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Abstract

Test model generation is crucial in the test generation
process of a high-performance design targeted for large
volume production. A key process in test model genera-
tion requires the extraction of a gate-level (logic) model
from the transistor level representation of the circuit un-
der test. Logic extraction is an error prone process due
to extraction tool limitations and due to the human inter-
ference. Errors introduced by extraction require manual
debugging, a resource intensive and time consuming task.
This paper presents a set of extraction errors typical in an
industrial environment. It also proposes an automated so-
lution to extraction error diagnosis and correction. Exper-
iments on circuits with similar architecture to that of high
speed custom-made industrial blocks are conducted to con-
firm the fitness of the approach.

1 Introduction

Large and complex VLSI designs such as micropro-
cessors, SOCs and ASICs often require high-performance
custom-made logic blocks designed at the transistor level.
This type of circuit representation cannot be used directly
to generate production tests. For this reason, a gate-level
(logic) representation of the custom-made blocks is ex-
tracted and used instead.

Traditionally, generation of scan tests for high vol-
ume manufacturing of complex VLSI circuits with custom-
made components requires a design flow similar to the
one in Figure 1 [6]. In this flow, the first step is test
model generation that returns a gate-level model that ac-
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curately represents the logical behavior of the Circuit Un-
der Test (CUT). The behavior of the CUT is commonly
determined by the functionality of the custom-made tran-
sistor level component, the functionality of additional syn-
thesized logic and various test constraints.

To obtain a gate-level netlist for the transistor level com-
ponent, logic extraction is performed for library cells in
the synthesized logic and the custom transistor level de-
sign. This process enables generation of gate-level views
of transistor level designs. Logic extraction is a completely
automated process for combinational logic and most se-
quential circuits except certain complex cells such as clock
generators and scan sequentials. These exceptions are han-
dled by manual generation of gate-level models. The level
of abstraction in the libraries used during extraction, bugs
in CAD tools and the human factor may introduce errors in
the extracted gate-level model.

For this reason, the logical netlist is usually verified
prior to test generation (Figure 1). Verification is carried
out with formal equivalence-based methods for combina-
tional circuitry and for small pieces of sequential logic.
Simulation is also used for large complex sequential cir-
cuits. Both verification approaches may not be complete
and/or exact due to several reasons. For example, formal
methods prove equivalence in the boolean domain of well
defined logic values {0, 1} but they do not prove equiva-
lence in the {0,1,X} space where the design is exercised
during test generation. Additionally, formal equivalence-
and simulation-based approaches can require excessive
runtimes due to large number of validation tests. This
limits the amount of validation/verification allowed at this
stage. Consequently, some extraction errors may be carried
forward to the integration stage that assembles the com-
plete netlist for the CUT.

The next step of test generation is model verification
where the assembled gate-level netlist is validated against
a golden model such as a detailed switch-level model of the
CUT. This verification step usually generates a few sam-
ple scan tests with a broad coverage and it simulates these



tests against a golden model. On successful completion
of model verification, the model is used for test generation.
Following test generation, the generated tests are again ver-
ified against the golden model to ensure test correctness,
a process known as test/vector validation. Tests may fail
in this step due to extraction errors introduced in model
generation but not identified during model verification. In
this case, manual analysis of failures is required, a time-
consuming and resource intensive step that may delay test
delivery to the factories.

In this paper, we describe a set of extraction errors that
are typical in an industrial setting and cause scan test fail-
ures. Such errors occur because of erroneous module ex-
traction. Another source of these errors are module specifi-
cation (constraint) mismatches between different libraries
(physical design library, logic library, simulation library,
ATPG library etc) when complex hardware such as mem-
ory elements, multiple clock domains and tri-state devices
are integrated together.

We also propose an automated approach to debug these
errors. The approach identifies and corrects single ex-
traction errors in two stages: model-free diagnosis and
model enumeration. Model-free diagnosis uses the logic
unknown(s) to identify error locations. This method suits
many characteristics of the problem. Automated debug-
ging approaches such as the one described here benefits
the testing of microprocessors and other complex compo-
nents. They aid in identifying and correcting contributors
of model inaccuracies at early stages of the design cycle
and help reduce the turnaround time of test delivery.

