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A Variational Autoencoder Approach to Conditional
Generation of Possible Future Volatility Surfaces

January 18, 2025

Abstract

We develop a novel method to generate future implied volatility surfaces using historical se-
quences of surfaces and conditioning variables such as historical returns. The proposed archi-
tecture, based on a conditional variational autoencoder (CVAE) and a long short-term memory
network (LSTM), encodes historical data and represents sequences of observations. This architec-
ture can generate a wide spectrum of future surfaces conditional on any historical data set. Applied
to S&P500 data, the model predicts future return polarity with 60% accuracy.

THREE KEY TAKEAWAYS:

1. We propose an architecture combining Conditional Variational Autoencoders (CVAE) and
Long Short-Term Memory (LSTM) networks to generate possible future implied volatility
surfaces using historical data.

2. The proposed model achieves approximately 60% accuracy in forecasting the polarity of
S&P500 returns over a five-day horizon, demonstrating practical relevance in financial fore-
casting.

3. The proposed model effectively condenses the principal components of implied volatility
surfaces while preserving critical information, ensuring robust predictive performance and
applicability in real-world financial analytics.

Keywords: Implied volatility surfaces; variational autoencoders; long short-term memory; deep
learning; simulation modeling

JEL Classification: C45, G10



If the assumptions underlying the model developed by Black and Scholes (1973) and Merton
(1973) held, a single volatility could be used to price all options dependent on a particular asset
and that volatility would not change through time. In reality, the volatility that must be used in
conjunction with the Black-Scholes-Merton model to price an option on an asset at any given time
depends on the option’s strike price and time to maturity. The volatility as a function of these
parameters is referred to as the implied volatility surface (IVS). The IVS changes through time. A
key question for a trader responsible for options dependent on a particular asset is therefore: “By
how much can the IVS change?” Every possible change gives rise to a gain or loss on the trader’s
portfolio. The trader must be satisfied that, with the hedges contemplated, the risks are acceptable.

There have been many attempts to model the dynamics of IVSs. Examples are Cont and Da
Fonseca (2002), Cont, Da Fonseca, and Durrleman (2002), Carmona, Ma, and Nadtochiy (2017),
Cuchiero, Khosrawi, and Teichmann (2020), Cohen, Reisinger, and Wang (2020), Bloch and Böök
(2021), Shang and Kearney (2022), Cont and Vuletić (2023), Francois et al. (2022), and Choud-
hary, Jaimungal, and Bergeron (2023). Some of these jointly model the asset price and the volatility
surface while others model only the volatility surface.

In this research, we use a variational autoencoder (VAE) to model a wide range of potential
scenarios for next-day IVS. This is, as far as we know, a different approach from that taken by
other researchers. A VAE is an attractive tool because it requires no assumptions about the nature
of the model. It uses historical data to produce a multivariate normal distribution for a number
of latent variables that relate the next-day IVS to recent asset price returns and recent IVSs. By
sampling from the latent variables alternative future scenarios for the IVS are generated. These
sampled scenarios collectively form a distribution, representing a wide spectrum of potential future
outcomes. We apply the methodology to options on the S&P500.

We define the Implied Volatility Surface (IVS) using 25 points, combining five levels of mon-
eyness with five different times to maturity. According to the assumptions made by Variational
Autoencoder (VAE) models, the actual IVS should be a random sample from the IVSs generated
by the VAE. We test this hypothesis by comparing the original IVS on a given date with the IVS
generated by the VAE model. The model proposed in this paper demonstrates both viability and
explainability in modeling potential next-day volatility surfaces based on historical data. By ex-
amining the generated surfaces with maximum likelihood, we find that they accurately capture the
original surfaces at most grid points, with higher than 90% R2. Furthermore, the proposed model
architecture effectively distinguishes the evolution of IVSs and asset prices during recession and
non-recession periods. Quantitative analysis reveals that the principal components of the surfaces
produced by our model possess predictive power regarding SPX price movements and volatility.
Our generated surfaces achieve an approximately 60% accuracy in forecasting whether the SPX
price will rise or fall over the next five days.

METHODOLOGY

Variational Auto-Encoders (VAEs)

The basic VAE architecture proposed by Kingma and Welling (2013) is an unsupervised gen-
erative model consisting of two parts: an encoder and a decoder.

The encoder infers from observed data, x, the latent variables, z, in the form of a probability
distribution qφ (z|x) with parameters, φ . We choose qφ (z|x) to match a multivariate normal dis-
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tribution, p(z) = N (0, I), where I is the identity matrix. We can ensure the matching of the two
probability distributions by minimizing the Kullback-Leibler (KL) divergence:

min
φ

DKL(qφ (z|x)||p(z)). (1)

The decoder takes the latent variables, z, from the encoder to reproduce the observed data, x.
Thus, a suitable objective function for the decoder part is to maximize the marginal log-likelihood
of the observed data, x, in expectation over the distribution of the latent variables:

max
θ

Eqφ (z|x)(log pθ (x|z)), (2)

where θ denotes the parameters of the decoder.
The objective function of a VAE model is therefore:

max
θ ,φ

Eqφ (z|x)(log pθ (x|z))−DKL(qφ (z|x)||p(z)). (3)

Higgins et al. (2017) proposed a regularization factor on the KL divergence:

max
θ ,φ

Eqφ (z|x)(log pθ (x|z))−βDKL(qφ (z|x)||p(z)). (4)

Changing β changes the focus of training. A small value for β means that we focus on the accu-
racy of matching the generated data with observed data. A large β means that we focus more on
enforcing structure in the space of hidden variables. This causes the decoder to smoothly inter-
polate between samples of hidden variables to obtain synthetic data that do not have extreme and
unrealistic differences compared to observed data. In practice, an appropriate value of β can be
found with hyperparameter tuning.

Typically, the decoder produces the mean value µx|z, and we assume a unitary covariance.
Therefore log pθ (x|z) =−1

2∥x−µx|z∥2
2. Finally, the expectation can be approximated by averaging,

so the maximum likelihood can be replaced by minimizing a mean squared error, which is the
reconstruction loss.

Since we assume the prior p(z) = N (0, I), the KL divergence can also be reduced to an exact
expression:

DKL(qφ (z|x)||p(z)) =
1
2 ∑

i

(
−1− logσ

2
i +σ

2
i +µ

2
i
)
, (5)

where zi ∼ N (µi,σ
2
i ) for each individual latent variable zi in the vector z. The objective function

can then be rewritten as:

max − 1
2
∥x−µx|z∥2

2 −
β

2 ∑
i

(
−1− logσ

2
i +σ

2
i +µ

2
i
)

, or

min
1
2
∥x−µx|z∥2

2 −
β

2 ∑
i

(
1+ logσ

2
i −σ

2
i −µ

2
i
)
. (6)

The basic VAE architecture generates new data samples unconditionally. Sohn, Lee, and Yan
(2015) introduced a Conditional VAE (CVAE), which generates data based on a given condition
c. In this setting, the encoder maps inputs to latent factors according to the distribution qφ (z|x,c)
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using both the observed data x and the condition c. The decoder then generates x by pθ (x|z,c),
providing control over the generated output. For instance, Ning et al. (2023) use CVAE to generate
parameters for Stochastic Differential Equations (SDEs) that characterize the behavior of IVSs
conditional on observable market states, such as spot rates or indices.

VAEs have also been applied to the task of timeseries generation (see Desai et al. (2021)).
In this application, one-dimensional convolutional layers are employed by the encoder to extract
time-dependent features and construct the latent space, while transposed convolutional layers are
used to reconstruct the timeseries. Trend blocks and seasonality blocks can be incorporated to im-
prove the interpretability of such models. Beyond VAEs, other generative models like Generative
Adversarial Networks (GANs) have also been applied to generate price scenarios with a particular
focus on tail risk (see Cont et al. (2023)).

