theoretical and

experimental results, presented later in this paper, em-

phasize the importance and motivate the development

of such algorithms.

In detail, ADDR performs the following four steps to

eliminate target wire wT :

• Step 1: introduce a design error to eliminate the

target logic

• Step 2: derive test vectors for this design error

• Step 3: use a DEDC algorithm to search for a

correction that rectifies the design

• Step 4: verify the correctness of the final design.

In the following example [18], we review the imple-

mentation details in terms of a wire removal.

b
a

c

c

Target Wire

c

c

b
a g1

g2

g3
O3

O2

O1

e g4

g5

g6

g7

g8d

Figure 4: Original Circuit

Example 1: With respect to the circuit in Fig. 4 assume

that line c, input to gate GT = g1, is the target wire

that needs to be removed. During the first two steps

of the algorithm, shown in Fig. 5(a), gate G′

T = g9 is

introduced, that is, a gate similar to g1 without wT in

its support. A multiplexer MUX with inputs being the

outputs of g1 and g9 and select line S is also introduced.

For simplicity, in Fig. 5(a) we use g1 to indicate the cir-

cuitry that implements the respective boolean function

in Fig. 4. Clearly, any input test vector set V that de-

tects fault S stuck-at 1 contains test vectors that give er-

roneous primary output responses when wT is removed

from the circuit in Fig. 4 (Step 2). We derive such a set

V with the use of ATPG [8] [10].
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During the third step of the algorithm, DEDC [17]

is performed. The input to the DEDC algorithm is the

original circuit (Fig. 4), the erroneous one (Fig. 4 with



wT removed) and vector set V . The DEDC algorithm

returns with the actual error (missing input wire c to

g1) and a set of equivalent corrections that contains a

missing input wire wA = g2 as an input to g6.

To verify the correctness of the final design (step 4),

gate g10 is introduced with input lines g3, g4 and g2,

that is, the equivalent to gate g6 in Fig. 4 with wA

added as an input. A second multiplexer is attached

with the same select line S as the first one and inputs

g6 and g10, as shown in Fig. 5(b). An ATPG procedure

for fault S stuck-at 1 verifies that the fault is redundant

and the correction qualifies. Therefore, the circuits in

Fig. 4 and Fig. 6(a) implement the same function at the

primary outputs.

Observe that the solution returned by the proposed

method cannot be found by RAR. In Fig. 6(b) both wA

and wT are present but this circuit does not have the

same functionality as the original one (Fig. 4) because

input test vector (a, b, c, d, e) = (0, 0, 1, 0, 0), for exam-

ple, causes a failing response at O3. Therefore, wA is

not redundant in presense of the target wire wT .

It is seen, that ADDR uses ATPG to return a few

test vectors with erroneous output responses in Step

2 of the algorithm. DEDC in Step 3 uses these vec-

tors, as well as pre-computed vectors for stuck at faults

and random vectors, to return all possible corrections

in linear time. Finally, Step 4 verifies these corrections

in terms of single redundancy checking on the common

select line S.

In Section 3 we show that the complexity of Step

4 equals that of existing techniques. This complexity

seems to be inherent to the problem of rewiring. Experi-

ments in section 4 suggest that simulation-based DEDC

helps design rewiring avoid the vast amount of unnec-

essary redundancy checks to improve performance.

3 Complexity Analysis

In this Section we discuss complexity requirements and

efficient implementations of the method in [18] using

ATPG. This study concludes with a new set of interest-

ing results. During this presentation, we assume that

any test pattern may occur at the primary inputs of the

design, i.e. there are no external don’t care constraints.

In subsection 3.3 we relax this assumption and discuss

its implications.

In this complexity analysis, we model the process

of error and correction introduction with the injection

of multiple (simultaneous) self-masking pattern faults.

Let C be a circuit and let C ′ be the circuit after a num-

ber of logic (structural) transformations on a gate G of

C. We define a pattern fault f in C ′ to be a combination

of logic values on a set of circuit lines such that, if these

logic values can be consistently justified, the logic value

at the fan-out of G in C and C ′ are complementary. We

also allow a pattern fault be any set of pattern faults

on possibly different gates in C by recursive application

of the definition.

Observe, that a pattern fault associates a set of

unique logic value conditions on lines of the circuit such

that the output of the resynthesized gate G becomes

incorrect in C ′. These conditions may be satisfied by a

possibly non-empty set of input test vectors that excite

the fault. Some of these vectors may also propagate the

discrepancy at G to some primary output, that is, they

detect the fault.

