
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 20, 1-XXX (2004)

1

Short Paper___

Logic Rewiring for Delay and Power Minimization*

ANDREAS VENERIS

Department of Electrical and Computer Engineering
and Department of Computer Science

University of Toronto
Toronto, Ontario M5S 3G4, Canada
E-mail: veneris@eecg.toronto.edu

An application of the ATPG-based method by Veneris et al. [11] to multi-level

combinational logic circuit delay and power optimization is presented. A number of
theoretical results and various heuristics are described to allow for an efficient imple-
mentation of the algorithm. Experiments confirm the robustness of the approach.

Keywords: VLSI, logic optimization, low power, design performance, diagnosis

1. INTRODUCTION

Recent considerations in semiconductor portability and increasing clock cycle rates
require designs that consume little power but meet strict performance requirements. Due
to these facts, it becomes apparent that circuit optimization remains an important task in
the overall design cycle. Traditionally, logic optimization is carried in two steps. In the
first step, technology independent optimization is performed to produce an optimum de-
sign in terms of some general criteria such as gatecount or literal count. Symbolic-based
techniques [8] have been very successful for this step. In the second step, technology
dependent optimization is carried through an iterative sequence of successive design re-
wiring operations [1, 2, 4, 6, 7, 9, 10]. During each iteration of this procedure, a single
target wire is identified for removal because it violates some specification constraints
and some logic is added to eliminate the target wire. This process is repeated until the
required optimization goals are achieved.

In this work, we describe an application of the method by Veneris et al. [10] to
multi-level combinational circuit technology dependent optimization. Unlike most re-
wiring techniques [1, 2, 4, 6, 7, 9] that eliminate a target wire by adding redundant logic,
the method in [10] treats rewiring using a sequence of design error diagnosis and correc-
tion [11] steps. Under this perspective, the task of design rewiring is performed by intro-

Received November 1, 2002; revised September 16, 2003; accepted November 10, 2003.
Communicated by Liang-Gee Chen.
* Parts of this work are also presented in: A. Veneris, M. Amiri, and I. Ting, “Design Rewiring for Power

Minimization,” in IEEE International Symposium on Circuits and Systems, 2002.

ANDREAS VENERIS

2

ducing simple design errors that eliminate the target logic and correcting those errors in a
less crucial part of the design. An obvious advantage of this approach lies in its flexibil-
ity to handle a variety of logic transformations that other methods cannot handle in favor
of design optimization. Furthermore, we tailor the approach in [10] to delay optimization
and design for low-power for digital logic designs mapped to a technology library. We
also examine different trade-offs, present a number of theorems and illustrate heuristics
that allow for an efficient implementation. Experiments on benchmark circuits demon-
strate its effectiveness.

The remaining paper is organized as follows. The next section describes the delay
optimization and design for low-power algorithms. In this presentation, we assume the
reader is familiar with the work in [10, 11]. Experimental results are found in section 3
and section 4 concludes this work.

2. DESIGN OPTIMIZATION

The general flow of the optimization algorithm is the same for both optimization
procedures. First, we identify the target logic wT and introduce a design error by elimi-
nating wT. Next, the design rewiring method from [10] returns some equivalent valid
correction(s). If no valid correction(s) is found we select a new objective, otherwise, for
each equivalent correction, we compute the optimization gain, delete any new generated
redundancies and keep the logic transformation with the highest improvement, if any.
Since the algorithm operates on a (structural) gate level representation of the design,
technology libraries are available to compute optimization trade-offs and optimization
gains.

To eliminate the target logic (“design error”) we either (i) remove wT or (ii) we re-
place wT with some other existing wire wR that does not cause a loop in the combinational
circuitry. It should be noted, type (i) transformations have been performed by other logic
rewiring methods [1, 2, 4, 7, 9] but type (ii) modifications are novel to this method. The
particular implementations for delay and power optimization differ in the criteria and
heuristics employed during the selection of the target wire wT and the replacement wire
wR, as described later in this section.

In the following presentation, we assume that a pre-processing step is performed by
the algorithm where it simulates 2,000-5,000 random vectors on the original circuit and
keeps an indexed bit-list on every line l of the circuit. This bit-list holds the results of the
simulation for each vector at the line. We say that two lines have similar logic values if
most of their respective bit-list entries are the same. For example, Fig. 1 (a) shows the
bit-lists of two lines, g2 → g7 and g6 → g7 when 12 input vectors are simulated. These
two lines have similar logic values since their bit-lists differ in only two positions. In
implementation, the degree of line similarity is a user-specified parameter usually de-
fined so that 70-80% of the bit positions are identical.

