
Clustering-based Failure Triage for RTL Regression Debugging

Zissis Poulos1, Andreas Veneris1

1Dept. of ECE, University of Toronto, Toronto, Canada.

Abstract

Regression verification at the pre-silicon stage has
experienced a dramatic boost in capabilities over the
past years. With the aid of assertions, improved sim-
ulation coverage and formal verification tools, a vast
amount of trace data and myriads of failures are of-
ten generated after each regression run. Along these
lines, modern flows face an emerging need to appro-
priately categorize, prioritize and distribute these fail-
ures to the engineer(s) best-suited for detailed debug-
ging of each failure. This task is known as failure
triage. Despite its resource-intensive nature, triage re-
mains a predominantly manual process. In this work,
an automated data-mining failure triage framework is
introduced that mines simulation and SAT-based design
debugging data, uncovers relations among verification
failures and automatically groups the related ones to-
gether. The core characteristic of the framework is a
novel feature-based representation for verification fail-
ures and a new multiple-pass clustering strategy that
surpass previous methodologies in accuracy, robustness
and flexibility. The proposed triage engine achieves
an 89% average accuracy in failure categorization and
compared to existing solutions, it reduces the number of
misplaced verification failures by 47% on the average.

1 Introduction

Today, designs often undergo strenuous verification
at the Register Transfer Level (RTL) to prevent func-
tional errors from escaping to the tape-out stage where
fixing costs can be daunting. Broadly speaking, verifi-
cation can be either performed on-line or in regression
mode, always with the use of simulation and formal
verification tools that exercise circuit functionality.

Recent reports stress that verification poses a signifi-
cant bottleneck in productivity by occupying up to 70%
of the modern design cycle [1]. Further, they highlight
design debug as the predominant bottleneck in verifi-
cation flows, consuming up to 50% of the overall ef-
fort. However, debug in regression verification flows is
bound by intrinsically different requirements and con-
straints compared to on-line verification. As such, the
same surveys expose a significant gap in debugging au-

tomation capabilities between regression and on-line
verification, in favor of the latter [1].

In on-line verification, debugging analyzes each fail-
ure in isolation, a process coined as detailed debug,
to determine potentially erroneous design components
that may be the cause of the observed failure. The
cost associated with this process has been greatly alle-
viated by automated tools that employ powerful formal
engines [2, 3, 4, 5].

On the other hand, debugging following regression is
an inherently different process. When myriads of fail-
ures occur during regression tests, and before detailed
debug commences, a fast coarse-grain pre-processing
step has to be performed, known as failure triage [6, 7].
Failure triage, illustrated in Fig. 1, aims to group fail-
ures together and assign them to the appropriate en-
gineers for further investigation. Roughly speaking, it
consists of three tasks. First, high-level debug is per-
formed to gain intuition about the approximate loca-
tion of the error responsible for each exposed failure
(i.e. design or testbench). Next, failure binning com-
mences to group individual failures together that are
suspected of originating from the same error source.
The final triage task, called failure bin distribution,
sends these bins to the best-suited engineer to perform
detailed debug, identify the exact error location and
eventually fix it [6].

Despite triage being declared as a fast growing re-
gression problem [1, 6], current solutions rely on man-
ual ad-hoc practices. Typically, engineering teams em-
ploy primitive forms of debug, such as simple error
(i.e., log) messages from end-to-end “golden-model”
checkers, exception checkers and various assertions [7].
Due to the limited information conveyed by such
means, failure relations are hard to identify, and there-
fore, the tasks of failure binning and bin distribution
are often inaccurate. Evidently, such non-standard
methods result into failures being constantly assigned
and re-assigned to engineers until the rightful owner is
found. As design and verification teams get more geo-
graphically dispersed, this is a process that may span
hours or days consuming valuable resources.

Following the successful paradigm of data mining
algorithms in the verification domain [8], engineers are
now turning their attention to that field as a means to
address the verification pain of failure triage. The work
in [6] is the first to determine failure relations through
heuristic-based metrics that combine information from

Paper 22.3
978-1-4799-4722-5/14/$31.00 c©2014 IEEE

INTERNATIONAL TEST CONFERENCE 1

TRIAGE

ttDETAILEDt
DEBUGGING

FIXING

Scope

T
im

e

RegressiontRuns

FailuretBinning

Groupt1 GrouptKGroupt2 ...

FIX FIX FIX

BintDistribution

Figure 1: A modern design debugging flow

simulation and automated debugging. Failure binning
and bin distribution are performed via a hierarchical
clustering algorithm [9, 10]. However, the proposed
method relies on greedy clustering algorithms that are
sensitive to randomness and parameterization.

The work presented here introduces a novel and flex-
ible automated failure triage engine that formulates the
problem as a data mining clustering process and al-
lows a variety of clustering algorithms to be applied [9].
It centers around three major contributions. First, it
introduces a data weighting scheme based on simula-
tion statistics to assign different levels of importance to
data collected by SAT-based debugging. As a second
contribution, it develops a feature-based representation
to model verification failures as multi-dimensional ob-
jects. Based on this representation, failure relations
can be easily computed as a distance measure and
failure binning can be performed by a wide range of
clustering algorithms. To emphasize these benefits, a
clustering strategy that combines the merits of both
connectivity-based and centroid-based clustering algo-
rithms [9] is presented. As a last contribution, this
paper shows that the aforementioned data weighting
scheme can guide failure bin distribution, by deter-
mining how potentially erroneous design components
should be prioritized for each group of failures.

The proposed triage engine is developed upon a tra-
ditional SAT-based debugging framework [3]. Experi-
ments on four industrial designs show that it outper-
forms existing solutions with a 47% average reduction
in the number of misplaced failures, which translates
into an 89% average accuracy in failure binning. Fur-
ther, it successfully guides bin distribution by identi-
fying 98.6% of the injected errors as priority targets.
Evidently these numbers demonstrate the robustness
and effectiveness of the methodology in a modern re-
gression verification environment.