Let C be a design and C ′ be the design after the

introduction of n pattern faults f1, f2, . . . , fn on m dif-

ferent gates (lines) of C. We say that pattern fault

F = {f1, f2, . . . , fn} is self-masked if and only if C and

C ′ are functionally equivalent. For brevity, in the re-

maining discussion, we use the term fault to refer to

a pattern fault, unless otherwise stated. We also use

the terms self-masking fault(s) and redundant fault(s)

interchangeably.

Different logic transformation types can be modeled

by a set of faults. Recall the various error (correction)

types introduced in Fig. 2. A missing input wire error

can be modeled by a fault f1 with set of excitation con-

ditions f1 = {a = 0, b = 0, c = 1}. These logic values

give a logic 1 at the output of the gate in the original

circuit C and a logic 0 in the new one C ′. The reverse

situation occurs for extra input wire error where the

same set of conditions give a logic 0 in C and a logic 1

in C ′. Notice that this pattern fault formulation implies

the stuck-at fault formulation for logic transformations

adopted by RAR [7].
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Figure 7: Fault modeling of a gate replacement error

Unlike the above error types which can be modeled by

a single fault, there are error types that require multiple

faults (conditions) to completely justify all error effects.

Consider the NOR to AND gate replacement error from



Fig. 2, for instance. As the truth table for two-input

gates in Fig. 7 reveals, there are two instances that this

error is excited, each of which is modeled in terms of

a distinct fault, f2 and f3. Other (non-negated) gate

type replacements are modeled similarly. An incorrect

input wire also requires two faults. With respect to

Fig. 2, these faults are f4 = {a = 0, b = 1, c = 0} and

f5 = {a = 0, b = 0, c = 1}.

It is seen, that the presented formulation can map any

piece of arbitrary logic resynthesis to a set of pattern

fault(s) by enumerating all necessary excitation condi-

tions on the error injected lines in C ′. In fact, ATPG at

Step 2 and 4 of the design rewiring algorithm performs

such an enumeration. With this formulation in mind,

the problem of design rewiring can be stated as follows.

Definition 1 Design rewiring is the problem where

given an (artificially introduced) error(s) modeled by

fault FE = {f1, f2, . . . , fi} at m lines of C we seek a cor-

rection(s) modeled by fault FC = {fi+1, fi+2, . . . , fn}

at p lines of the erroneous C (p, m ≥ 1) so that fault

F = {f1, f2, . . . , fn} = FE ∪ FC in the new circuit C ′

is redundant.

As a sidenote, the introduction of fault F in the cir-

cuit may make more faults fn+1, fn+2, . . . , fk redundant

[15], that is, F ∪ {fn+1, fn+2, . . . , fk} remains redun-

dant. Algorithms to identify such new redundancies, in

favor of design optimization, have been developed in [4]

[5] [6] [7] and apply to the presented work as well.

Under the presense of F , the simulation of a test

vector in C and C ′ may give different logic val-

ues at corresponding lines. To aid the presenta-

tion, we use Roth’s 9-valued logic value alphabet [13]

{0/0, 1/1, 0/1, 1/0, 0/X, X/0, 1/X, X/1, X/X} to rep-

resent the logic value of a line in the original/new circuit

C/C ′, respectively. Using Roth’s alphabet, the redun-

dancy requirement in Definition 1 implies that no 0/1

or 1/0 shows to a primary output under the presense of

F .

The following examples illustrate the above concepts.

Example 2: The work by Kunz et al. [11] presents an

RAR method which optimizes a circuit using Boolean

division operations. In this example, borrowed from

[11], we review the method and formulate it within the

framework presented here.

With recursive learning [10], one finds that logic 0

on g1 implies a logic 0 on g4, that is, g1 = 0 ⇒ g4 =

0 in Fig. 8(a). This logic implication is equivalent to

g4 = 1 ⇒ g1 = 1 by contraposition and allows [11] for

g′4 = g4g1 to be added at the output of g4 as shown
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in Fig. 8(b) (ATPG-based Boolean division). Adding

redundant gate g′

4 (correction) makes connections g1 →

g3 and a → g2 redundant (errors). Removing these

connections in Fig. 8(b) leads to an optimized design

with 3 gates.