Long Short-Term Memory (LSTM)

The asset price and IVS changes we work with can be viewed as timeseries data, where today’s
values can depend on those of the previous day. Recurrent Neural Networks (RNNs), particularly
Long Short-Term Memory (LSTM) networks as originally proposed by Hochreiter and Schmid-
huber (1997), effectively incorporate this time evolution and have been shown to be useful in
timeseries generation (Siami-Namini, Tavakoli, and Siami Namin (2018)). Within each recurrent
unit of the LSTM, a long-term cell state ct and a short-term hidden state ht are maintained through
self-recurrence by four interacting neural network layers:

1) Forget Gate Layer: Compares ht−1 and the current input xt , and decides which elements in
cell state ct−1 to retain and which to forget ( ft).

2) Input Gate Layer: Determines which cell units to update (it) and creates new candidate
values c̃t .

3) Update Layer: Updates the cell state ct using ft , it and c̃t .

4) Output Layer: Calculates ot based on xt and ht−1, and updates the short-term memory ht .

Let σ(·) represent the sigmoid function. The LSTM model can be represented by the following
equations:

Forget: ft = σ(Wf · [ht−1,xt ]+b f ),

Input: it = σ(Wi · [ht−1,xt ]+bi),

c̃t = tanh(Wc · [ht−1,xt ]+bc) (7)
Update: ct = ft × ct−1 + it × c̃t ,

Output: ot = σ(Wo · [ht−1,xt ]+bo),

ht = ot × tanh(ct),

where × denotes the Hadamard product (element-wise product), and W · [h,x] = Whh+Wxx rep-
resents the tensor product of the weights with the concatenated vector [h,x]. Wx is the weight
matrix associated with the current inputs xt informing the LSTM computation for future possible
outcomes. Wh is the weight matrix associated with past information, generating future outcomes.
These weights are learned and optimized during the training process to minimize the loss function.
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There are also several variants of LSTM, though Greff et al. (2017) shows that these variants
perform similarly. VAE and LSTM, or other memory models, have been combined to perform
tasks in natural language generation (Bowman et al. (2016)) and anomaly detection in timeseries
(Lin et al. (2020)).

Proposed Model

Let xt represent the observed IVS on day t, constructed as outlined in the next Section. To
model price changes, we use the log-returns rt ≡ Rett = log

(
pt

pt−1

)
, where pt denotes the asset

price on day t. Let yt be conditioning variables that can impact IVS dynamics, which include
underlying asset returns rt . In the subsequent text, the subscript t may be omitted referring to
general operations that do not depend on specific days.

To use a VAE to model changes in asset prices and IVSs, we consider the problem: Given
the context information, xc = (...,xt−3,xt−2,xt−1) and yc = (...,yt−3,yt−2,yt−1), representing the
historical timeseries of observed IVSs and conditioning variables before day t respectively, can
we generate distributions of possible IVSs and asset returns for day t and beyond, i.e. xn =
(xt ,xt+1,xt+2, ...) and rn = (rt ,rt+1,rt+2, ...)?

The basic VAE architecture learns an unconditional probability distribution derived from the
complete set of observations. This architecture is limited to generating random samples without
any conditions, making it challenging to control the generated data. The more frequently observed
data points are more likely to be generated. However, it is impossible to determine the specific
day for which the IVSs are generated. CVAEs address this by setting the historical timeseries as
conditions. However, without controlling time steps, a look-ahead bias may occur when generating
new IVSs. For example, a surface generated on day t could also use the latent values for day t +1,
t + 2 and beyond in the standard CVAE formulation. Additionally, as the length of historical
context and the length of future values to generate increase, more IVSs and conditioning variables
need to be encoded. This increases the number of parameters, as there are no recurrent units in the
CVAE, and inputs of each day require different parameters for encoding. Finally, CVAEs using
simple multilayer perceptron (MLP) or convolutional neural network (CNN) can only accept fixed-
size input, making it challenging to generate surfaces based on variable-length contexts without
disrupting the structures.

To address these challenges, we propose a new architecture that combines the strengths of
CVAEs and LSTM, making it suited for our task. A high-level overview of the model is provided
below, while detailed mathematical formulations can be found in appendix. The architecture uses
a CVAE as its backbone and consists of three main components:

1) Encoder: The encoder processes the historical context and the values to be generated (xc,yc,
xn,yn), forming a distribution N (µt,i,σ

2
t,i) for each latent variable on each day. The latent

representation z = (...,zt−1,zt ,zt+1, ...) is then sampled from this distribution. During gener-
ation steps, the latent variables for the historical context are computed as µt,i by the encoder,
and the latent variables for the days to generate are individually sampled from the standard
normal N (0, I).

2) Context Encoder: The context encoder generates an efficient representation of the historical
context (xc,yc), denoted ζ = (...,ζt−3,ζt−2,ζt−1);
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3) Decoder: The decoder uses ζ as a condition and the sampled latent variables z to reconstruct
the surfaces and returns, x̂n, r̂n.

The LSTM is integral to each of these three components. With a limited number of parameters
and no look-ahead bias, it efficiently captures the time dependencies of the inputs when generat-
ing embeddings in the encoder and context encoder. It also generates outputs based on previous
day conditions in the decoder, accommodating inputs and outputs of any length. Furthermore,
incorporating LSTM allows us to separate the tasks of capturing temporal and spatial features.

We define the objective function for each day t as follows:

L(φ ,θ ,xt ,yt) =
1

HW
∥xt − x̂t∥2

2 +α∥rt − r̂t∥2
2 −

β

2

L

∑
i=1

(
1+ logσ

2
t,i −σ

2
t,i −µ

2
t,i
)
, (8)

where H and W are the dimensions of the IVSs, and L is number of latent variables. The term
1

HW ∥xt − x̂t∥2
2 represents the mean squared error (MSE) of points on the generated surface x̂t and

∥rt − r̂t∥2
2 is the MSE of the generated underlying asset returns r̂t

1. α is the regularization factor for
the error on returns. It is included in our loss function to account for underlying asset dynamics,
aiming to improve the generation of IVSs that align with observed market trends. Increasing α

reduces the reconstruction loss on conditioning variables (specifically returns), but may slightly
increase the loss on IVSs. However, an optimal α could potentially minimize the overall loss. The
choice of α depends on the relative scale of returns and IVSs. β is the regularization factor for the
KL divergence, as detailed in methodology section. This objective function is computed for each
generated day within a batch and averaged across all days in the batch.

The proposed architecture can be extended to generate implied volatilities of options whose
moneyness and time to maturity do not match the fixed grid points that are used for training. The
extension involves using a point-wise decoder and two additional conditioning variables (i.e., mon-
eyness and time to maturity). The point-wise decoder takes as input ζ , the sampled latent variables
z, the desired moneyness and time to maturity values, and generates a single implied volatility cor-
responding to the latter, instead of generating the entire grid. The point-wise decoder modification
was proposed by Bergeron et al. (2022) in the context of time-agnostic IVS generation. Employing
a point-wise decoder eliminates the need to perform interpolation after generating implied volatil-
ities. An additional benefit of the VAE architecture is that the latent variables can be calibrated
using observed market data. Specifically, when there are many observed implied volatilities avail-
able on a particular day, the encoder can be used to infer the latent variables that best explain the
observed data. When data is sparse, the decoder can be used in isolation to infer the latent variables
by minimizing the reconstruction error with a quasi-Newton optimizer, such as Limited-memory
BFGS. The efficacy of this calibration strategy is demonstrated by Bergeron et al. (2022).