The remainder of this paper is organized as follows.
Section 2 offers notation and discusses prior work in
failure triage for design debugging. Section 3 describes
the proposed failure triage formulation and presents
the clustering process. Finally, Section 4 discusses ex-
perimental results and Section 5 concludes the paper.

2 Preliminaries

2.1 Notation

Consider an erroneous design with a single or mul-
tiple errors in the RTL. When a mismatch between
the expected “golden” value(s) (0,1 or X for unknown)
and the observed one(s) is identified at some observa-
tion point (primary output, probed internal signal or
the output of a property assertion), we say that a fail-
ure occurs. Suppose that the design undergoes regres-
sion verification that exposes N verification failures,
denoted as F1, F2, . . . , FN . For each failure Fi there is
a corresponding error trace Ei that contains the initial
states and input vector sequence.

The output of a SAT-based debugger [3] for each er-
ror trace Ei is a set of design components (RTL blocks
or signals) that can be responsible for failure Fi. This
set is referred to as a suspect set for Ei denoted as
Si = {s1, s2, . . . , s|Si|} since each design component
sj ∈ Si can be modified to rectify the erroneous be-
havior exhibited by Ei. The length of an error trace
Ei, denoted as |Ei| is the number of cycles between the
initial state (cycle 1) and the cycle where failure Fi is
observed. Because of the exhaustive search performed
by SAT-based debugging, the suspect set for each error
trace Ei is an over-approximation of the actual error
responsible for failure Fi [3]. That is, the design com-
ponent where the actual error is located is guaranteed
to be included in the suspect set.

Modern SAT-based mechanics allow debuggers to
pinpoint the exact cycle where an erroneous value is
excited at a suspect location to cause the observed fail-
ure [11]. That is, for each suspect set Si there is an
associated excitation set Ti = {t1, t2, . . . , t|Ti|}, where
tj ∈ Ti is the excitation cycle for suspect sj ∈ Si. As
an additional benefit, these tools return error propaga-
tion paths in the circuit that show how a value from a
suspect location propagates through consecutive cycles
to reach the failing output [11].

Example 1: To demonstrate the above concepts
consider an error trace, as depicted in Fig. 2. In that
figure we show the sequential behavior of the circuit for
that trace using its Iterative Logic Array (ILA) rep-
resentation [3]. In more detail, an error at compo-
nent s2 is excited in cycle m − 2 and propagates to
cause a failure (F1) at an observation point in cycle
m. The generated error trace of length m is then passed
to an automated debugger. The result is a suspect set
S1 = {s1, s2, s3} of design components that can explain
the wrong output. Suspects s1, s2 and s3, excited in
cycles k, m − 2 and m − 1 respectively, along with
their propagation paths are illustrated in Fig. 2. Note
that the erroneous component is included in the set S1

as suspect s2. For illustration purposes, suspects that
correspond to the responsible design error are thereby
shown by a solid circle (suspect s2 in this case), whereas
suspects that can explain the failure but are not actual
erroneous components are shown by dotted circles (sus-
pects s1 and s3 in this example).

Paper 22.3
978-1-4799-4722-5/14/$31.00 c©2014 IEEE

INTERNATIONAL TEST CONFERENCE 2

Init. St.

1 k m− 2 m− 1 m

.s1

s2

s3

Obesrvation Points

Primary Inputs

F1

X

Figure 2: Error trace and suspect components

Simulation-based verification offers a wide range of
metrics (code coverage, toggle coverage etc.) that can
be exploited to extract useful information for the de-
bugging process. Broadly speaking, knowing whether
a design component is rigorously exercised or not, pro-
vides a measure of certainty when one attempts to es-
timate how reliably that component can be considered
being error-free. In this work we focus on toggle cover-
age as a measure that provides such information. Tog-
gle coverage (or simply toggling) refers to the number
of times the logic value of specified nodes changes dur-
ing simulation (0/X → 1 or 1/X → 0). Among all
design components, we are interested to extract this
metric for the error suspects so we gain a better un-
derstanding for these critical components. In our pre-
sentation, we are interested to measure signal toggling
within a specific time window for an error trace. Fur-
ther, for each suspect these windows may differ with
respect to various error traces.

Definition 1: Given an error trace Ei, a toggle
window with respect to suspect sj ∈ Si, is a pair of in-

tegers, denoted as Wj
i = 〈pj , qj〉, where pj and qj refer

to the starting and end cycle between which toggling for
suspect sj is measured.

In automated debugging, apart from internal sig-
nals, suspects may correspond to design modules as
well [12]. To associate signal toggling with design mod-
ules the notion of toggling frequency is defined below.

Definition 2: Given an error trace Ei, a suspect
set Si and a suspect component sj ∈ Si, we define the
toggling frequency f i

j of suspect sj with respect to er-
ror trace Ei, to be the average toggling across all the
input(s) of sj within a specified window W i

j = 〈pj , qj〉.
In on-line verification, for each error trace the de-

bugger is evoked and the engineer examines the re-
sulting suspect set, which provides vital suggestions
to track down the exact error location. The process
then repeats for all available error traces. On the other
hand, in regression verification engineers analyze mul-
tiple failures at a given time, as previously seen in Fig-
ure 1. For this strategy to be useful, each engineer
should ideally be examining failures that are related
and is familiar with. For that purpose, we define fail-
ure binning as follows.

Definition 3: Given an erroneous design and a set
of failures F1, F2, . . . , FN , failure binning is a complete
disjoint partition of F1, F2, . . . , FN into K groups (or
bins) denoted as G1, G2, . . . , GK such that each group
contains failures that are likely to originate from the
same error source.