We now translate this sequence of operations into

the present operational framework. The addition of

g′4 is equivalent to the injection of fault f1 (= FC)

with excitation conditions {g4 = 1, g1 = 0} that can-

not be simultaneously met in Fig. 8(a), thus, it is re-

dundant. The two errors are represented with faults

f2 = {c = 1, g1 = 0} and f3 = {a = 0, b = 0}

(FE = {f2, f3}), respectively.

Observe that fault F = {f1, f2, f3} is redundant since

no test vector propagates a 0/1 and/or a 1/0 value at a

primary output(s) for any combinations of faults from

F [15]. To see this, in Fig. 8(b) we attach the logic

values on lines of C/C ′ when f1 is excited and c =

1. The case when c = 0 is similar. To simplify the

presentation, the dotted wires are pseudo-inputs with

stable non-controlling logic value 1. Notice that when

f1 is excited, faults f2 and f3 are excited. The reader

can verify that the excitation of f3 excites f1 and the

excitation of f2 excites f1. In all cases, the multiple

faults are redundant.

Example 3: We re-examine Example 1, redrawn in

Fig. 9 for convenience. There are two faults in that

circuit, c → g1 = FE = {f1} = {c = 1, a = 0, b = 0}

and g2 → g10 = FC = {f2} = {g2 = 1, g3 = 0, g4 = 0}.

Fig. 9(a) contains the situation where both the er-

ror and the correction are present in the final circuit.

Similar reasoning to the one in Example 2 shows that

fault F = FE ∪FC is redundant. Observe that meeting

the excitation conditions of one fault excites the other.

Subsection 3.1 shows that this is not a coincidence and

it prompts towards design rewiring specific DEDC al-

gorithms. On the other hand, fault F ′ = {f2} is not
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Figure 9: Example of subsection 2.2, revisited

redundant, as illustrated in Fig. 9(b).

3.1 ATPG and DEDC (Steps 2 and 3)

The focus is on the complexity requirements of ATPG

(Step 2) and DEDC (Step 3) of the algorithm in [18].

We perform this study in terms of the set of test vectors

that detect faults FE and FC in Definition 1.

Consider a single execution of the proposed design

rewiring algorithm. Design C is first corrupted with

some error(s) modeled by fault FE . Let CI denote the

intermediate circuit after this error introduction opera-

tion, that is, CI is functionally equivalent to C under

the presense of fault effects from FE . Next, a correc-

tion(s) is applied on some lines of CI to give circuit C ′

such that C ≡ C ′. This correction(s) is modeled by

fault FC .

Observe, CI can be similarly defined as C ′ prior to

the correction(s), that is, CI is functionally equivalent

to C ′ under the absence of fault effects from FC . This

dual definition for CI is due to the symmetric nature

of DEDC: Any error/correction solution in C is a cor-

rection/error solution in C ′. The locations and excita-

tion conditions of the pattern faults F ′

E/F ′

C associ-

ated with this correction/error in C ′ are in one-to-one

correspondence to the ones in FC/FE with complemen-

tary logic values at the respective gates.

Motivated by these observations, Theorem 1 classifies

test vectors that detect FE and FC . The proof of this

theorem is straightforward from the discussion above.

Theorem 1 Let faults FE and FC from Definition 1

and F ′

E and F ′

C as defined above. Test vector t detects

some faults from FE on a set of lines Le in CI if and

only if t detects some faults from F ′

E on a set of lines

Lc in CI .

Example 4: In Fig. 8, gate g′

4 is added (correction) and

wires g1 → g3 and a → g2 are removed (errors). In

Example 2, these logic transformations are modeled by

faults f1, f2 and f3, respectively. Assume that faults

f2 and f3 are injected in the circuit of Fig. 8(a). De-

pending on the value of c, every vector with erroneous

responses detects either (i) f2 and f3, or (ii) f3. The-

orem 1 suggests that these are also all the vectors that

detect logic transformation “remove g′

4” in Fig. 8(b),

which is the case indeed.

Example 5: Consider the circuit under verification in

Fig. 5(b) where F consists of faults f1=“missing input

wire c to g9” and f2=“extra input wire g2 to g10”. Ac-

cording to [15], proving the redundancy of S stuck-at

1 fault is equivalent to proving the redundancy of (i)

f1, (ii) f2 and (iii) f1 ∪ f2. Theorem 1 implies that

any ATPG tool that attempts to prove redundancy of

(i) will excite (ii) to cancel the error effects of (i) and

vice versa. The reader can verify this effect. Due to the

containment property, the tool will not attempt (iii).