S&P500 IMPLIED VOLATILITY SURFACE ESTIMATION

S&P500 Call Option data from January 2000 to February 2023 were downloaded from Op-
tionMetrics2. Initially, all options without a reported implied volatility were excluded from the
dataset. Additionally, only options with a positive open interest, moneyness (defined as the strike

1. We also experimented with generating the complete conditioning variable vector yt and computing the loss as
1
E ∥yt − ŷt∥2

2, but it introduced bias towards specific surface properties and did not improve performance.
2. The access is gained through https://wrds-www.wharton.upenn.edu/pages/about/data-vendors/optionmetrics/
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price divided by the index level, K/S) ranging between 0.7 and 1.3, and a time to maturity from 1
month up to 2 years were retained. We use a 5×5 grid for the implied volatility surface, defined by
time-to-maturity (ttm) values of 1, 3, 6, 12, and 24 months and moneyness values of 0.7, 0.85, 1,
1.15, and 1.3. It is worth noting that this 5×5 implied volatility surface is not directly observable
from the available options on any given trading day due to variations in available strike prices and
expiration dates. Therefore, we employ the bivariate linear interpolation method outlined in Cao
et al. (2022) to determine the implied volatilities for standard reference points. For each option
with moneyness M = K/S and ttm T , we define Ml,Mu ∈ {0.7,0.85,1,1.15,1.3} as the standard
moneyness values closest to M such that Ml ≤ M ≤ Mu, and define Tl,Tu ∈ {1,3,6,12,24} as
the standard ttm values closest to T such that Tl ≤ T ≤ Tu. Then, the implied volatility for the
(M,T ) option is determined by a bivariate linear interpolation between the implied volatilities of
the (Ml,Tl),(Ml,Tu),(Mu,Tl),(Mu,Tu) options. The best-fit implied volatilites for standard money-
ness and ttm are those that minimize the squared differences between the interpolated and reported
implied volatilities. Occasionally, fitting for extreme moneyness/maturity combinations (e.g. one-
month implied volatility for moneyness levels of 0.7, 0.85, 1.15 and 1.3, and three-month implied
volatility for moneyness levels of 0.7 and 1.3) fails due to unreliable or nonexistent S&P500 im-
plied volatilities. This results in either zero or extremely high implied volatility. For interpolated
implied volatility values ≤ 0.01 or ≥ 1.0, we find the option on the same day with the closest time
to maturity and moneyness, and use its implied volatility as the estimate.

We use x[ttm,Moneyness] to index a single point on the surface, with ttm in the order of years.
For example, x[0.25,1] means the implied volatility when ttm= 3 months and Moneyness K

S = 1.

RESULTS

Conditioning Variables Definition

One of the conditioning variables we use is the daily log return of the asset price. Additionally,
we define two other conditioning variables: skew and slope. The skew is defined as:

skew =
x [1,0.85]+ x [1,1.15]

2
− x [1,1] . (9)

The slope is defined as:
slope = x [2,1]− x [0.25,1] . (10)

These features are utilized in both training and evaluation phases. Skew measures the asymmetry
of the implied volatility around the at-the-money point, while slope measures the at-the-money
volatility term structure. Both indicators may reflect potential upward or downward trends in IVs.

Training and Model Performance

We use data from 2000-01-03 to 2015-11-27 (4000 days) for training, data from 2015-11-30
to 2019-11-18 (1000 days) for validation, and data from 2019-11-19 to 2023-02-24 (822 days) for
testing. The model is defined and trained using PyTorch 2.3.13 on an RTX 3080 Linux machine4. It
uses 3 convolution layers with an output size of 5 for surface encoding and identity encoding for the

3. The code is compatible with any PyTorch version, but performance may vary.
4. https://www.runpod.io/console/pods
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conditioning variables. The latent and context embedding dimensions are set to 5. We use a 2-layer
LSTM with 100 hidden units as memory and apply a 0.2 dropout rate. The KL divergence weight is
set to β = 10−5. Training, validation, and testing were conducted on sequences of variable lengths
between 4 and 10, with the context length being one less than the sequence length. The validation
set is used to select the optimal model during 500 epochs of training. The batch size is 64 for
training and 16 for validation and testing. AdamW (Kingma and Ba (2017), Loshchilov and Hutter
(2019)) is used as the optimizer with a learning rate of 10−5. All random seeds are reset to 0 before
dataset preparation and before training. We use 64-bit floating points in calculations for better
precision. A variety of feature configurations were tested, and comparisons of two representative
models, along with relevant evaluation metrics, are reported in Exhibit 1.

In the tables and subsequent sections, we refer to the model trained only using IVSs without
any conditioning variables as “No EX”. The model trained with conditioning variables, returns,
skew, and slope, where the loss is computed on IVSs and returns only, is referred to as “EX Loss”.

Most of the experiments are performed on the “MLE surfaces”, denoted x̂MLE,t , with a 5-day
(trading week) context (xc,yc) = (xt−5,yt−5, ...,xt−1,yt−1). To generate MLE surfaces, we first
compute the latent variable z. For the context, we compute zt−5,zt−4, ...,zt−1 as the mean values
µt−5,µt−4, ...,µt−1 of context (xc,yc) encoded by the encoder. For the day to generate, we use
zt = 0 as the maximum likelihood in the prior distribution. We also embed the context (xc,yc)
into ζ using the context encoder. Then we generate the MLE surfaces using the decoder with
z = [zt−5, ...,zt−1,zt ] and ζ . To compute a wide range of possible scenarios, such as in the case of
arbitrage testing in appendix, we set zt ∼N (0, I) to be a random sample from the prior distribution,
and then generate the surfaces. In both cases, the dropout rate of the LSTM layers is set to 0. The
generation starts from 2000-01-10 and ends on 2023-02-15, covering a total of 5810 days.

Panel A of Exhibit 1 reports the training statistics of the two representative models on the
validation and test sets. Panels B and C report the RMSE between the MLE surfaces and the
observed surfaces across all 5810 days. Grid points with high RMSEs typically correspond to
those with unreliable or nonexistent S&P500 implied volatilities, requiring approximation with the
nearest available values. For better-behaved grids, the RMSEs are generally around 1% to 2%.
Additionally, the EX Loss model exhibits generally lower RMSEs compared to the No EX model,
indicating that the conditioning variables improve the model’s performance.

To further evaluate the goodness of fit of the MLE surfaces, we perform the following regres-
sion on all 25 grid points:

xt [ttm,moneyness] = α +β1x̂MLE,t [ttm,moneyness]+ εt . (11)

The MLE surfaces, x̂MLE,t , should represent the actual level of each individual grid point on the
surface. This accuracy is achieved during the training process, where two key objectives are mini-
mized: the mean squared error between the generated surfaces and the observed surfaces, and the
distance between the distribution of latent variables and the standard normal distribution. This dual
minimization ensures that the model’s most probable generations closely align with the actual data.
Exhibit 2 reports the regression results for the No EX model, whereas Exhibit 3 reports the results
for the EX Loss model. The coefficients β1 are around 1 for most of the surface grid points, with
intercepts around 0 and R2 values around 90%, suggesting that the observed next-day surfaces are
well approximated by the MLE surfaces. Comparing Exhibit 2 and Exhibit 3, we see that the EX
Loss model produces regression coefficients closer to 1, intercepts closer to 0, and higher R2 val-
ues. This indicates that the MLE surfaces generated by the EX Loss model align more closely with
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the observed surfaces, consistent with the observation that the EX Loss model produces better-fit
surfaces based on RMSE analysis.

Forecasting Recession and Volatility Dynamics

First, we examine the context encoding process of observed S&P500 surface data. We use a
5-day context (xt−5,yt−5), (xt−4,yt−4), ..., (xt−1,yt−1) to generate the 5× 5 encoding (ζt−5,ζt−4,
ζt−3,ζt−2,ζt−1). These ζ values are then concatenated into a one-dimensional vector χ = [ζt−5,
ζt−4,ζt−3,ζt−2,ζt−1] ∈ R25, where the first 5 values are from ζt−5, and the last 5 values are from
ζt−1. This χ value is calculated for 5810 days from January 10, 2000, to February 15, 2023. We
then apply PCA on [χ1,χ2, ...,χ5810] to extract the first and second principal components (FPC and
SPC) for each day. For the No EX model, the FPC explains 84.5% of the variance, while the SPC
accounts for 6%. In the EX Loss model, FPC explains 80% of the variance, and SPC explains 7%.