Based on the above definition, the relationship be-
tween failures that are binned together has to be clearly

defined. Ideally, failures that belong to the same bin
are all caused by the same design error. However, since
state-of-the art debugging tools only approximate the
actual error locations, it is practically impossible to de-
velop a method that guarantees the above. Thus, it is
paramount to define a measure of similarity between
failures and group them accordingly.

Furthermore, a decision has to be made on the num-
ber of bins, K, to be formed by the engine. Ideally, K
is equal to the number of co-existing errors responsible
for the set of failures. However, in a realistic verifica-
tion environment there is no prior knowledge on what
this number is. A “guess” needs to be made and the
quality of the triaging process should depend on how
close this guess is to the number of injected errors [6].

Finally, there has to be a clear method for failure
bin distribution. This decision is not always straight-
forward. A reasonable argument would be to parse
suspect sets and assign failures to the engineers that
are more familiar with these potentially erroneous de-
sign modules. Unfortunately, suspect sets are often
large and may include components that are unrelated
to the design error. Classical debugging techniques fail
to guide this process because they are devoid of any
sense of prioritization among suspect components.

2.2 Prior work

Conventional in-house triage techniques invest on
scripts that parse error messages and in manual wave-
form analysis that often produce unreliable failure par-
titions. This is not surprising, because knowledge be-
tween failures and their culprit is limited at this stage.

The work in [6] proposes an automated failure triage
process that overlaps with automated debug to lever-
age information conveyed by suspect sets. This is done
by constructing metrics to heuristically quantify failure
similarity. A suspect ranking scheme is also proposed
that promotes locations potentially related to the de-
sign error against those that are likely unrelated. The
generated similarity metric is used to perform failure
binning via hierarchical clustering algorithms [9]. To
estimate a reasonable value for K the authors propose
an externally enforced stopping criterion for the clus-
tering process, which is also based on suspect distribu-
tion among failures.

Although the above approach introduces clustering
as a solution to triage, it faces some key limitations.
First, suspect ranking is static, that is, conducted by
simulation metrics that are measured within error trace
windows of fixed length, although different parts of the
error trace may include more useful information. The
bottleneck here is that failure relations are solely repre-
sented by a heuristically computed real-valued similar-
ity matrix, while the method is devoid of any feature-
based failure model that treats them as separate ob-
jects. Clustering is, therefore, limited to a small class
of connectivity-based algorithms. Finally, to estimate
K, the failure clusters are assumed to be of similar size,
an expectation that is not always realistic.

Paper 22.3
978-1-4799-4722-5/14/$31.00 c©2014 IEEE

INTERNATIONAL TEST CONFERENCE 3

3 Failure Triage Engine

In this section we propose a complete failure triage
engine that follows a dynamic weighting approach for
mined simulation and debugging data. At the core of
the engine lies a novel feature-based failure model that
allows a combination of clustering algorithms to be ap-
plied for the purposes of failure binning.

3.1 Data Collection

As discussed in Section 2, traditional failure binning
and bin distribution is generally performed with very
high uncertainty, because error logs and human insight
offer empirical and often unreliable estimations. Sus-
pect sets, on the other hand, are the result of a for-
mal exhaustive search. Thus, collecting and leveraging
these sets can provide the means of expressing failure
similarity based on more accurate data.

To this end, once regression finishes with a set
of failures F1, F2, . . . , FN and corresponding error
traces E1, E2, . . . , EN , a baseline SAT-based debug
step for each error trace is performed to collect sus-
pect sets S1, S2, . . . , SN and respective excitation sets
T1, T2, . . . , TN . Let {s1, s2, . . . , sM} be the set of all dis-

tinct suspect locations in
⋃N

i=1 Si. Note that a suspect
location sj may belong to more than one suspect sets,
and we say that si is shared among these sets, or equiv-
alently, among those traces/failures. A shared suspect
may have a different excitation cycle in each suspect
set it appears in. For each suspect sj there is a set
of excitation cycles as observed in sets T1, T2, . . . , TN ,
denoted as Tsj = {t1j , t2j , . . . , tNj }, where tij is the exci-
tation cycle of suspect sj as it is observed in excitation
set Ti, and thus in error trace Ei. If sj is not a suspect
for Ei then tij = 0.

3.2 Data Weighting Scheme

In any case, each suspect set Si provides some guid-
ance to the general error location related to failure Fi.
However, formal debuggers, including SAT-based ones,
may return very large suspect sets for each exposed fail-
ure. Some of the suspect locations (i.e. reset signals,
primary inputs, dangling logic, bit-flips etc.) explain
the failure but may be irrelevant to the erroneous mod-
ule or signal responsible for it. These suspects are said
to bear noise and should be assessed as less significant.
Thus, all collected suspect components need to be ap-
propriately weighted to quantify their significance in
every error trace that they appear.

Ideally we want to identify and promote suspects
that exhibit behavior similar to that of typical design
errors. This is because such locations generally form
better candidates when attempting to determine the
culprit of a failure. Recent work has experimentally
shown that there are two properties often observed in
such suspect components. The first is temporal prox-
imity to the observed failure [13]. That is, typical de-

sign errors are expected to be excited only a few cycles
before the failure is observed, since they can quickly
propagate to observation points in most cases. Second,
these locations are excepted to exhibit low toggling fre-
quency measured from the initial state up to the cycle
where the suspect is excited [6]. The argument be-
hind the latter is that typical RTL errors are relatively
“easy” to excite in the majority of cases.