Therefore, in practice, proving the redundancy of pat-

tern fault F equals proving the redundancy of two single

single stuck-at faults f1 and f2 independently.

Theorem 1 establishes a relation between the test vec-

tor(s) t that detect the error(s) and the ones that detect

the correction(s) via the sets of pattern faults and their

associated locations Le and Lc. We view the merits of

this theorem first for DEDC and then for ATPG.

In brute-force DEDC, the error location Le is not

known and no such test vector classification is possi-

ble. DEDC for single errors remains efficient (i.e., lin-

ear [17]) because all error effects originate from a single

line. If multiple errors/corrections are present, then the

solution space explodes exponentially with the num-

ber of error locations. On the other hand, in design

rewiring the error location(s) is known, for every test

vector t the set Le can be computed and DEDC is pre-

sented with the additional information of Theorem 1.

Although there is little to gain for the single error case,

in light of this information, we believe that efficient de-

sign rewiring specific DEDC algorithms can be designed

to tackle the multiple error/correction case.

Theorem 1 also suggests that ATPG should target ev-

ery fault from FE in the care set of the respective line(s)

independently to aid DEDC resolution. Traditionally,



ATPG is carried in two steps. The first step excites the

fault and the second step propagates the fault effects

to some primary output. Since all faults in FE have

unique excitation conditions, one can easily modify an

ATPG engine to enumerate all required excitation con-

ditions. However, this is not necessary and trade-offs

can be considered. We discuss some trade-offs here and

we conclude in Section 4.

Since the error effects of some faults from FE may

originate from a single line, one may run ATPG only

on a subset of them to aid diagnosis. Next, a DEDC

algorithm can return all corrections. The net effect is

that some corrections may not verify during simulation-

based verification by DEDC (Step 3) or during Step

4 that performs such an exhaustive fault enumeration.

If more time is spent in ATPG at Step 2, less time

is expected to be spent in DEDC/verification and vice

versa. In both cases, the set of corrections obtained is

the same.

3.2 Multiple Fault Redundancy Check-
ing (Step 4)

Step 4 of the algorithm verifies the correctness of the

new design C ′ in terms of a redundancy checking for the

stuck-at 1 fault on the common select line of all mul-

tiplexers. According to Definition 1, C ′ is structurally

generated from the original design C by introducing an

error(s) and a correction(s). These logic transforma-

tions can be uniquely represented by fault F . As such,

Step 4 is equivalent to checking the joint redundancy of

the underlying faults.

Proving the redundancy of multiple and simultaneous

faults has been a well examined problem of prominent

importance due to its implications in logic testability

[15]. The following theorem, a simple restatement of

the result by Smith [15], gives a necessary and sufficient

condition for multiple fault undetectability:

Theorem 2 A fault F = {f1, f2, . . . , fn} on m lines,

n ≥ m, in a circuit is redundant if and only if for each

nonempty set Fi ⊆ F there exists non-empty set Fj ⊆

F such that Fi ∪ Fj is redundant.

As Smith’s Theorem indicates, the complexity of re-

dundancy checking for a set of n faults necessitates

a computation of exponential (in n) size for modern

ATPG tools as it requires enumeration and redundancy

checking for every fault combination. Nevertheless, the

presented fault-based formulation and the construction

in subsection 2.2 allows to capture nicely this complex-

ity in the redundancy checking of a single fault.

Theorem 3 that follows, formalizes this idea which, to

the best of our knowledge, is the first result that allows

for efficient multiple fault redundancy checking using

ATPG. Since ATPG is very efficient when verifying sin-

gle fault redundancies it also makes it a robust platform

to implement the proposed design rewiring approach.

Theorem 3 can also provide a proof that checking the

redundancy of n faults is NP-complete.

Theorem 3 A fault F = {f1, f2, . . . , fn} on m lines,

n ≥ m, in a circuit is redundant if and only if the stuck-

at 1 fault on the common select line for the m multiplex-

ers of the construction in subsection 2.2 is redundant.

3.3 Design Rewiring With Constraints

Consider the assumption at the beginning of the Sec-

tion that every test may occur at the primary inputs of

the design. This assumption can be relaxed in favor of

design optimization as follows.