In the first qualitative analysis, we categorize the days according to whether they were in an
NBER recession period and then plot the principal components. The NBER recession periods
within our analysis are April 1, 2001, to November 30, 2001; January 1, 2008, to June 30, 2009;
and March 1, 2020, to April 30, 20205. Exhibit 8 shows the principal components extracted from
both the original surfaces and the generated MLE surfaces. Panel A presents the results for the
No EX model, while Panel B shows the results for the EX Loss model. The majority of the stable
market dates, represented by dots, cluster near the origin in the bottom left corner. In contrast, the
principal components for the NBER recession dates, indicated by triangles, are scattered towards
the top right corner. This noticeable separation indicates the model’s ability to capture distinct
volatility characteristics within varying market regimes and periods of recession. Also, this behav-
ior is consistent in both the No EX and EX Loss models.

To provide a quantitative estimate of the model’s performance in predicting future recession
periods, we use a probit regression model. This model predicts whether a period falls within an
NBER recession:

P(NBERt:t+30) = Φ(α +β0FPCt +β1SPCt + εt). (12)

We define NBERt:t+30 as an indicator variable that is 1 if any of day t to day t +30 is in an NBER
recession period, and 0 otherwise. We use the FPCt and SPCt values extracted from encoded IVSs
on days t −5, ..., t −1 as the predictor variables. Φ is the standard normal cumulative distribution
function. Columns (1) and (2) in Panels A and B of Exhibit 4 report the estimated coefficients
and standard errors for the probit regression model. Column (1) shows the results for the encoding
of the original surfaces, while Column (2) presents the results for the encoding of the generated
MLE surfaces. The estimated coefficients and R2 values are close, with similar significance levels,
indicating that the generated MLE surfaces effectively capture the important features of the original
surfaces. Comparing Panels A and B, we observe that the MLE surfaces generated by the EX
Loss models provide a higher R2 (36% compared to 34%) and a more significant second principal
component. Panels A and B in Exhibit 9 plot the estimated probability of the probit regression
model. The red and blue plots closely align, validating the model’s ability to accurately extract
and reflect important features from the original data. The SPX price is also plotted in the graph.
Since the IVSs are based on options for S&P500 indices, the estimated probability of recession is

5. Monthly periods from FRED (2023): https://fred.stlouisfed.org/series/USREC
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not only high during actual NBER recessions but also high when SPX prices drop. This leads to
our next experiments on future return volatility prediction and classification.

We define log return Rett = log
(

pt
pt−1

)
as before, and define Vol5dt as the standard deviation

of 5-day returns Rett , Rett+1,..., and Rett+4, which captures the volatility of 5-day returns. We
use the FPCt and SPCt values extracted from encoded IVSs on days t −5, ..., t −1 as the predictor
variables to estimate the future return volatility Vol5dt using linear regression:

Vol5dt = α +β0FPCt +β1SPCt + εt . (13)

The results are reported in Columns (3) and (4) in Panels A and B of Exhibit 4. Both the principal
components extracted from encoded original and generated MLE surfaces predict Vol5dt with high
statistical significance. The R2 values are around 40%. The EX Loss model provides a slightly
higher R2 in extracting the features from the original surfaces (R2 increases from 43% to 46%), but
the difference for the generated MLE surfaces is not that significant.

Autoencoders and VAEs typically perform lossy compression when the latent dimension is
smaller than the original input data dimension. In our case, the latent dimension is 5, while the
input data dimension is 25, indicating potential information loss. To examine the extent of infor-
mation loss and potential additional information captured by our VAE model, we conduct the same
experiment on the original IVSs and evaluate the incremental effect of encoding. PCA is applied
to the original IVSs from day t −5, ..., t −1, encompassing a total of 125 points. The first principal
component (PC) explains 54.3% of the variance, while the second PC explains 8.6%. A total of
10 PCs are required to explain 86% of the variance. The VAE effectively encodes most of the
variance into the first two PCs. We then perform return volatility forecasting using the following
configuration:

Vol5dt = α +
k

∑
i=1

γiPCi,t +β0FPCt +β1SPCt + εt . (14)

The results are summarized in Exhibit 5. Columns (1), (3), and (5) report the incremental effects of
FPCs and SPCs extracted from the encoded IVSs in regressions that include the top two PCs (PC1,t
and PC2,t) derived from the original IVSs. The FPCs and SPCs from the encoded IVSs, generated
by both the No EX and EX Loss models, remain significant in these regressions and enhance R2

by 3.2% and 6.1%, respectively. Similarly, the FPCs and SPCs derived from the encodings of
generated MLE surfaces yield comparable improvements in R2, suggesting minimal information
loss during the generation process. Columns (2), (4), and (6) show the incremental effects of FPCs
and SPCs in regressions that incorporate the top ten PCs extracted from the original IVSs. The
coefficients and statistical significance for the top two PCs are reported. Comparing Columns (1)
and (2), it is evident that adding eight additional PCs increases R2 while having minimal impact on
the coefficients for PC1,t and PC2,t . When FPCs and SPCs from the encoded IVSs are included, R2

improves slightly by approximately 1∼ 2%. This smaller improvement reflects the fact that the top
ten PCs already explain most of the variance in the original IVSs, leaving limited room for further
enhancement by a similar lossy compression method. However, in Column (4) of Panel B, the
significance of FPCs and SPCs from the encoded IVSs surpasses that of the first two PCs extracted
from the original IVSs. Additionally, in Column (6) of both panels, the FPCs and SPCs from the
encoded MLE surfaces remain significant. These results indicate that the FPCs and SPCs from the
encoded surfaces produced by our VAE model capture additional information not explained by the

9



top PCs extracted directly from the IVSs. This added explanatory power is relevant for predicting
S&P500 volatility.

We also estimate recession probabilities using the following model:

P(NBERt:t+30) = Φ

(
α +

k

∑
i=1

γiPCi,t +β0FPCt +β1SPCt + εt

)
. (15)

The estimated recession probabilities, based on the first two PCs and the top ten PCs, are presented
in Panel C of Exhibit 9. The recession probabilities derived from the FPCs and SPCs of the encoded
IVSs align well with broader trends. Specifically, they show higher recession probabilities during
periods of SPX price declines and NBER-defined recessions. This qualitative alignment confirms
that our VAE model successfully captures significant and explanatory features within the IVSs,
enabling it to effectively identify trends associated with underlying asset price movements and
recession periods.

Classification of Future Returns

We now use these principal components to classify return movements. We define Rett1:t2 as

an indicator variable that is 1 if the cumulative log return over the period [t1, t2], log
(

pt2
pt1

)
, is

positive, and -1 if the return is negative. The FPCt and SPCt values extracted from encoded IVSs
on days t−5, ..., t−1 are used as the predictor variables for classifying 1-day and 5-day log returns,
Rett−1:t , Rett:t+1, Rett−1:t+4 and Rett:t+5. For classification, we employ the MLP classifier from
the scikit-learn library with default settings6 and set the random seed to 0 to ensure reproducibility.

First, we conduct common in-sample and out-of-sample tests by splitting the generated surfaces
into training (2000–2015) and testing (2016–2023) sets. The classifier is trained on the training set
and evaluated on both the training and testing sets. Exhibit 6 reports the accuracy, precision, recall,
F1-score, and AUC, with precision, recall, and F1-scores weighted by the number of samples in
each class. The AUC is calculated based on the indicator being 1 (positive return). Both the No
EX model (Panel A) and the EX Loss model (Panel B) achieve approximately 60% accuracy on
the testing set for predicting future 5-day log returns, with an AUC of 0.51. Predictions for 1-day
log returns show slightly lower accuracy but marginally better AUC scores. Notably, the EX Loss
model demonstrates slightly higher testing accuracy, suggesting that the inclusion of conditioning
variables enhances predictive performance.