To address this, we propose a suspect weighting
scheme that is based on the above two criteria. Thus,
we promote suspect locations that exhibit both tem-
poral proximity and small toggling frequency, and pe-
nalize them otherwise. Precisely, we expect that a low
suspect toggling frequency measured between distinct
excitations of that location indicates that the corre-
sponding error is relatively easy to excite, and vice
versa.

Consider, for example, a suspect location sj for error
trace Ei, with respective excitation cycle tij . Assume
that the same suspect location sj also appears in the
suspect set of some other trace Ek, where its excita-
tion cycle tkj lies before cycle tij . Then sj should be

considered easy to excite, if its toggling frequency f i
j

is low between these cycles. This is because, starting
from cycle tkj , the inputs of the suspect component need
to toggle only a small number of times until the next
excitation is observed in cycle tij . Therefore, it is rea-

sonable to measure frequency f i
j within a window that

starts at the preceding suspect excitation cycle, tkj .

To do so, we define t̂1j , t̂
2
j , . . . , t̂

N
j to be the excitation

sequence for suspect sj , which is generated by sorting
the excitation cycles in Tsj in increasing order. The

toggling frequency f i
j of suspect sj with respect to Ei

is thereby measured in window:

W i
j =

{
〈1, tij〉 , tij = t̂1j
〈tkj , tij〉 , otherwise

(1)

where tkj = t̂l−1j , if tij = t̂lj , for some t̂lj in the excitation
sequence of suspect sj .

Observe that according to Eq. 1, if suspect location
sj is unique to trace Ei then its window begins at cycle

1, since |Tsj | = 1 and, hence, tij = t̂1j . If sj appears in
multiple traces but has its first excitation observed in
Ei, then its window again begins at cycle 1, since tij
is the earliest excitation (tij = t̂1j). In any other case,
frequency is measured within a window that begins at
the previous suspect excitation.

Example 2: Suppose that two failures F1 and F2

are exposed after regression, with error traces E1 and
E2, respectively, as shown in Fig. 3. For failure F1

three suspects are extracted, namely s1, s2 and s3,
whereas for failure F2 the debugger returns s1 and s2.
Suspects s1 and s2 are shared among F1 and F2, for
a total of three distinct suspect locations. Among all
possible trace windows, two are shown as an example

Paper 22.3
978-1-4799-4722-5/14/$31.00 c©2014 IEEE

INTERNATIONAL TEST CONFERENCE 4

E1
1

.

s2

s1
s3

E2

.

s2

s1

W 1
1 = 〈3, 5〉

5 8 9 10

1 3 6 7

W 2
2 = 〈1, 6〉

F1

F2

Figure 3: Error trace for toggling frequency measurement

in the figure. Window W 1
1 = 〈3, 5〉 spans cycles 3 to 5

and the frequency of suspect s1 with respect to trace E1

is measured within W 1
1 . The window starts at cycle 3,

because s1 has its previous excitation observed in cycle
3, which is captured by trace E2. Similarly, the toggling
frequency of suspect s2 with respect to error trace E2 is
measured within window W 1

1 = 〈1, 6〉, since it is first
excited in cycle 6, captured by the same trace.

The second criterion that promotes temporal prox-
imity of suspect sj to the failing observation point can
be expressed by the number of cycles between the ex-
citation cycle tij and the cycle where failure Fi is ob-
served. Since each error trace Ei begins at cycle 1, the
failure is observed at cycle |Ei|. Thus, for suspect sj ,
temporal proximity with respect to Fi is quantified by
computing |Ei| − tij .

Once toggling frequency and temporal proximity are
calculated for all suspects s1, s2, . . . , sM , a weight, de-
noted as wi

j , assigns various levels of significance to
each suspect location sj with respect to failure Fi. The
weight wi

j is given as follows:

wi
j =

(
1−
|Ei| − tij
|Ei|

)
+
(

1−
f i
j

max
sk∈Si

f i
k

)
(2)

In Eq. 2, the first term promotes the significance
(weight) of suspect sj with respect to failure Fi when
the suspect excitation cycle is observed close to the cy-
cle where the failure is exposed, and penalizes it oth-
erwise. On the other hand, the second term penalizes
high frequencies, thus reducing the score of suspects
that are hard to excite, which based on our assump-
tions are considered “noisy”. Note that in the second
term, the denominator max

sk∈Si

f i
k is used to normalize

over the maximum suspect toggling frequency observed
for failure Fi. The overall score is the quantified sum-
mation of both criteria that are discussed in this work.

3.3 Feature-based Failure Representation

As shown in Section 2, failure binning is defined as
a complete disjoint partition of failures F1, F2, . . . , FN ,

which can be naturally formulated as a clustering prob-
lem, since failures constitute unlabeled objects. In
order to form bins (clusters) of related objects, the
similarity or dissimilarity between each pair of failures
needs to be determined.

To achieve this, we first introduce a feature-based
representation for each failure. Then we map failures
to data points into a high-dimensional Euclidean space
where pairwise failure dissimilarity can be naturally
expressed by the Euclidean distance between the cor-
responding data points [9].

Our goal when constructing a feature-based failure
representation is to express each failure Fi in terms of
its suspect locations and their significance. Precisely,
we associate each failure Fi to a feature vector, denoted

as ~Fi = [xi
1, x

i
2, . . . , x

i
M], where:

aij =

{
wi

j , sj ∈ Si

0 , sj /∈ Si
(3)

is a variable taking a value equal to the weight of sus-
pect sj with respect to failure Fi or a value of 0 if
sj does not appear in the suspect set for failure Fi.
With this model, each feature encodes the existence
(or absence) of specific suspect locations and their cor-
responding significance, which is computed through the
weighting scheme.

The above model allows us to generate a data ma-
trix, denoted as DN,M , and given as:

DN,M =

x1
1 x1

2 · · · x1
M

x2
1 x2

2 · · · x2
M

...
...