Assume design C with r number of primary inputs

and let structurally identical design CC operating under

a set of external don’t care constraints. In other words,

the complete input test vector set for CC has strictly

less than 2r members. Given an error, Fig. 3 implies

that an input test vector may reduce the solution space

for simulation-based DEDC but it never increases it.

Therefore, for a fixed error, CC is expected to have at

least as many corrections as C.

Sets of external constraints can be taken into account

by the presented design rewiring method if ATPG (Step

2 and 4) avoids generating input test patterns that be-

long in these sets or if DEDC ignores such test pat-

terns when generating a solution. The discussion in the

previous paragraph implies that ignoring test sets may

increase the correction space in favor of optimization.

4 Experiments

We implemented and run the algorithm in subsec-

tion 2.2 on an Ultra 10 SUN workstation for ISCAS’85

circuits optimized for area using SIS (script.rugged)

[14]. We use the ATPG and DEDC engines from [12]

and [17], respectively.

DEDC uses the vectors returned by ATPG (Step 2), a

small number of random vectors and vectors for stuck-at

faults [9]. Prior to execution, DEDC simulates 2,000-

3,000 random test vectors to create an indexed bit-list

of logic values on each line of the circuit as in [17]. We



say that two lines have similar logic values if most of

their respective bit-list entries are the same. Using this

setup, we run two different experiments and report the

average values of the results obtained.

In the first experiment, for every wire wT in the cir-

cuit, we inject one error to eliminate it and we count

the number of equivalent corrections. We consider three

error types

• Type A: remove wT

• Type B: replace wT with an existing 75% similar

wire

• Type C: replace wT with an existing 50% similar

wire

With respect to Fig. 2, correction types are as follows

• Type 1: Gate replacement

• Type 2: Incorrect input wire

• Type 3: Extra input wire

• Type 4: Missing input wire

• Type 5: Missing input gate

• Type 6: Missing output gate and missing gate

For wire related corrections, we consider wires that do

not create loops in the combinational circuitry. We also

allow adding an inverter to an existing wire, as in [4]

[5], if this increases the potential to find a correction.

General information on the performance of the algo-

rithm can be found in Table 1. The first two columns

contain circuit characteristics. The next three columns

show the average number of equivalent corrections re-

turned for each error type independently. These average

values are a conservative estimate as we set a user de-

fined limit on the maximum number of missing input

gate (Type 5) and missing gate (Type 6) corrections

that we consider.

We observe that removal of wT returns more correc-

tions, on the average, compared to the other two error

types. This may be explained because the conditions

involved with the pattern faults for incorrect input wire

are more than that for missing input wire, as explained

in Section 3, thus, it is harder to correct them. In the

experiments we also observed that there is little overlap

between the sets of corrections returned for different er-

ror types on the same wT . This confirms the flexibility

of the proposed approach since the designer is presented

Table 1: Performance Characteristics

ckt # of avg. # of corrections per type CPU
name lines type A type B type C (sec)
C432 412 7.4 2.7 2.6 0.2
C499 1249 8.2 3.0 2.1 0.4
C880 915 5.3 2.2 1.7 0.2
C1355 1238 8.1 2.2 1.7 0.3
C1908 859 7.6 3.8 3.6 0.4
C2670 1377 11.6 15.3 14.0 0.8
C3540 2282 18.7 4.0 3.6 0.6
C5315 3697 7.2 3.7 2.5 0.8
C6288 6319 12.1 21.7 16.1 0.8
C7552 5262 10.3 7.1 9.1 1.0

with more opportunity to eliminate the target logic and

correct it.

The last column of the table contains the average run-

time, in seconds, to find one equivalent correction. This

number equals the CPU time for all four steps of the

algorithm in subsection 2.2. On the average, the time

spent on ATPG (Steps 2 and 4) dominate the time spent

for DEDC. This confirms the robustness of DEDC for

the problem and the efficiency of the approach.

To demonstrate the potential of ADDR, it is of inter-

est to compare its performance with the one of RAR.

Table 2 contains information on the number of correc-

tions returned by a recent RAR procedure [3] and by

our method for wire removal error type (type A) and the

same correction types (a subset of types 1...6). Com-

pared to previous approaches, the work in [3] returns

more alternatives because it considers adding logic not

only at dominating gates but also at gates that have

implied mandatory assignments.

Columns 2 and 3 in Table 2 show the number of cor-

rections returned by ADDR and RAR [3] for the same

set of error/correction type experiments. It is seen, that

the proposed method outperforms existing techniques

as it returns more corrections. In fact, it computes all

corrections since it uses a linear-time DEDC algorithm

which is exhaustive on the solution space.