Next, we assess the practical applicability of generated MLE surfaces for training downstream
classification models. Classification models for Rett1:t2 are trained using the principal components
computed from the encoded MLE surfaces over the period 2000–2023 and evaluated on the PCs
derived from the encoded original surfaces for the same timeframe. Results in Exhibit 7 show
that models trained on generated data achieve comparable performance on the original data, with
accuracy, precision, recall, F1-scores, and AUC scores around 57% for 5-day log returns. These
findings indicate that the generated MLE surfaces effectively encapsulate the essential features
of historical data for classifying future return movements. Consequently, they serve as a viable
pre-training step for predictive and classification tasks in real-world scenarios.

6. 2-Layer MLP with 100 hidden units, ReLU activation, and Adam Optimizer with a constant 1e-3 learning rate.
The strength of the L2 regularization is 1e-4
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CONCLUSIONS

In this paper we propose a new model that incorporates the historical context and additional
features to generate distributions of IV surfaces on a single day. The same method can be easily
extended to generate distributions on multiple days, based on a history of any length. The perfor-
mance is consistent with a SABR dataset which is a well-defined simplified model for asset pricing
and volatility. The results for SABR are recorded in appendix.

We show that our VAE model with conditioning variables can capture the historical variations,
and the surfaces generated by our model can be used to predict future realized stock returns and
volatilities. The generated dataset could potentially be applied to pre-training of classifications on
timeseries data.

Potential future work to expand on this analysis includes:

1) Simultaneously generating surfaces and returns for multiple days, and examining the propa-
gation of errors,

2) Investigating the influence of historical return and implied volatility values on each point of
the generated surfaces, and providing a more rigorous interpretation of temporal dependen-
cies,

3) Generalizing the model so that it works on existing datasets to compare its performance with
CVAE or a conventional timeseries VAE, and

4) Replacing the standard normal distribution prior with a prior that more accurately represents
the distribution of IVSs. This adjustment allows for more precise modeling of the data.

11



Exhibit 1: Training Statistics

This table presents the basic statistics of the No EX and EX Loss models. Panel A details the
validation and test losses during the training process, broken down into surface reconstruction loss
(RE Surface), return reconstruction loss (RE Return), and KL divergence loss (KL). Panels B and
C report the RMSE between MLE surfaces and the observed surfaces for the models.

Panel A. Training Statistics
Validation Test

Loss RE Surface RE Return KL Loss RE Surface RE Return KL

No EX 1.24e-03 1.20e-03 0 3.78e+00 1.81e-03 1.77e-03 0 4.06e+00
EX Loss 1.30e-03 1.20e-03 5.59e-05 4.49e+00 1.99e-03 1.80e-03 1.43e-04 5.03e+00

Panel B. No EX RMSE

K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month 0.1770 0.0538 0.0308 0.0574 0.1013
3 month 0.1130 0.0296 0.0221 0.0281 0.0751
6 month 0.0430 0.0229 0.0168 0.0132 0.0581
1 year 0.0279 0.0167 0.0134 0.0120 0.0162
2 year 0.0431 0.0165 0.0129 0.0141 0.0221

Panel C. EX Loss RMSE

K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month 0.1847 0.0466 0.0273 0.0600 0.0974
3 month 0.0845 0.0243 0.0185 0.0268 0.0728
6 month 0.0368 0.0171 0.0129 0.0115 0.0618
1 year 0.0247 0.0117 0.0091 0.0091 0.0154
2 year 0.0423 0.0131 0.0104 0.0125 0.0210
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Exhibit 2: Regression for IVSs with MLE Surfaces (No EX)

This table reports the results of following regression:

xt [ttm,moneyness] = α +β1x̂MLE,t [ttm,moneyness]+ εt .

The regression is performed on all 25 points of the surfaces generated by the No EX model. The
columns represent the moneyness grids, while the rows represent the time-to-maturity grids. Panel
A reports the coefficient β1 for each grid point, and Panel B shows the intercepts α . Asterisks
(*, **, ***) denote the associated p-values below the 10%, 5%, and 1% levels, respectively. The
standard errors are estimated using Heteroskedasticity Consistent (HC3) Robust Standard Errors.
Panel C presents the R2 of each regression.

Panel A. Coefficients
K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month 1.6313*** 1.3792*** 1.1515*** 0.9804*** 1.5459***
3 month 1.2731*** 1.3178*** 1.1207*** 0.9953*** 1.2172***
6 month 1.6908*** 1.2797*** 1.1581*** 1.0664*** 0.9779***
1 year 1.3994*** 1.2462*** 1.1657*** 1.1282*** 1.0431***
2 year 1.3575*** 1.2183*** 1.1314*** 1.1003*** 1.0980***

Panel B. Intercepts
K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month -0.0767*** -0.1193*** -0.0234*** 0.0015 -0.1442***
3 month -0.1414*** -0.0822*** -0.0183*** 0.0086*** -0.0500***
6 month -0.2065*** -0.0671*** -0.0259*** -0.0078*** 0.0070**
1 year -0.1149*** -0.0554*** -0.0312*** -0.0227*** -0.0029***
2 year -0.0889*** -0.0535*** -0.0288*** -0.0199*** -0.0169***

Panel C. R2

K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month 0.408 0.597 0.870 0.553 0.188
3 month 0.113 0.840 0.904 0.852 0.323
6 month 0.692 0.877 0.936 0.953 0.388
1 year 0.811 0.920 0.944 0.957 0.871
2 year 0.554 0.885 0.919 0.901 0.779
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Exhibit 3: Regression for IVSs with MLE Surfaces (EX Loss)

This table reports the results of following regression:

xt [ttm,moneyness] = α +β1x̂MLE,t [ttm,moneyness]+ εt .

The regression is performed on all 25 points of the surfaces generated by the EX Loss model. The
columns represent the moneyness grids, while the rows represent the time-to-maturity grids. Panel
A reports the coefficient β1 for each grid point, and Panel B shows the intercepts α . Asterisks
(*, **, ***) denote the associated p-values below the 10%, 5%, and 1% levels, respectively. The
standard errors are estimated using Heteroskedasticity Consistent (HC3) Robust Standard Errors.
Panel C presents the R2 of each regression.

Panel A. Coefficients
K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month 0.9881*** 1.3163*** 1.1636*** 1.1317*** 1.4942***
3 month 1.3668*** 1.1428*** 1.1044*** 1.0302*** 1.4216***
6 month 1.2272*** 1.0860*** 1.0808*** 1.0454*** 1.2162***
1 year 1.0756*** 1.0144*** 1.0088*** 1.0331*** 1.0017***
2 year 1.0565*** 0.9966*** 0.9860*** 0.9987*** 0.9881***

Panel B. Intercepts
K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month 0.0839*** -0.0970*** -0.0252*** -0.0071*** -0.1134***
3 month -0.1509*** -0.0381*** -0.0173*** 0.0019** -0.0896***
6 month -0.0727*** -0.0200*** -0.0144*** -0.0060*** -0.0292***
1 year -0.0245*** -0.0028*** -0.0018*** -0.0074*** 0.0001
2 year -0.0152*** -0.0017 0.0008 -0.0036*** -0.0010

Panel C. R2

K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month 0.328 0.703 0.904 0.528 0.265
3 month 0.503 0.872 0.933 0.861 0.395
6 month 0.716 0.913 0.955 0.963 0.324
1 year 0.805 0.942 0.965 0.970 0.878
2 year 0.534 0.910 0.940 0.922 0.798
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Exhibit 4: Recession Probability and Volatility Estimation

This table reports the results of following regression:

P(NBERt:t+30) = Φ(α +β0FPCt +β1SPCt + εt),

Vol5dt = α +β0FPCt +β1SPCt + εt ,

where NBERt:t+30 is 1 if a NBER recession period is in the next 30 days, Vol5dt is the standard
deviation over the 5-day log returns Rett ,Rett+1, ...,Rett+4, Φ is the standard normal cumulative
distribution function, and FPCt and SPCt are the first and second principal components of encoded
historical IVSs, respectively. Asterisks (*, **, ***) denote the associated p-values below the 10%,
5%, and 1% levels, respectively. The standard errors are estimated using Newey-West standard
errors, with maximum lags set to 30.