. . .
...

xN
1 xN

2 · · · xN
M

 (4)

In matrix DN,M , each row i corresponds to failure
Fi and each column j corresponds to the contribution
of suspect sj with respect to each failure. By using the
data matrix, each failure Fi can be mapped to an in-
dividual data point into an M -dimensional Euclidean
space. Then, dissimilarity between two failures Fi and
Fj can be expressed as their Euclidean distance, de-
noted as dij and given as:

dij = || ~Fi − ~Fj || (5)

Pairwise distance for the whole data set is encap-
sulated by a distance matrix, denoted dN,N , which is
given as follows:

dN,N =

d11 d12 · · · d1N
d21 d22 · · · d2N
...

...
. . .

...
dN1 dN2 · · · dNN

 (6)

Paper 22.3
978-1-4799-4722-5/14/$31.00 c©2014 IEEE

INTERNATIONAL TEST CONFERENCE 5

E1
1

.

s2

s1
s3

E2

.

s2

s1

5 8 9 10

1 3 6 7

F1

F2

E3

.

s2

1 3 6

s3

F3

(a) Failures F1, F2, F3, and corresponding suspect locations

xi
2 (suspect s2)

xi
1 (suspect s1)

xi
3 (suspect s3)

~F3

~F2

~F1

d23

d13

d12

F3

F2

F1

(b) Failures F1, F2, F3 mapped to a 3-dimensional space

Figure 4: Feature-based failure representation

Example 3: Consider three failures F1, F2 and
F3 exposed after regression, with error traces E1, E2

and E3, respectively, as shown in Fig. 4(a). In total
three distinct suspect locations are observed, s1, s2 and
s3. These suspect components along with their scores
per error trace, form the base of the proposed failure
representation. The generated feature vectors for each

failure become ~F1 = [w1
1, w

1
2, w

1
3], ~F2 = [w2

1, w
2
2, 0],

~F3 = [0, w3
2, w

3
3], by assigning each suspect weight wi

j

to the corresponding random variable xi
j, according to

Eq. 3. In this example three distinct features are used,
thus the failures are mapped to a 3-dimensional Eu-
clidean space, as shown in Fig. 4(b). The Euclidean
distances d12, d13, d23, are computed based on Eq. 5.

Generally, we expect a small distance to indicate
close relation and vice versa. Intuitively, failures that
share many suspects in common with similar weights
are expected to appear close to each other. The absence
of shared suspects between two failures and/or large
variations in suspect weights indicate a weaker relation
and these failures are mapped to data points that are
relatively distant.

Observe that, in the example of Fig. 4, failure F1

and F2 refer to different observation points, but are
nonetheless caused by the same design error, which is

returned as suspect s2 in both traces. The existence
of this suspect location along with possibly other loca-
tions related to the design error, place these failures rel-
atively close in the Euclidean space. As such, a relation
is exposed that is otherwise hard to identify by simply
observing the failing outputs, which is conventionally
done by error log parsing or failing output monitoring.

3.4 Failure Binning and Bin Distribution

In order to perform failure binning, we desire a parti-
tion of failures F1, F2, . . . , FN into K clusters of related
failures. Although relation can be derived by pairwise
distance, a major bottleneck in clustering quality is
that K is not known a priori. To ease this problem, we
decide to perform failure binning through a two-pass
clustering process.

The first pass produces coarse nested partitions of
the data set and is performed through agglomerative
hierarchical clustering. The process is often repre-
sented and visualized by a dendrogram, as shown in
Fig.5, for a real data sample of 29 failures. The algo-
rithm first generates a trivial partition consisting of N
clusters where each failure Fi is its own singleton clus-
ter. This initial partition corresponds to the bottom
tree level, as in Fig.5. Then it proceeds by iteratively
merging the two closest clusters until a single cluster
entailing all failures is produced (root of the tree). At
the end of the process all intermediate partitions in-
volving 1 to N clusters are available. The benefit of
this method is that it does not require us to specify K
beforehand.

The decision to merge two clusters is based on a link-
age criterion that determines how the distance between
two clusters is defined and, at each iteration, merges
the pair with minimum cluster distance. In Fig. 5 clus-
ter distance (or merge cost) corresponds to the height
of each tree link that connects two clusters at each iter-
ation. Among a wide range of linkage criteria we select
Ward’s method where at each step we merge the pair of
clusters that lead to minimum within-cluster variance
after merging [10]. More precisely, Ward’s Method says
that the merge cost between two clusters A and B, de-
noted as ∆AB , is the amount of increase in variance
of the data points that belong to these clusters, if we

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
1
0

F
1
1

F
1
2

F
1
3

F
1
7

F
1
8

F
1
9

F
2
0

F
2
1

F
2
2

F
2
3

F
2
4

F
2
5

F
2
6

F
2
7

F
2
8

F
2
9

F
1
4

F
1
5

F
1
6

Failures

T
re
e
h
ei
gh

t
(m

er
ge

co
st
)

Figure 5: Hierarchical clustering dendrogram

Paper 22.3
978-1-4799-4722-5/14/$31.00 c©2014 IEEE

INTERNATIONAL TEST CONFERENCE 6

decide to merge them into a larger one. Formally:

∆AB =
∑

Fi∈A∪B
|| ~Fi − ~mA∪B ||

2
−
∑
Fi∈A

|| ~Fi − ~mA||
2
−

−
∑
Fi∈B

|| ~Fi − ~mB ||
2

(7)

where ~mk is the center (mean) of cluster k.
In this work we observe that failures tend to form

compact clusters and Ward’s method promotes this by
keeping the increase in sum of squares as small as pos-
sible after each intermediate step.