Subsections 2.1 and 2.2 that follow contain heuristics to select wT and wR in delay
and power minimization, respectively. Subsection 2.3 contains theory that allows the
correction process to be performed efficiently.

LOGIC OPTIMIZATION USING DESIGN RESTRUCTURING

3

2.1 Delay Optimization

The determining factor for the delay of a circuit is its critical path(s). In order to
shorten the critical path, the number of levels of logic needs to be reduced. Therefore,
during every iteration of the algorithm, wT is a wire on some critical path of the circuit.
Throughout the execution of the algorithm we also use the heuristics presented in the
following paragraphs.

Given a set of lines on a critical path, we first target the input wires of a high fan-in
gate(s). The intuition is that the more inputs a gate has, the less reliant this gate is on any
particular input and it will be easier to find equivalent corrections. To reduce the levels of
logic, we also attempt to replace wT with a replacement wire wR that has a lower logic
level and then correct the design in some less critical region. For example, consider the
circuit in Fig. 1 (a). If we replace wire wT = g6 → g7, shown in boldface, which is on the
critical path, with wire wR = g2 → g7 (dotted line) and we are also able to fix this error,
the critical path is reduced from three levels of logic to two levels and so does the delay.

(a) (b)

Fig. 1. (a) Delay optimization; (b) Power optimization.

Additionally, wR should have similar logic values to wT. The intuition is that if we

replace wT with a wire with similar logic values, we alter the functionality of the circuit
less and the rewiring algorithm will be able to return with a larger number of equivalent
corrections. To increase the number of wires with bit-lists similar to wT we also consider
candidates that have very different bit-lists and then we introduce an inverter.

2.2 Power Optimization

One characteristic of the power consumption of a circuit is the transition density [5]
of the gates it contains. Reducing the transition density of the circuit gates results in a
lower power consumption. Therefore, we give priority to target logic wT that fan-outs
gates with a high transition density value. In addition, power gain may result because of
the removal of the dangling circuitry that is dominated by the gate that drives wT [7]. For
example, if we eliminate (the fan-out of) gate g6 in Fig. 1 (b) we can also eliminate gates
g3 and g4.

ANDREAS VENERIS

4

Similar to delay optimization, the first heuristic suggests that wR has similar logic
values to wT. Among all similar wires, we give priority to a wR with a high probability of
zeros (ones) if it will be connected to the input of an AND/NAND (OR/NOR) gate. A wire
with a high probability of zeros (ones) will dominate the logic value at the output of an
AND/NAND (OR/NOR) gate since this is the controlling value of the gate and it will result in
a lower transition density. A metric of the probability of zeros (ones) of a line l can be
easily calculated with the use of the bit-list of l.

We also give higher priority to stem candidates for the target logic wT. One approach
is to attempt to find an alternative wire for the stem itself. Another approach is to attack
each branch of the stem separately and find (possibly different) alternate wires wR for
each one of them, as shown in Fig. 1 (b) (dotted lines). We give preference to the latter
approach as it guarantees that the set of alternative wires returned is always a superset of
those returned by the former. Finally, when we fail to find a valid correction(s) for wT, we
skip wT during the next few iterations of the algorithm since the same target wire is likely
not to perform well in circuits that are structurally similar.

2.3 Correction

During the correction stage, the algorithm attempts four types of logic transforma-
tions: (i) gate replacement (ii) deletion of an existing fan-in of a gate G, (iii) addition of a
new fan-in to a gate G, and (iv) replace an existing fan-in of a gate G with some other
wire.

The correction algorithm that we use extends the results presented in [11]. To im-
plement this algorithm, following error introduction we maintain two bit-lists at each line
l in the circuit, the lcorr and lerr list. These bit-lists are generated by “splitting” the original
bit-list on l, described at the beginning of this section. The i-th bit of lcorr (lerr) contains
the logic value of l during simulation of the i-th vector with correct (failing) primary out-
put responses that also produces a sensitized path from l to some primary output. These
lists are re-calculated via bitwise parallel logic/fault simulation at each iteration of the
optimization algorithm for different target logic.

To perform type (i) and (ii) corrections, for every candidate error line l that qualified
diagnosis, the algorithm applies the logic transformation, one at a time, on the gate that
drives l. Then it performs one local simulation step using the bit-lists at the fan-in of the
gate and keeps the correction only if it gives complemented lerr values but maintains all
lcorr values [11].

The procedure above can be also applied to type (iii) and (iv) logic transformations
[11]. Considering that the number of candidate new fan-ins may be large, we use the fol-
lowing theorem to check whether a transformation has the potential to correct the design.

Theorem 1 Let suspicious AND/NOR (OR/NAND) gate G that drives line l. G can be cor-
rected by a type (iii) transformation if every bit entry in lerr is a logic 1 (0).