Panel A. No EX
NBER Vol5d

Encoded Original Encoded MLE Encoded Original Encoded MLE
(1) (2) (3) (4)

FPC 0.264*** 0.276*** 0.0014*** 0.0014***
(0.041) (0.042) (0.00) (0.00)

SPC 0.108 0.017 0.0005 0.0013***
(0.076) (0.118) (0.00) (0.00)

Intercept -1.522*** -1.545*** 0.0090*** 0.0092***
(0.149) (0.161) (0.00) (0.00)

R2 0.337 0.338 0.430 0.400
N 5810 5805 5810 5805

Panel B. EX Loss
NBER Vol5d

Encoded Original Encoded MLE Encoded Original Encoded MLE
(1) (2) (3) (4)

FPC 0.227*** 0.267*** 0.0014*** 0.0014***
(0.033) (0.039) (0.00) (0.00)

SPC 0.460*** 0.683*** 0.0012*** 0.0018***
(0.101) (0.159) (0.00) (0.00)

Intercept -1.525*** -1.498*** 0.0090*** 0.0091***
(0.138) (0.136) (0.00) (0.00)

R2 0.353 0.361 0.466 0.404
N 5810 5805 5810 5805
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Exhibit 5: Incremental Effect of Encoded Surfaces for Volatility Estimation

This table reports the results of following regression:

Vol5dt = α +
k

∑
i=1

γiPCi,t +β0FPCt +β1SPCt + εt ,

where Vol5dt is the standard deviation over the 5-day log returns Rett ,Rett+1, ...,Rett+4, PCi,t
are the ith principal components of original historical IVSs, and FPCt and SPCt are the first and
second principal components of encoded historical IVSs, respectively. Columns (1), (3), and (5)
show incremental effects with 2 PCs of original IVSs, while Columns (2), (4), and (6) use 10
PCs. Coefficients for PC1,t and PC2,t are reported. Asterisks (*, **, ***) denote the associated
p-values below the 10%, 5%, and 1% levels, respectively. The standard errors are estimated using
Newey-West standard errors, with maximum lags set to 30.

Panel A. No EX Vol5d
Original Encoded Original Encoded MLE

2PCs 10PCs 2PCs 10PCs 2PCs 10PCs
(1) (2) (3) (4) (5) (6)

PC1 0.0068*** 0.0068*** 0.0030*** 0.0064*** 0.0056*** 0.0101***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

PC2 -0.0061*** -0.0061*** 0.0011 -0.0042** -0.0037** -0.0107***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

FPC 0.0009*** 0.0002 0.0003 -0.0008*
(0.00) (0.00) (0.00) (0.00)

SPC 0.0011*** 0.0009*** 0.0013*** 0.0006**
(0.00) (0.00) (0.00) (0.00)

Intercept 0.0090*** 0.0090*** 0.0090*** 0.0090*** 0.0090*** 0.0089***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 0.427 0.507 0.459 0.516 0.439 0.516
N 5810 5810 5810 5810 5805 5805

Panel B. EX Loss Vol5d
Original Encoded Original Encoded MLE

2PCs 10PCs 2PCs 10PCs 2PCs 10PCs
(1) (2) (3) (4) (5) (6)

PC1 0.0068*** 0.0068*** 0.0066*** 0.0034 0.0157*** 0.0170***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

PC2 -0.0061*** -0.0061*** -0.0003 0.0003 -0.0124*** -0.0158***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

FPC 0.0002 0.0008* -0.0018** -0.0022***
(0.00) (0.00) (0.00) (0.00)

SPC 0.0022*** 0.0013*** 0.0025*** 0.0012***
(0.00) (0.00) (0.00) (0.00)

Intercept 0.0090*** 0.0090*** 0.0090*** 0.0090*** 0.0089*** 0.0088***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 0.427 0.507 0.488 0.519 0.489 0.529
N 5810 5810 5810 5810 5805 5805
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Exhibit 6: Return Classification (IS/OOS)

In this table, we classify the indicator variables Rett−1:t , Rett:t+1, Rett−1:t+4 and Rett:t+5 using
FPCt and SPCt , the first and second principle components of encoded historical IVSs. Rett1,t2 is

1 if log
(

pt2
pt1

)
is positive and -1 if negative. We report the accuracy, weighted precision, recall,

F1-scores, and AUC scores, with weights based on the number of observations in each class. We
train on generated data from 2000 to 2015 and evaluate on generated data from 2016 to 2023.

Panel A. No EX
Accuracy Precision (Weighted) Recall (Weighted) F1-score (Weighted) AUC

Rett−1:t train (2000-2015) 0.545 0.549 0.545 0.472 0.537
test (2016-2023) 0.539 0.519 0.539 0.439 0.515

Rett:t+1 train (2000-2015) 0.535 0.558 0.535 0.394 0.529
test (2016-2023) 0.543 0.542 0.543 0.405 0.530

Rett−1:t+4 train (2000-2015) 0.560 0.554 0.560 0.504 0.561
test (2016-2023) 0.586 0.525 0.586 0.511 0.487

Rett:t+5 train (2000-2015) 0.553 0.542 0.553 0.494 0.556
test (2016-2023) 0.584 0.509 0.584 0.497 0.501

Panel B. EX Loss
Accuracy Precision (Weighted) Recall (Weighted) F1-score (Weighted) AUC

Rett−1:t train (2000-2015) 0.533 0.527 0.533 0.415 0.533
test (2016-2023) 0.542 0.580 0.542 0.390 0.522

Rett:t+1 train (2000-2015) 0.536 0.544 0.536 0.415 0.531
test (2016-2023) 0.542 0.542 0.542 0.393 0.518

Rett−1:t+4 train (2000-2015) 0.571 0.574 0.571 0.510 0.573
test (2016-2023) 0.603 0.534 0.603 0.492 0.501

Rett:t+5 train (2000-2015) 0.559 0.550 0.559 0.518 0.558
test (2016-2023) 0.604 0.537 0.604 0.490 0.512
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Exhibit 7: Return Classification (Generated/Original)

In this table, we classify the indicator variables Rett−1:t , Rett:t+1, Rett−1:t+4 and Rett:t+5 using
FPCt and SPCt , the first and second principle components. Rett1,t2 is 1 if log

(
pt2
pt1

)
is positive and

-1 if negative. We report the accuracy, weighted precision, recall, F1-scores, and AUC scores,
with weights based on the number of observations in each class. We train on generated data, and
evaluate on original data.

Panel A. No EX
Accuracy Precision (Weighted) Recall (Weighted) F1-score (Weighted) AUC

Rett−1:t train (Encoded MLE) 0.541 0.555 0.541 0.420 0.530
test (Encoded Original) 0.530 0.509 0.530 0.426 0.511

Rett:t+1 train (Encoded MLE) 0.534 0.522 0.534 0.392 0.528
test (Encoded Original) 0.534 0.524 0.534 0.391 0.522

Rett−1:t+4 train (Encoded MLE) 0.567 0.547 0.567 0.426 0.544
test (Encoded Original) 0.569 0.554 0.569 0.439 0.544

Rett:t+5 train (Encoded MLE) 0.565 0.533 0.565 0.454 0.547
test (Encoded Original) 0.572 0.560 0.572 0.463 0.550

Panel B. EX Loss
Accuracy Precision (Weighted) Recall (Weighted) F1-score (Weighted) AUC

Rett−1:t train (Encoded MLE) 0.535 0.525 0.535 0.406 0.534
test (Encoded Original) 0.536 0.532 0.536 0.402 0.523

Rett:t+1 train (Encoded MLE) 0.537 0.530 0.537 0.430 0.529
test (Encoded Original) 0.532 0.514 0.532 0.423 0.520

Rett−1:t+4 train (Encoded MLE) 0.582 0.580 0.582 0.497 0.555
test (Encoded Original) 0.572 0.557 0.572 0.479 0.539

Rett:t+5 train (Encoded MLE) 0.573 0.556 0.573 0.508 0.547
test (Encoded Original) 0.570 0.550 0.570 0.511 0.539
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Exhibit 8: PCA of Context Embeddings

The left figure shows the first and second principal components of the context embedding for the
original surfaces, while the right figure shows the same for the generated MLE surfaces. The
horizontal axis represents the first principal component, and the vertical axis represents the
second. Triangles denote data points during NBER recessions, and circles denote data points
during normal years. The principal components are computed using a 5-day context from days
t −5 to t −1. Panel A displays the results for No EX model, and Panel B displays the EX Loss
model.