Among all generated partitions we aim to select the
one that involves the most reasonable number of clus-
ters, K. In order to determine a good value for K we
identify the iteration that incurs a large merge cost, as
given in Eq.7, relative to the average merge cost across
all iterations. Intuitively, this iteration attempts to
merge clusters that are “unnaturally” distant and of-
ten indicates the step where a bad partition is about
to be generated. As such, once this step is determined
we keep the partition that precedes the iteration. This
decision essentially corresponds to cutting the tree at
the respective link height. All failures that are linked
in heights below the cut are placed in the same group,
as shown in Fig.5, where a partition of 7 distinct failure
groups is selected.

Although this process can quickly guide the selection
of K, the returned partition can be further refined.
This is because the linkage criterion makes a greedy
selection at each iteration and the sum of squares is
often far from any local minima.

To produce a finer partition, we perform a second
clustering pass, based on K-means [9]. The algorithm
requires K to be specified a priori and, in our case, the
value comes from the partition that is selected in the
first pass. K-means clustering minimizes the within-
cluster sum of squares and converges to a local mini-
mum, but traditionally requires multiple initializations
to assign cluster centers (means) for a given K. In our
case, we deal with this by assigning the cluster centers
to be the ones of the partition that is selected after the
first pass.

After the second clustering pass, a partition con-
sisting of failure bins G1, G2, . . . , GK is available, and
the task of failure bin distribution takes place. We
implement this process by generating a ranked set of
shared suspects among failures that belong to each fail-
ure bin. Precisely, for each group Gi we first compute
SGi =

⋃
Fj∈gi Sj , which is the set of distinct suspects

among failures within group Gi. Then, for each set SGi

we order the suspect components in decreasing order
of average weight (Eq. 2) across all failures in Gi. This
process produces a ranked version of SGi , denoted SR

Gi
.

By examining the ranked set SR
Gi

for a failure bin Gi

we can determine the suspect locations that have been
assigned high scores for that particular set of failures.
These suspects are considered of higher significance and

should be prioritized when performing detailed debug
for failures in bin Gi. Therefore we can guide the bin
distribution process by assigning bin Gi to the engineer
responsible for the design module(s) that correspond(s)
to the high ranked suspects in SR

Gi
.

4 Experimental Results

This Section presents experimental results for the
proposed triage framework. All experiments are con-
ducted on a single core of an Intel Core i5 3.1 GHz
workstation with 8GB of RAM. Four OpenCores [14]
designs are used for the evaluation (vga, fpu, spi
and mem ctrl). The underlying automated debugging
tool used for extracting the suspect locations is imple-
mented based on [3]. A platform coded in Python is
developed to parse debugging and simulation results,
calculate suspect weights and perform the clustering
process on the generated failures. For each design, a
set of different errors is injected each time by modify-
ing the RTL description. The types of the injected RTL
errors are not generated randomly. Rather, they resem-
ble typical human-introduced errors (missing pipeline
stages, incorrect read pointers, bad stimulus etc.) that
lead to non-trivial triage scenarios. In total, twenty
regression simulations are run, generating a different
number of failures each time, caused by a different set
of errors.

For each design, a pre-generated set of test sequences
is used that is stored in vector files. Each regression
run involves hundreds to thousands of input vectors.
For the purpose of capturing failures we use end-to-end
checkers that compare the expected value for various
operations, exception checkers and various assertions
throughout the designs.

Table 1 summarizes benchmark information and
statistics per regression run. From left to right,
columns show the circuit name and number of gates, an
enumeration for regression runs, the number of input
vectors, the number of simultaneously injected RTL
errors, the number of exposed failures (N), and finally

Ckt. Test # # # #
(# gates) No. vectors errors fail. (N) susp. (M)

1 25206 4 45 36
2 25206 7 62 40

vga 3 25206 8 97 61
(72292) 4 31870 10 106 129

5 31870 13 121 155
6 17365 3 19 28
7 17365 7 30 29

fpu 8 20094 7 55 74
(83303) 9 41759 9 83 60

10 41759 11 125 111
11 4573 3 13 38
12 4573 5 28 46

spi 13 4573 6 51 82
(1724) 14 5019 8 54 79

15 5019 9 72 113
16 10834 3 17 24
17 10834 5 32 45

mem ctrl 18 10834 7 31 29
(46767) 19 13370 8 66 94

20 13370 11 95 137

Table 1: Benchmarks and Regression Statistics

Paper 22.3
978-1-4799-4722-5/14/$31.00 c©2014 IEEE

INTERNATIONAL TEST CONFERENCE 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

testcase #

R
an

d
In

de
x

(%
)

script−based [5] proposed

AVG
89%

AVG
58%

AVG
78%

Figure 6: Engine accuracy vs. existing methods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

testcase #

R
an

d
In

de
x

(%
)

proposed proposed [no K−means]

AVG
84%

Figure 7: Impact of K-means in clustering accuracy

the number of distinct suspect components (M) gener-
ated by SAT-based debugging per regression run. The
SAT-based debugging tool used in our flow returns sus-
pect components in a hierarchical fashion, from the
module level down to the signal level [3, 12]. When col-
lecting suspect locations, we favor suspects that corre-
spond to design modules and/or Verilog/VHDL blocks,
rather than suspects at the signal/gate level. This is
because we aim to keep the number of dimensions (M)
relatively manageable and avoid critical impediments
by the “curse of dimensionality” [9].

The success of a failure binning algorithm may be
naturally quantified by two factors. The quality of the
guess on the number of injected errors that essentially
determines the number of bins, and the ratio of correct
clustering decisions (clustering accuracy) when failures
are grouped together.

In order to evaluate clustering accuracy, we use a
metric called Rand Index (R.I.) [9]. This metric com-
pares the estimated clustering against a reference fail-
ure binning, with the latter corresponding to an ideal
partition where all failures are grouped with 100% ac-
curacy. The metric ranges from 0 to 1 and represents
the fraction of correct clustering decisions. Clustering
accuracy is hence computed as 100× R.I.%.