Columns 4 and 5 contain the percentage of target

logic with alternative corrections (success hit-ratio) for

all wire removal experiments. We observe, that ADDR

can find alternatives for target logic removal cases that

RAR cannot in favor of design optimization. Our ex-

periments also indicate that more than 99% of the cor-

rections found by ADDR are redundant in presense of

the error.

Due to the flexibility of DEDC to handle a wide vari-

ety of correction types, the total number of corrections

returned by the method for error type A and correction



Table 2: Comparison results and other statistics

ckt # corrections % hit-ratio ADDR total % same % dom. RAR # redund. % with pair

name ADDR RAR ADDR RAR # corrections gate gate check. per corr corrections

C432 1204 1011 70 63 1989 75 42 18.2 0

C499 4989 886 68 52 12112 85 11 432.5 24

C880 2299 945 65 61 3891 90 26 72.8 19

C1355 5515 1022 69 54 7311 67 6 371.6 21

C1908 3174 643 65 56 6711 83 3 102.2 12

C2670 14922 2247 76 51 17311 61 49 47.3 62

C3540 8478 7801 68 62 16197 88 22 120.2 24

C5315 10665 3077 70 45 17833 72 6 110.0 17

C6288 18683 1615 52 23 35918 60 31 62.3 19

C7552 20349 12234 80 56 31766 67 22 58.8 41

types 1..6 is much larger (Column 6). This is justified

if we consider the locations of the proposed corrections.

Column 7 contains the percentage of corrections on the

gate wT drives and column 8 shows the percentage of

corrections on a dominator of wT . These numbers sug-

gest that corrections exist on non-dominating gates.

To further demonstrate the effectiveness of

simulation-based DEDC in design rewiring, Fig. 10

depicts the set of false corrections returned by DEDC

for two benchmarks. Since simulation-based DEDC

bases its results on a subset of the complete input test

vector space, it is of interest to know the quality of

these corrections for the complete input test vector

space. This is because the fewer false corrections

returned, the lesser time design rewiring spends in

ATPG-based redundancy checking (Step 4), as pointed

out in subsection 3.1.

In that figure, a bold line indicates the percentage

of false corrections returned when DEDC (Step 3) uses

random vectors and a dotted one when stuck-at vectors

[9] are included. The plots confirm results in [1] [17] as

a small number of vectors provides sufficient resolution

to DEDC. As a result, most corrections qualify Step 4

and, on the average, ADDR performs 1.1 redundancy

checkings per non-false correction it finds.

To appreciate this result, one needs compare it with

the respective average for existing techniques [3], shown

in column 9 in Table 2. We conclude, that, in prac-

tice, ADDR performs far less redundancy checkings,

an important computational saving. Fig. 10 also sug-

gests that Step 2 of design rewiring may be occasionally

omited since vectors for stuck-at faults give sufficient

resolution to DEDC.

In the second experiment, we randomly select and

remove a target wire wT to introduce an error and try to

correct it with a single correction. If no single correction

exists, DEDC tries to find two corrections to rectify it.

The average values of the results are found in Table 2.

Column 5 of this table shows the percentage of er-

rors that can be corrected with a single correction, as

explained earlier. For those errors that no single correc-

tion exists, the last column in Table 2 contains the ones

that can be corrected with two corrections. We observe

that a significant amount of errors can be corrected only

with two corrections. Similar experiments in [4] confirm

this result for a different suite of benchmark and indus-

trial designs. In detail, it is shown that a significant

percentage of single wire related errors with no single

alternatives have triple alternatives.

Since the success of design rewiring during optimiza-

tion depends on its ability to eliminate target logic, it

is evident that multiple corrections will increase the so-

lution space and may return further gains. This sug-

gests the development of efficient design rewiring spe-

cific multiple DEDC algorithms that will offer more al-

ternatives to meet optimization goals, as discussed in

subsection 3.1.

5 Conclusions

We studied the characteristics and complexity require-

ments of the ATPG-based design rewiring methodology

in [18]. To perform this, we reduce the process of design

rewiring to the process of multiple self-masking pattern

faults injection. The study arrives to a new set of in-

teresting theoretical and practical results. Experiments

confirm the theory and exhibit the competitiveness of

the approach. They also motivate future research in the

field.
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Figure 10: Simulation-based verification
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