The paper is organized as follows. Section 2 describes
the nature and different types of errors typical to the test
model extraction process. Section 3 presents the proposed
extraction error diagnosis and correction algorithm. Sim-
ulation results and future work are presented in Section 4.
Section 5 concludes the paper.

2 Extraction Error Types

The extraction process builds a logic representation
from a custom-made logic block. This gate-level represen-
tation is a hierarchical structural netlist of combinational
logic primitives and various memory elements. This repre-
sentation is later used for scan test generation.

The extraction process may introduce errors in the final
flattened netlist due to erroneous module mappings. Since
a single module may have multiple netlist instantiations,
a single error contained in a module definition may map
to multiple errors in the netlist. An additional source of
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Figure 1. Test Generation Flow

extraction errors may be functional mismatches in the def-
inition of module operation constraints between different
libraries (simulation library, synthesis library, physical de-
sign library, ATPG library etc). In this case, the mapping is
correct but the operation of the module is interpreted dif-
ferent by various libraries. This mismatch(es) may produce
functional errors in the final extracted netlist.

Notice that both the erroneous module mapping(s) and
the functional library mismatches may result in multiple
error sites in the final extracted netlist. This is shown in
Figure 2 where a single error for Module I “translates” to
three errors in the final netlist. Therefore, the number of
error sites can become large even though only a single er-
ror is introduced during extraction. Due to the presence
of multiple error effects, diagnosis becomes a challenging
task as the solution space becomes prohibitively large [9].

This work considers single extraction errors for se-
quential circuits with full-scan memory elements and
different clock domains. It also assumes that all in-
put test vectors are full-scan single clock cycle pat-



terns. These circuits contain primitives (N)AND,
(N)OR, NOT, tri-state buffer and D flip
flops, each with an intrinsic delay of 1 time unit. Cir-
cuits used in this work are two-stage strictly pipelined to re-
semble the architecture of custom-made high-performance
components found in industry. This architecture is shown
in Figure 8 (Section 4) where combinational logic A, B and
C is completely separated by layers of (full-scan) memory
elements I and II. In the future, we plan to develop au-
tomated multiple error diagnosis and correction tools for
partial-scan and non-scan components.

The remaining section outlines various types of extrac-
tion errors that are typical to the process.

2.1 Reset Synchronicity

A large portion of the silicon area in contemporary de-
signs is dedicated to storage [8]. Memory elements such
as flip-flops commonly have either a synchronous or an
asynchronous reset. As illustrated in Figure 3(a), a D flip-
flop (DFF) with asynchronous reset is evaluated as soon
as an event arrives at its RESET port. Whereas a flip-
flop with synchronous reset cannot change its value until a
clock-edge occurs. During test model extraction, an asyn-
chronous reset can be mapped to a synchronous one and
vice versa. That is, both directions of the error in Figure
3(a) may occur.

2.2 Reset-Clock Contest

Reset-Clock contest happens due to module specifi-
cation mismatch in the design libraries used during test
model generation. Different libraries may make different
assumptions on the winner of the contest, as shown in Fig-
ure 3(b). The right part of that figure depicts the situation
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where Q is initially 0 and Clock prevails. In the left part
of the figure, the RESET line wins the contest for this ini-
tial state configuration. This type of error can arise from
contest of other lines (set, hold, etc) as well. The error may
occur in both directions as in Reset Synchronicity.

2.3 Multiplexer Implementation

A multiplexer circuit allows more than one signal to be
placed on the same line via time-division multiplexing. A
typical two-input multiplexer is implemented with two tri-
state buffers and a logic NOT gate as shown in Figure 4
(a). The inverter between the two select ports (SEL) of the
tri-state buffers ensures that line OUT is driven by only one
input signal at any time.

Two erroneous mappings may occur during extraction.
In the first one, the inverter is replaced by a buffer (Fig-
ure 4 (b)). When SEL goes high, both tri-state buffers are
enabled, causing a merger at the output OUT. Table 1 sum-
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marizes the truth table for merger. Entries which are not
bold may cause a discrepancy in the output logic. Further-
more, when one of IN0 and IN1 is driven by logic 1 and
the other by 0, a hazardous path is created between power
and ground.