Fig. 6 compares clustering accuracy between the
proposed framework, the approach described in [6], and
an in-house script-based technique. The triage engine
proposed in this work outperforms the framework in [6]
in 18 out of 20 regression runs and achieves much higher
accuracy in all regression runs compared to the script-
based method. Across all regression runs, the proposed
engine achieves 89% clustering accuracy on average,
compared to the 78% and 58% accuracy of [6] and the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

14

testcase #

#

clusters (K) # RTL errors

prediction
error

Figure 8: Predicted K vs. number of injected RTL errors

script-based binning, respectively. This translates into
a 47% average reduction in clustering error rate com-
pared to the existing automated method in [6].

In Fig. 7 we explore the effect of the K-means
clustering pass on the engine’s accuracy, by compar-
ing clustering quality between the two-pass strategy
(proposed) and the case where we choose to omit
the K-means pass (proposed [no K-means]). We
observe that refining the initial hierarchical partition
through K-means improves overall accuracy in 12 out
of 20 testacases, whereas in 6 testcases no improve-
ments appear. Promoting compact failure clusters and
small sum of squares experimentally appears to be the
right decision, since both hierarchical clustering in iso-
lation and in combination with K-means achieve gener-
ally high accuracy. However, K-means further reduces
the sum of squares across the partition and this may
lead to the creation of some bad clusters in the case
where some failures are spread away from the cluster
center. As such, in 2 out of 20 testcases, we observe
that the K-means pass harms clustering quality. Nev-
ertheless, using K-means improves triage accuracy by
5.9%.

After the hierarchical pass, we perform a tree cut to

Test |SR
Gi
| error rank

No. (avg.) high low mean

1 16 1 11 4
2 11 1 6 3
3 15 2 7 5
4 29 1 15 5
5 26 1 14 4
6 17 2 7 5
7 12 1 12 4
8 20 2 9 3
9 13 1 8 2
10 21 2 7 3
11 18 1 14 6
12 17 1 7 3
13 17 1 5 2
14 13 2 13 7
15 16 1 10 4
16 10 1 4 1
17 13 1 5 2
18 12 1 5 1
19 18 2 6 3
20 21 1 6 2

Table 2: Suspect ranking

Paper 22.3
978-1-4799-4722-5/14/$31.00 c©2014 IEEE

INTERNATIONAL TEST CONFERENCE 8

0 10 20 30 40 50 60 70 80 90 100 110
0

0.05

0.1

0.15

0.2

0.25

0.3

iteration #

m
er

ge
 c

os
t

k=8 # errors
= 10

k=1k=106

(a) testcase No. 4 (vga)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

iteration #

m
er

ge
 c

os
t

k=7 # errors = 7

k=30 k=1

(b) testcase No. 7 (fpu)

Figure 9: Hierarchical clustering merge cost and tree cut

select a reasonable partition, and we do so by cutting
at the height where the merge cost is 3 to 5 sigmas
above the mean. To illustrate how our prediction per-
forms, Fig. 8 shows the difference between the number
of injected RTL errors and the number of clusters that
are selected from the dendrogram cut process after the
first hierarchical pass. We observe that in 12 regres-
sion runs the prediction is perfect, and this has a great
impact in accuracy. As show in Fig. 6, for these 12
regression runs triage accuracy reaches an average of
94%. Still, there are 7 testcases where the prediction
fails to capture the actual number of errors and gener-
ates 1-2 less clusters that required. This is an expected
effect of the “curse of dimensionality”, since there are
various clusters of extreme density where failures ap-
pear in such spacial proximity that any sub-clusters
are always merged with small cost even if they should
ideally remain separated. Interestingly, we predict a
larger number of clusters than needed only in a single
regression run (testcase 8, 1 extra cluster).

In Fig. 9(a) and Fig. 9(b) we show how the merge
cost evolves in time during the hierarchical clustering
step for testcases 4 and 7, respectively. In the former,
the merge cost where we pick to perform a tree cut is
slightly higher compared to the merge cost that cor-
responds to the number of injected errors. As such,
by cutting higher in the hierarchy, we predict two less
clusters compared to the number of errors. In testcase
7, on the other hand, the merge costs agree, and we
correctly predict 7 clusters. Experimentally, cutting
at the tree height where the merge cost is 3 to 5 sig-
mas above the mean performs acceptably. This is be-
cause our feature-based failure representation creates
well separable clusters in the majority of cases.

To measure how efficiently the framework guides the

0 50 100 150
0

0.2

0.4

0.6

0.8

1

RTL error (enumerated)

no
rm

al
iz

ed
 r

an
k

VGA MEM_CTRLSPIFPU

low 50%
(131/143)

low 20%
(72/143)

low 10%
(38/143)

Figure 10: Normalized ranks for RTL errors

process of failure bin distribution, we examine the rank
that is assigned to each RTL error in the group of fail-
ures where it appears as a suspect. Recall that for each
failure bin Gi we compute a set SR

Gi
of ranked suspects,

where a high in rank suspect component is assumed of
high importance for that given failure bin. Ideally we
want the error responsible for bin Gi to appear high in
rank, so that it becomes a priority location of detailed
debugging.