Proof: Without loss of generality assume that G is an AND gate and let 0 be the value of
the i-th entry of lerr for some i. By definition of lerr it means that the i-th failing input vec-
tor produces a logic 0 on l and there is a sensitized path for this vector from l to some
primary output. However, this indicates that some existing fan-in(s) of G already has the

LOGIC OPTIMIZATION USING DESIGN RESTRUCTURING

5

controlling value 0 when this vector is simulated and no single additional fan-in to G can
complement the value of l and correct the design.

If gate G qualifies Theorem 1 the algorithm searches for a new fan-in that can be
added and correct the design. Theorem 2 provides a necessary and sufficient condition
for a candidate wire to qualify as an additional fan-in. We omit the proof of this theorem
as it is along the same lines with the one for Theorem 1.

Theorem 2 Let suspicious gate G with controlling value c that drives line l. A new
fan-in l' to G corrects the design if and only if it has:

• value c in all l'err bit entries, and
• value c in every l'corr entry where its respective lcorr entry is 1 (0) if G is an AND/NOR

(NAND/OR) gate

To increase the number of candidate fan-in wires we also consider adding a wire
which is the fan-out of a new gate with two fan-ins from existing wires in the circuit. We
calculate these new functions in a brute-force manner by setting a user defined limit on
the maximum number of the new two input gates we consider. Finally, we treat type (iv)
logic transformations as a two step process. In the first step, we remove the suspicious
fan-in l' from G and update lists lerr and lcorr at the output of G. Next, we treat it as a type
(iii) logic transformation.

3. EXPERIMENTS

We implemented the method and ran it on a Sun Ultra 10 workstation on ISCAS ’85
combinational circuits. Results on delay and power minimization are shown in Tables 1
and 2, respectively, where run-times are in minutes, delay figures are in nanoseconds and
power is measured in microwatts. The details of the ATPG and DEDC algorithms we use
are found in [3] and [11]. We use SIS [8] to detect/delete newly generated redundancies
between successive optimization steps.

For delay optimization, we first optimize the circuits using Design Compiler(TM) by
Synopsys and then run the proposed method. We use a high mapping effort and a virtual
clock with a small clock period to enforce Synopsys to try its best in terms of delay op-
timization. The results can be found in Table 1. Column 1 shows the circuit name and
column 2 has the number of transformations the circuit undergoes to reach the final op-
timized version. Columns 3 and 4 contain the original delay (after optimization by De-
sign Compiler(TM)) and final delay (after applying our method), respectively. The per-
centage of delay improvement can be found in column 5. It is seen, in most circuits, de-
lay improvement ranges from about 2 to 5 percent over Synopsys. The last column con-
tains the run-time.

In power minimization, we initially optimize the circuits for area with SIS [8]
(scripted.rugged) and we use MED [5] to obtain the transition density of each gate.
Column 1 of Table 2 contains the circuit name and column 2 has the number of transfor-
mations performed on each circuit. Columns 3, 4 and 5 contain the original power, the

ANDREAS VENERIS

6

Table 1. Results on delay minimization.

ckt
name

of
modif.

original
delay (ns)

final
delay (ns)

%
decrease

time
(min)

C432 3 13.22 12.95 2.04% 3.2
C499 0 11.06 11.06 0% 4.5
C880 5 11.78 9.13 22.6% 7.3

C1355 0 12.42 12.42 0% 5.3
C1908 7 14.69 13.96 4.97% 6.9
C2670 4 10.82 10.69 1.20% 8.1
C3540 4 22.85 21.64 5.30% 12.8
C5315 5 18.38 17.66 3.92% 10.0
C7522 3 21.64 20.89 3.47% 14.3

Table 2. Results on power minimization.

ckt
name

of
corr.

original
pwr (uW)

final
pwr (uW)

pwr
decr.

area
decr.

hit
ratio

time
(min)

C432 21 0.02529 0.01979 21.01% 11.9% 34% 7.6

C499 37 0.08947 0.07574 15.0% 5.9% 19.5% 12.4

C880 39 0.05595 0.04708 15.6% 4.1% 17.2% 11.0

C1355 55 0.08479 0.07908 7.3% 3.0% 43.7% 14.1

C1908 68 0.08565 0.06316 26.1% 9.7% 29.9% 16.2

C2670 96 0.14712 0.11183 24.0% 18.6% 56% 19.7

C3540 6 0.23360 0.19618 15.9% 7.8% 41.7% 20.1

C5315 33 0.39137 0.33473 14.1% 5.3% 36% 23.9

C7522 7 0.70403 0.58719 16.3% 4.9% 30.6% 29.4

final power and the percentage of improvement, respectively. It is seen, power is reduced
by 15.0% on the average. The next column contains the change incurred in the area due
to the power optimization transformations. As expected, the area of the circuit is posi-
tively affected and decreased by 4.9% on the average. The delay of the designs does not
deteriorate, as we skip transformations that reduce the power but increase the delay. The
success ratio, that is, the number of times the approach found an equivalent correction(s)
during optimization is contained in column 7. It should be noted that although the suc-
cess ratio for circuit C499 is low this is also the case with existing design rewiring tech-
niques [1]. The final column contains the CPU time.