In the second case, instead of tri-state buffers, the mul-
tiplexer is erroneously mapped to an implementation with
logic AND and OR gates (Figure 4 (c)). While the logic
function of the two implementations agree for most input
combinations, they differ when SEL is assigned to X . As
shown by the bold entry in Table 2, the implementation
with AND and OR gates drives 0 on OUT, while the tri-state
buffer implementation drives X .

IN0 IN1 Merger IN0 IN1 Merger
0 0 0 1 0 X
0 1 X 1 1 1
0 X X 1 X X
0 Z 0 1 Z 1
X 0 X Z 0 0
X 1 X Z 1 1
X X X Z X X
X Z X Z Z Z

Table 1. Merger Truth Table
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2.4 Multiplexer-Latch Implementation

Multiplexer-latch (MUX-latch) design allows the sam-
pling of signals from two non-overlapping clock do-
mains. In Figure 5, data from clock domains CLOCK1
and CLOCK2 are multiplexed into the D flip-flop, which
is clocked by CLOCK3, the frequency of which is the sum
of the frequencies of CLOCK1 and CLOCK2. As shown in
Figure 5, the multiplexer in a MUX-latch design can be im-
plemented with tri-state devices or AND/OR gates. These
two implementations have different logic functions when
CLOCK1 and CLOCK2 overlap. In the AND/OR imple-
mentation, the flip-flop latches IN0 OR IN1. In contrast,
X is always latched in the tri-state buffer implementation.

OUT
IN0 IN1 Tri-state AND/OR

0 0 X 0
0 1 X X
1 0 X X
1 1 X X

Table 2. MUX Error when SEL=X



3 Debugging Extraction Errors

When an extracted netlist fails the scan test, current
practice requires a manual analysis of the failure, which is
an expensive process in terms of both time and resources.
This section describes a simulation-based diagnosis and
correction tool that rectifies single extraction errors in full-
scan hierarchical digital circuit designs.

The golden model is a correct specification for the cus-
tom block. In our implementation, it is represented by a
logic netlist we can simulate, however its internal structure
is unavailable to diagnosis. The erroneous netlist is the
circuit obtained by extraction when applied to the custom
block. It is represented by a hierarchical gate-level logic
implementation of the specification with a single extrac-
tion error on a module randomly injected into it. Recall
from Section 2, a single error may be translated into multi-
ple erroneous instances in the final netlist.

The overall debugging flow is shown in Figure 6. The
golden model, the erroneous netlist and a set of test vectors
with failing responses for the netlist are input to the algo-
rithm. These vectors are collected via simulation of the
random input full-scan test patterns and of a pre-computed
input test patterns with high test coverage [4]. Test vec-
tor generation for extraction errors and design verification
following debugging are beyond the scope of this work.

The objective is to identify and correct all instances of
the injected error. This is done in two phases: model-free
diagnosis and model enumeration (correction). The pro-
posed method for debugging extraction errors is similar to
the model-free fault diagnosis approach presented in [7].
In the following paragraphs, we summarize the steps of the
approach but we omit proofs of claims that can be found in
[7].

Model-free diagnosis simulates a logic unknown value
(represented by X) on a candidate fault line to capture all
possible paths for error propagation [3]. Recall, X prop-
agates through a gate if all other lines input of the gate
have non-controlling logic values [1]. If simulating X on a
line propagates to an Erroneous Primary Output or Register
(EPOR) for a set of vectors, the EPOR may be sensitized
to a potential error on the line for these vectors.

This observation is the basis of model-free diagno-
sis. When compared to model-based diagnosis approaches
such as [2, 5, 9, 10], it has the advantage that it performs
a single simulation step (by forcing logic unknown X on
the line) for each candidate error line. On the other hand,
in model-based diagnosis, one logic simulation step has to
be performed for each error model and for each line. This
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Figure 6. Model-free Diagnosis

may considerably increase the total computational cost of
the procedure. Additionally, model-free diagnosis is a suit-
able method for this problem since many extraction error
types involve logic unknown X values.