Along these lines, Table 2 shows how ranks are al-
located to RTL errors per regression run. Precisely,
the first and second columns respectively include the
regression number and the average size of ranked sus-
pect sets across all failure bins for each regression run.
The third, fourth and last columns show the highest,
lowest and mean rank that is assigned to RTL errors
across all failure bins for a particular regression run.
Note that a rank of 1 indicates that the RTL error has
the maximum average score within the bin that it ap-
pears (highest rank). Fig. 10 shows in greater detail
the allocation of ranks for each design. Ranks are nor-
malized over the ranked suspect set size. We observe
that 26.6% of the errors appear in the upper 10% of
the ranked sets, half of the errors appear in the upper
20%, and generally the vast majority (98.6%) appear
in the upper half of the ranked sets. Results in Ta-
ble 2 and Fig. 10 demonstrate that the data weighting
scheme assigns scores that tend to push the injected
RTL errors higher in rank, as desired. During experi-
mentation we observe that injected errors that have a
minor effect to the design by causing only a few failures
and/or by being hard to excite are generally the ones
that the engine fails to promote successfully.

Finally, we measure time consumption for the triage
engine and present a break-down of the total time
based on the three major steps: the baseline SAT-based
debugging session, the data collection and weighting
step and the clustering pass. Results are shown in
Fig. 11. SAT-based debugging is an exhaustive search
process and, as expected, dominates the total time
(91% on average), with data collection and weighting
following (7% on average). Clustering accounts for only
2% of the total time, on average. Data collection and
weighting has a complexity of O(N ×M × L) where

Paper 22.3
978-1-4799-4722-5/14/$31.00 c©2014 IEEE

INTERNATIONAL TEST CONFERENCE 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

testcase #

tim
e

(s
ec

)

SAT data collect + weight clustering

Figure 11: Triage time consumption break-down

N is the number of failures, M the number of dis-
tinct suspects and L the maximum error trace length
for a particular regression run. The clustering process
has a complexity of O(NM×K logN), dominated by
K-means clustering.

It should be clarified that the baseline SAT-based
debugging session is always performed whether triage is
present or not in the flow. As such, the proposed triage
framework does not incur the time overhead related to
this task. It simply requires the baseline debug session
to be moved one step higher in the flow, before failure
binning and bin distribution take place.

5 Conclusion and Future Work

To summarize, this work introduces a novel solution
to tackle the growing problem of failure triage in de-
sign debugging. It proposes a framework that addresses
the critical tasks of failure binning and failure bin dis-
tribution by formulating triage as a machine learning
clustering process and proposing novel metrics to ex-
press verification failures with a compact and feature-
based representation model. Preliminary results show
that this framework surpasses existing methodologies
in clustering accuracy.

Failure triage is a task that inherently involves un-
certainty and there will always be fertile ground for im-
provements. These may come in various forms, such as
more accurate statistical models to rank and de-noise
suspect sets and methods to exploit information from
passing tests during regression. Moreover, one can ex-
plore failure representations that involve suspects at
a much higher granularity, while using dimensionality
reduction for the resulting high-dimensional data. Fi-
nally, it would be interesting to explore the efficacy of a
wide range of sophisticated clustering strategies and al-
gorithms that can exploit the flexibility of the feature-
based failure representation that is proposed here.

References

[1] H.Foster, “From volume to velocity: The trans-
forming landscape in function verification.” in De-
sign Verification Conf., 2011.

[2] O. Sarbishei, M. Tabandeh, B. Alizadeh, and
M. Fujita, “A formal approach for debugging
arithmetic circuits,” in IEEE Transactions on
CAD, vol. 28, no. 5, May 2009, pp. 742–754.

[3] A. Smith, A. Veneris, M. F. Ali, and A. Vi-
glas, “Fault diagnosis and logic debugging us-
ing Boolean satisfiability,” IEEE Transactions on
CAD, vol. 24, no. 10, pp. 1606–1621, 2005.

[4] S. Mirzaeian, F. Zheng, and K. Cheng, “Rtl error
diagnosis using a word-level sat-solver,” in Inter-
national Test Conference, 2008, pp. 1–8.

[5] K. hui Chang, I. Wagner, V. Bertacco, and
I. L. Markov, “Automatic error diagnosis and
correction for rtl designs,” in Proc. International
High Level Design Validation and Test Workshop
(HLDVT) 2007, pp. 65–72.

[6] Z. Poulos, Y. Yang, and A. Veneris, “Simulation
and satisifiability guided counter-example triage
for rtl design debugging,” in Int’l Symposium on
Quality Electronic Design, 2014, pp. 394–399.

[7] S.Safarpour, B.Keng, Y.S.Yang, and E.Qin, “Fail-
ure triage: The neglected debugging problem,” in
Design and Verification Conference, 2012.

[8] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng,
B. Tuohy, and D. Johnson, “Goldmine: Automatic
assertion generation using data mining and static
analysis,” in Design, Automation and Test in Eu-
rope, 2010, pp. 626–629.

[9] C. M. Bishop, Pattern Recognition and Machine
Learning (Information Science and Statistics).
Springer, 2007.

[10] G. J. Szekely and M. L. Rizzo, “Hierarchical clus-
tering via joint between-within distances: Extend-
ing ward’s minimum variance method,” Journal of
Classification, vol. 22, no. 2, pp. 151–183, 2005.

[11] B. Keng and A. Veneris, “Path directed abstrac-
tion and refinement in sat-based design debug-
ging,” in Design Automation Conf., 2012.

[12] M. Fahim Ali, A. Veneris, S. Safarpour, R. Drech-
sler, A. Smith, and M.S.Abadir, “Debugging se-
quential circuits using Boolean satisfiability,” in
Int’l Conf. on Computer Aided Design, 2004, pp.
204–209.

[13] S. Safarpour, A. Veneris, and F. Najm, “Managing
verification error traces with bounded model de-
bugging,” in ASP Design Automation Conf., 2010.

[14] OpenCores.org, “http://www.opencores.org,”
2007.

Paper 22.3
978-1-4799-4722-5/14/$31.00 c©2014 IEEE

INTERNATIONAL TEST CONFERENCE 10