A. No EX

B. EX Loss
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Exhibit 9: Recession Probability Estimation

Panels A and B show the estimation for encoded surfaces by No EX model and EX Loss model,
and Panel C shows the estimation for original IVSs, respectively. In each figure, gray bars
represent NBER recession periods, and the yellow curve represents the S&P500 Price. In Panels
A and B, the blue plot shows recession probability estimated from the principal components of
encoded original IVSs, and the red plot shows recession probability estimated from the principal
components of encoded MLE IVSs. In Panel C, the blue plot shows recession probability
estimated by the first two principal components, and the red plot shows recession probability
estimated by ten principal components.

A. No EX

B. EX Loss

C. Original IVSs
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Bloch, Daniel Alexandre, and Arthur Böök. 2021. Deep Learning Based Dynamic Implied Volatil-
ity Surface. SSRN Scholarly Paper. Rochester, NY. https://doi.org/10.2139/ssrn.3952842.
https://ssrn.com/abstract=3952842.

Bowman, Samuel R., Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, and Samy
Bengio. 2016. “Generating Sentences from a Continuous Space,” arXiv: 1511.06349 [cs.LG].
http://arxiv.org/abs/1511.06349.

Cao, Jay, Jacky Chen, John Hull, and Zissis Poulos. 2022. “Deep Learning for Exotic Option
Valuation.” The Journal of Financial Data Science 4 (1): 41–53.

Carmona, Rene, Yi Ma, and Sergey Nadtochiy. 2017. “Simulation of Implied Volatility Surfaces
via Tangent Levy Models.” SIAM Journal on Financial Mathematics 8:171–213.

Choudhary, Vedant, Sebastian Jaimungal, and Maxime Bergeron. 2023. “FuNVol: A Multi-Asset
Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs,”
arXiv: 2303.00859 [q-fin.CP]. https://arxiv.org/abs/2303.00859.

Cohen, Sam N., Christoff Reisinger, and Sheng Wang. 2020. “Detecting and Repairing Arbitrage
in Traded Option Prices.” Applied Mathematical Finance 27:345–373.

Cont, Rama, Mihai Cucuringu, Renyuan Xu, and Chao Zhang. 2023. “Tail-GAN: Learning to
Simulate Tail Risk Scenarios,” arXiv: 2203.01664 [q-fin.RM]. https://arxiv.org/abs/2203.0
1664.
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APPENDIX: MODEL DETAILS

Let C be the context length (the number of relevant historical days), N be the number of days
we want to generate, T = C +N be the overall sequence length, and L be the number of latent
variables. Let xt ∈ RH×W be the observed IVS on day t, where H represents time-to-maturity
grid size, W represents moneyness (K/S) grid size. Let pt be the asset price on day t. We use
log-return rt = log

(
pt

pt−1

)
to model price changes. Let yt ∈ RE be the conditioning variables

of interest, where E is the number of conditioning variables. One such conditioning variable
can bert . Let xc = (xt−C, ...,xt−1) ∈ RC×H×W be the historical IVSs from day t −C to t − 1,
xn = (xt , ...,xt+N−1) ∈ RN×H×W be the IVSs we want to generate from day t to day t +N − 1.
Let yc = (yt−C, ...,yt−1) ∈ RC×E be the conditioning variables from day t −C to t − 1, and yn =
(yt , ...,yt+N−1) ∈ RN×E be the conditioning variables from day t to t +N − 1. If a, b are two
constants, then [a,b] is the usual interval notation. If a = (a1, ...,an), b = (b1, ...,bm) are two
vectors/tensors, then [a,b] = (a1, ...,an,b1, ...,bm) is the vector/tensor concatenation.

The model consists of three parts:

1) Encoder: Takes x = [xc,xn] ∈ RT×H×W and y = [yc,yn] ∈ RT×E and builds a distribution
N (µt,i,σt,i) for each day t and each latent variable zt,i. The latents z = (zt−C, ...,zt+N−1) ∈
RT×L are then sampled individually from the corresponding distributions. ∀i ∈ [t −C, t +
N −1], the encoder generates the daily latent vector zi by qφ (zi|x[t−C,...,i],y[t−C,...,i], i), where
x[t−C,...,i] = (xt−C, ...,xi).

2) Context Encoder: Takes xc and yc and generates a compressed representation of the context
ζ = (ζt−C, ...,ζt−1)∈RC×L.7 ∀i ∈ [t−C, t−1], the context encoder generates an embedding
ζi = Embed(xc,[t−C,...,i],yc,[t−C,...,i]), where xc,[t−C,...,i] = (xt−C, ...,xi).

3) Decoder: Takes z from the encoder and ζ from the context encoder and reconstructs x̂n =
(x̂t , ..., x̂t+N−1), ŷn = (ŷt , ..., ŷt+N−1). Each x̂i, ŷi, i ∈ [t, t +N − 1] is reconstructed by sam-
pling from pθ (xi,yi|ζ ,z[t−C,...,i], i), where z[t−C,...,i] = (zt−c, ...,zi).

Each component uses convolutional neural networks (CNNs) or multi-layer perceptrons (MLPs)
to encode/decode the surface structures on each day, and LSTM to capture time dependencies.
Graphical illustrations of each part and the complete model are shown in Exhibit 10, 11, 12, 13.
All convolutional/transpose convolutional/linear layers within the CNN/TCNN (transpose convo-
lutional neural network)/MLP blocks are followed by ReLU activation (max(x,0)), unless an iden-
tity function (Id) or single linear layer is used in place of MLPs, or the layer is the last layer of
the TCNN/MLP in the decoder. The TCNN/MLP blocks used in the decoder are symmetric to
the CNN/MLP blocks used in the encoder, ensuring matching input and output shapes as well as
encoding and decoding processes. For all convolutional and transpose convolutional layers, the
kernel size is fixed to 3× 3 with a stride of 1 and equal size padding, so the grid size remains
unchanged after multiple convolutions. Embedding function f1, f2, g1, g2 are performed by these
blocks in the encoder and context encoder.

7. We can configure the context embedding size to values other than L, but we use L as embedding size here to be
consistent with the main article.
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Exhibit 10: Encoder

x = [xc,xn],y = [yc,yn]
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CNN/
MLP

MLP/
Id

CNN/
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MLP/
Id

CNN/
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Id

[ f1(xt−C), f2(yt−C)] [ f1(xt), f2(yt)] [ f1(xt+N−1), f2(yt+N−1)]

LSTM Cell · · · LSTM Cell · · · LSTM Cell
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ct−C

ht−1

ct−1

ht

ct

ht+N−2

ct+N−2

LSTM

Linear1 Linear2 Linear1 Linear2 Linear1 Linear2

µt−C σ2
t−C µt σ2

t µt+N−1 σ2
t+N−1

zt−C ∼ N (µt−C,σ
2
t−C) zt ∼ N (µt ,σ

2
t ) zt+N−1 ∼ N (µt+N−1,σ

2
t+N−1)

z = (zt−C, ...,zt , ...,zt+N−1)
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Exhibit 11: Context Encoder

xc,yc
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Exhibit 12: Decoder

z = (zt−C, ...,zt+N−1) ζ = (ζt−C, ...,ζt−1)