Model-free diagnosis (Figure 6) first performs a gener-
alized path-trace routine [7]. This is similar to the linear-
time effect-cause direction line-marking routine in [10]
but appropriately modified to handle the unknown value
X . Although many erroneous module instances may exist,
generalized path-trace guarantees to mark at least one of
these instances. Further, if the number of error instances
is N and the number of failing input test vectors is V , one
instance has to be marked at least V

N
times to qualify diag-

nosis. Path-trace is performed for multiple vectors and all
instances that satisfy the above property are collected. Sub-
sequently, the module definitions of these instances are ex-
tracted from the netlist hierarchy and they are re-compiled
into a list of suspect modules.

In the next step, the suspect modules are simulated one
at a time with a logic unknown X value forced at the output
for all instances of the suspect module. This is possible be-
cause module mapping information is available to the test
engineer. If X is propagated to all the EPORs, the module
is returned by the model-free diagnosis as a potential loca-
tion for extraction error. Detailed description and efficient
implementations for this step are found in [7]. As shown
by the experiments, the list of suspect modules is reduced
by a factor of 2 on average.

In the second stage of debugging, appropriate extrac-
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Figure 7. Example circuit

tion correction (error) types from Section 2 are injected
exhaustively to each suspect module returned by the first
phase. These corrections are injected to all the instances of
the module in the flattened netlist and they are simulated
for all the erroneous vectors. All modules for which the
simulation results agree with that of the golden model are
returned as a solution to the problem.

Experiments show that the list of suspect modules is
usually reduced to one or two modules. The solution list
may contain more than one candidate solution due to error
equivalence [9]. The example that follows illustrates the
approach.

Example. An example of the presented algorithm is
given in Figure 7. The golden model is illustrated in Figure
7(a) and an erroneous version in Figure 7(b). In the erro-
neous model, the 2-input MUX implemented with tri-state
buffers is replaced by one with AND/OR gates. Simulated
values for a single vector are shown above the circuit lines.
After one clock cycle, the golden model has an X value
on its DFF and OUT but the erroneous extracted model has
logic 0 on DFF and logic 1 on OUT.

The lines marked by path-trace are dotted in Figure
7(b). Because the NOR gate driving OUT has all non-
controlling values on its input, both RESET of the DFF
and the MUX are marked by path-trace to give a list of sus-
pect modules. During model-free diagnosis, X is forced
and simulated at the output of the suspect modules. Both
modules propagate X to the erroneous primary output and

register, as shown in Figure 7(c) and (d) and both suspects
are passed to the model enumeration step of the algorithm.
In these figures, a dashed box is used to indicate the mod-
ule tested.

The solution is found when the MUX in Figure 7(c) is
replaced by a tri-state buffer implementation. A valid error
model cannot be found for Figure 7(d) because the only
applicable correction model is reset synchronicity which
does not correct the circuit.

4 Experiments

Tests were carried on sequential designs built with
ISCAS’85 and ITC’99 combinational circuitry. As il-
lustrated in Figure 8, the designs are two-stage strictly
pipelined. This architecture resembles some high-speed
high-performance custom blocks seen in industry today.

Benchmarks are prepared by injecting two layers of D
flip-flops (Register Layer I and II) each of which is ran-
domly assigned one of four possible different clock do-
mains. Combinational logic circuitry A, B and C are in-
sulated from each other by the two register files. The fre-
quency of the clock domains is an integral multiple of each
other. An error-free scan-chain is also inserted so that all
flip-flops are observable and controllable [1].

Characteristics of the benchmark circuits after flatten-
ing are presented in Table 3. The first column identifies the
circuit name and the second column has the total number
of logic primitives in the three combinational blocks. The
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next three columns contain the number of registers in Reg-
ister File I, II and total, respectively. The last column of
the table has the maximum depth of logic for each combi-
national block. Tristate devices and buffers are in-
troduced within combinational logic and latches randomly.
We used a set of 5 libraries with different names for each
error module case from Section 2. An extraction error can
be mapped to 5-50 instances, if it occurs, in the final gate-
level implementation.