To demonstrate the overall effectiveness of the proposed process, we apply a
two-stage optimization procedure to three circuits originally optimized for area with SIS.
In the first stage, we use our methodology to perform power optimization with no delay
consideration. During the second stage, the circuit obtained is further optimized for delay.
To measure the overall performance, we compute the power/delay product of the final
circuit obtained by multiplying the power consumption and delay. Naturally, the goal is

LOGIC OPTIMIZATION USING DESIGN RESTRUCTURING

7

to reduce this product. The result of this two-stage optimization process is plotted in Fig.
2 where the power delay product is normalized by its original value. It can be seen that
the algorithm improves performance noticeably.

Fig. 2. Delay/Power Product Improvement.

4. CONCLUSIONS

We presented an application of the method in [10] to delay and power minimization.
We also described the theory and heuristics that allow for an efficient implementation.
Experiments show that the optimization saving is significant in most benchmark circuits.

ACKNOWLEDGMENTS

The author thanks Dr. Magdy S. Abadir, Mandana Amiri, Ivor Ting and Brandon J.
Liu for technical contributions and insights during early stages of this work.

REFERENCES

1. C. W. Chang and M. Marek-Sadowska, “Single-pass redundancy addition and re-
moval,” in Proceedings of IEEE International Conference on Computer Aided De-
sign, 2001, pp. 606-609.

2. Y. N. Jiang, A. Krstic, K. T. Cheng, and M. Marek-Sadowska, “Post-layout logic re-
structuring for performance optimization,” in Proceedings of IEEE Design Automa-
tion Conference, 1977, pp. 662-665.

3. W. Kunz and D. K. Pradhan, “Recursive learning: a new implication technique for
efficient solutions to CAD problems − test, verification, and optimization,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 13,

ANDREAS VENERIS

8

1994, pp. 1143-1158.
4. W. Kunz, D. Stoffel, and P. R. Menon, “Logic optimization and equivalence check-

ing by implication analysis,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, Vol. 16, 1997, pp. 266-281.

5. F. Najm and M. Xakellis, “Statistical estimation of switching activity in digital cir-
cuits,” in Proceedings of IEEE Design Automation Conference, 1994, pp. 728-733.

6. D. K. Pradhan, M. Chatterjee, M. V. Swarna, and W. Kunz, “Gate-level synthesis for
low-power using new transformations,” in Proceedings of IEEE International Sym-
posium on Low Power Electronic and Design, 1996, pp. 297-300.

7. B. Rohfleisch, A. Kolbl, and B. Wurth, “Reducing power dissipation after technol-
ogy mapping by structural transformations,” in Proceedings of IEEE Design Auto-
mation Conference, 1996, pp. 789-794.

8. E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and A. Sangio-
vanni-Vincentelli, “Sequential circuit design using synthesis and optimization,” in
Proceedings of IEEE International Conference on Computer Design, 1992, pp.
328-333.

9. G. Stenz, B. M. Riess, B. Rohfleisch, and F. M. Johannes, “Performance optimiza-
tion by interacting netlist transformations and placement,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, 2000, pp.
350-358.

10. A. Veneris and M. S. Abadir, “Design rewiring using ATPG,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 21, 2002, pp.
1469-1479.

11. A. Veneris and I. N. Hajj, “Design error diagnosis and correction via test vector
simulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 18, 1999, pp. 1803-1816.

Andreas Veneris was born in Athens, Greece. He received the Diploma in Com-

puter Engineering and Informatics from the University of Patras in 1991, the M.S. degree
in Computer Science from the University of Southern California, Los Angeles in 1992
and the Ph.D. degree in Computer Science from the University of Illinois at Ur-
bana-Champaign in 1998.

He is currently an Associate Professor at the University of Toronto, Department of
Electrical and Computer Engineering cross-appointed with the Department of Computer
Science. His research interests include algorithms and CAD for synthesis, diagnosis, and
verification of digital circuits. He is coauthor to one book and co-recipient of a best paper
award in ASP-DAC’01. Prof. Veneris is member of the IEEE, ACM, AAAS, Technical
Chamber of Greece and the Planetary Society.