Pad+Concatenate

Z = ([zt−C,ζt−C], ..., [zt−1,ζt−1], [zt ,0], ..., [zt+N−1,0])
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Exhibit 13: Overall Architecture

xc,xn,yc,yn

xc,xn,yc,yn xc,yc

Encoder Context Encoder

z ζ

Decoder

x̂n, ŷn
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APPENDIX: ARBITRAGE CONDITIONS

Following Gatheral and Jacquier (2014) and Bergeron et al. (2022), we specify static arbitrage
conditions as follows: let M = K

S be the moneyness, t be the time to maturity. Define w(t,M) =
t · x(t,M) as the total implied variance surface, where x is the IVS on a single day. An IVS is free
of calendar arbitrage if

∂w
∂ t

≥ 0. (16)

Let w′ = ∂w
∂M and w′′ = ∂ 2w

∂M2 . The IVS is free of butterfly arbitrage if(
1− Mw′

2w

)2

− w′

4

(
1
w
+

1
4

)
+

w′′

2
≥ 0. (17)

An IVS is said to be free of static arbitrage if the conditions in Equation 16 and 17 are satisfied.
We test the arbitrage conditions on the realized IVSs constructed by calibration on the avail-

able options. In the calibrated surfaces, there are 2585 surfaces with at least one calendar arbitrage
opportunities and 595 surfaces with at least two calendar arbitrage opportunities. In comparison,
there are 2182 days where more than 5% of generated surfaces with no conditioning variables have
at least one calendar arbitrage opportunity, and there are only 389 days where more than 5% of
generated surfaces have more than one calendar arbitrage opportunity, marking a significant re-
duction compared to the observed surfaces. Also, when conditioning variables are added, there are
1768 days where more than 5% of generated surfaces have one calendar arbitrage opportunity, and
no surfaces have more than one calendar arbitrage opportunity. Hence, with additional condition-
ing variables regulating the IVS structure, we can reduce the possibility of calendar arbitrage in
the generated surfaces. Nonetheless, they fall short of avoiding butterfly arbitrage.

It is possible to incorporate the calendar arbitrage condition into the calibration of IVSs on
the available options we have, and the learned model can further reduce the calendar arbitrage
opportunity with the better calibrated data. However, incorporating the butterfly arbitrage condition
into the calibration may lead to realized market volatility being captured less well. To further
reduce the possibility of static arbitrage in the generated surfaces, we could extend our loss function
in Equation (8) similarly to Bergeron et al. (2022).
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APPENDIX: CONTROLLED SABR ENVIRONMENT

The histogram and latent variable tests were performed under a controlled environment in order
to study the the model’s capacity to understand latent features and patterns in path trajectories of
price returns and volatility surface evolution. The SABR model developed by Hagan et al. (2002),
was used to generate over 10,000 paths of evolving implied volatility surfaces given the same fixed
grid of moneyness and time to maturity using General Brownian Motion for underlying asset price
evolution. We define our SABR model with the following properties: A Skew parameter of β = 1
, initial risk free rate of r f = 0 , volatility of volatility of volvol = 0.3, correlation parameter of ρ

= -0.7, and an initial underlying asset price of S0 = 10. On the SABR data set, the model reported
a reconstruction loss of 4.56×10−5 of surfaces, reconstruction loss of 3.97×10−5 on returns, and
KL loss of 0.59 in validation; in testing, losses of 4.65×10−5 and 4.00×10−5 were reported for
surface and returns reconstruction respectively with the same KL loss.

The model configuration used on S&P500 data yielded more balanced outcomes for this dataset
in terms of volatility level and returns. Additionally, it produces a higher frequency of outcomes
wherein realized additional features such as skew and slope are similar to the mean of daily gen-
erated normal distributions. This is evident through a greater number of outcomes falling within
the Q2 and Q3 buckets, coupled with smaller daily z-scores, in our histogram tests as illustrated in
Exhibit 14 and Exhibit 15.

The SABR dataset has been valuable for enhancing the explainability our VAE model’s latent
space, as well as the influence of significant additional features like skew and slope. We inves-
tigated the effect of altering latent variables while fixing the others on two model variants. It is
observed that including different features obtain distinct outcomes illustrated in Exhibit 16. The
set of graphs in Panel A shows how the generated surfaces changes when we manipulate each la-
tent value for a baseline model trained only on surface context, excluding any other conditioning
variables. The second set of graphs in Panel B shows the impacts of latent value manipulation for
a model that trains losses on returns and includes the other conditioning variables: skew and slope.
When changing a latent value of the VAE model with skew and slope context information, there
is reduced variation in the surface level and shape relative to the realized curve, in contrast to the
model that excludes these features. Note this figure illustrates changes in the first latent variable
for ttm = 1 only, however this trend holds for all 5 latent factors in the model and all moneyness
and time to maturity slices.
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Exhibit 14: Histogram Plots of SABR Surfaces

This Figure shows the histogram plots for the best VAE model that includes skew and slope
information. The left picture shows the distribution and the right picture shows the z-scores for
the levels.
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Exhibit 15: Histogram Plots of SABR Surface Structural Properties

This Figure shows the histogram plots for the best VAE model that includes skew and slope
information. The top row shows the distribution and z-scores for the skews. The second row
shows the distribution and z-scores for the slopes.
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Exhibit 16: SABR Latent Manipulation

A. VAE SABR Model with Surface Context Only

B. VAE SABR Model with Return, Slope, Skew, and Surface Context

33



APPENDIX: ADDITIONAL TABLES

Exhibit 17: Incremental Effect of Encoded Surfaces for Recession Probability Estimation

This table replicates Exhibit 5 for recession probability estimation with the following
configuration:

P(NBERt:t+30) = Φ

(
α +

k

∑
i=1

γiPCi,t +β0FPCt +β1SPCt + εt

)
,

where NBERt:t+30 is 1 if a NBER recession period is in the next 30 days.

Panel A. No EX NBER
Original Encoded Original Encoded MLE

2PCs 10PCs 2PCs 10PCs 2PCs 10PCs
(1) (2) (3) (4) (5) (6)

PC1 0.864*** 0.869*** -0.288 0.923 0.008 0.914
(0.142) (0.161) (0.672) (0.797) (0.485) (0.611)

PC2 -2.942*** -3.213*** -1.128 -3.303** -1.495 -3.295***
(0.783) (0.728) (1.032) (1.481) (0.968) (1.219)

FPC 0.269 -0.013 0.215* -0.009
(0.164) (0.180) (0.126) (0.144)

SPC 0.003 -0.011 -0.011 -0.125
(0.112) (0.083) (0.127) (0.105)

Intercept -1.610*** -1.708*** -1.626*** -1.711*** -1.613*** -1.732***
(0.184) (0.205) (0.212) (0.204) (0.201) (0.208)

R2 0.352 0.392 0.366 0.392 0.366 0.394
N 5810 5810 5810 5810 5805 5805

Panel B. EX Loss NBER
Original Encoded Original Encoded MLE

2PCs 10PCs 2PCs 10PCs 2PCs 10PCs
(1) (2) (3) (4) (5) (6)

PC1 0.864*** 0.869*** 1.653* 1.678 -0.161 -1.004
(0.142) (0.161) (0.896) (1.189) (0.614) (0.777)

PC2 -2.942*** -3.213*** -2.823*** -3.457** -0.991 -0.558
(0.783) (0.728) (1.044) (1.455) (0.986) (1.198)

FPC -0.127 -0.145 0.257* 0.429**
(0.183) (0.238) (0.141) (0.178)

SPC 0.370*** 0.186* 0.512*** 0.251**
(0.130) (0.103) (0.198) (0.124)

Intercept -1.610*** -1.708*** -1.626*** -1.698*** -1.566*** -1.655***
(0.184) (0.205) (0.175) (0.205) (0.169) (0.198)

R2 0.352 0.392 0.380 0.395 0.377 0.403
N 5810 5810 5810 5810 5805 5805
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