Ten experiments are performed for every circuit. The
original structural netlist is used as the specification. To
prepare the erroneous netlist, an extraction error is ran-
domly injected into the specification netlist. 3200 random
full-scan vectors and vectors with high coverage [4] are
generated and simulated with an event-driven parallel vec-
tor simulator. The average number of vectors that detect
the error is shown in column 2 of Table 4. Errors that in-
volve memory elements are easy to detect because we use
a scan chain and this makes them highly observable.

circuit gate register count max logic
count RF I RF II total depth

A 416 45 54 99 17
B 653 83 64 147 16
C 1251 90 180 270 27
D 1984 151 59 210 28
E 2979 475 92 567 28
F 4379 639 132 671 25
G 5226 974 614 1588 25
H 6684 1404 610 2014 30
I 7653 1433 828 2261 29
J 7716 1505 532 2037 27

Table 3. Circuit Characteristics

On the other hand, errors such as MUX-Latch imple-
mentation involve many conditions to excite the error and
they can be harder to detect. Experiments show that 72%
of random vectors (on the average) detect the errors at pri-
mary output whereas 88% of vector with high fault cover-
age detect them. This suggests that, in most cases, random
vectors provide sufficient resolution to diagnosis.

Columns 3 to 5 of Table 4 show the average number of
suspect modules returned by each step of the proposed al-
gorithm. In detail, the third column has the number of sus-
pect modules after generalized path-trace. In most cases,
the number of candidates is reduced by one third or more.
The column that follows contains the number of suspect
modules after model-free simulation. Notice that model-
free simulation disregards most invalid solutions.

The fifth column summarizes the number of suspect
modules after model enumeration. This is also the set of
suspicious modules returned by the rectification algorithm.
Note that, at this stage, not only an erroneous module is
found but an extraction correction is also proposed. In all
experiments, the original error is discovered. In the few
cases where this column is greater than one, additional
equivalent extraction errors are found due to error equiv-
alence. These results demonstrate the accuracy and effi-
ciency of the proposed algorithm. The number of suspect
modules is gradually reduced through the different stages
until the original error and its equivalent are returned in all
ten experiments for each circuit.

The sixth column of that table has the average amount
of CPU time required for all steps. By construction, most
of the time of the algorithm is spent performing fault simu-
lation. A compiled simulator implementation will improve
the run-times of the approach. The last column shows the
CPU time spent by a brute-force approach where all pos-
sible error types are enumerated. We observe, a significant
speed up (x3 on the average) is achieved due to the ap-



circuit avg fail # of suspect modules CPU time (sec)
vectors Path-trace X sim Model enum. proposed brute-force

A 1979.9 15.7 8.4 1.1 5.3 17.6
B 2123.9 12.2 5.7 1.1 3.87 4.58
C 2292.4 14.1 6.2 1 21.32 63.72
D 2116.6 12.9 6.7 1 17.16 72.12
E 1624.0 14.8 5.4 1.2 30.22 108.21
F 2536.2 16.1 4.6 1.1 38.7 142.1
G 2578.3 10.7 4.8 1 63.1 267.8
H 2598.4 12.8 5.1 1 124.7 436.73
I 2657.8 13.5 5.0 1.1 132.6 448.7
J 2447.1 13.5 4.3 1.3 119.6 356.1

Table 4. Diagnosis and Correction Results

proach.
In the future, we plan to investigate additional types

of extraction mismatches and extend the rectification al-
gorithm to handle them efficiently. We also plan to apply
the approach to cases where the test model is corrupted by
many errors. Finally, we intend to enhance these solutions
for partial-scan and non-scan sequential circuits. These are
challenging problems because the error space grows expo-
nentially with increasing number of errors and error effects
[9].

5 Conclusion

This paper investigates the problem of extraction er-
ror diagnosis and correction in high-performance custom-
made designs. Such errors occur because of erroneous
module mapping(s) and/or module specification mismatch
between libraries. Different classes of extraction errors
common to the industry are presented. A diagnosis algo-
rithm for single extraction errors is also proposed. Experi-
ments demonstrate the efficiency of the approach that helps
improve and shorten the test delivery turnaround time for
high-performance ICs.
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