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1. INTRODUCTION 
 

Recent considerations in semiconductor portability and increasing clock cycle rates 
require designs that consume little power but meet strict performance requirements. Due 
to these facts, it becomes apparent that circuit optimization remains an important task in 
the overall design cycle. Traditionally, logic optimization is carried in two steps. In the 
first step, technology independent optimization is performed to produce an optimum de-
sign in terms of some general criteria such as gatecount or literal count. Symbolic-based 
techniques [8] have been very successful for this step. In the second step, technology 
dependent optimization is carried through an iterative sequence of successive design re-
wiring operations [1, 2, 4, 6, 7, 9, 10]. During each iteration of this procedure, a single 
target wire is identified for removal because it violates some specification constraints 
and some logic is added to eliminate the target wire. This process is repeated until the 
required optimization goals are achieved.  

In this work, we describe an application of the method by Veneris et al. [10] to 
multi-level combinational circuit technology dependent optimization. Unlike most re-
wiring techniques [1, 2, 4, 6, 7, 9] that eliminate a target wire by adding redundant logic, 
the method in [10] treats rewiring using a sequence of design error diagnosis and correc-
tion [11] steps. Under this perspective, the task of design rewiring is performed by intro-
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ducing simple design errors that eliminate the target logic and correcting those errors in a 
less crucial part of the design. An obvious advantage of this approach lies in its flexibil-
ity to handle a variety of logic transformations that other methods cannot handle in favor 
of design optimization. Furthermore, we tailor the approach in [10] to delay optimization 
and design for low-power for digital logic designs mapped to a technology library. We 
also examine different trade-offs, present a number of theorems and illustrate heuristics 
that allow for an efficient implementation. Experiments on benchmark circuits demon-
strate its effectiveness.  

The remaining paper is organized as follows. The next section describes the delay 
optimization and design for low-power algorithms. In this presentation, we assume the 
reader is familiar with the work in [10, 11]. Experimental results are found in section 3 
and section 4 concludes this work. 

2. DESIGN OPTIMIZATION 

The general flow of the optimization algorithm is the same for both optimization 
procedures. First, we identify the target logic wT and introduce a design error by elimi-
nating wT. Next, the design rewiring method from [10] returns some equivalent valid 
correction(s). If no valid correction(s) is found we select a new objective, otherwise, for 
each equivalent correction, we compute the optimization gain, delete any new generated 
redundancies and keep the logic transformation with the highest improvement, if any. 
Since the algorithm operates on a (structural) gate level representation of the design, 
technology libraries are available to compute optimization trade-offs and optimization 
gains. 

To eliminate the target logic (“design error”) we either (i) remove wT or (ii) we re-
place wT with some other existing wire wR that does not cause a loop in the combinational 
circuitry. It should be noted, type (i) transformations have been performed by other logic 
rewiring methods [1, 2, 4, 7, 9] but type (ii) modifications are novel to this method. The 
particular implementations for delay and power optimization differ in the criteria and 
heuristics employed during the selection of the target wire wT and the replacement wire 
wR, as described later in this section. 

In the following presentation, we assume that a pre-processing step is performed by 
the algorithm where it simulates 2,000-5,000 random vectors on the original circuit and 
keeps an indexed bit-list on every line l of the circuit. This bit-list holds the results of the 
simulation for each vector at the line. We say that two lines have similar logic values if 
most of their respective bit-list entries are the same. For example, Fig. 1 (a) shows the 
bit-lists of two lines, g2 → g7 and g6 → g7 when 12 input vectors are simulated. These 
two lines have similar logic values since their bit-lists differ in only two positions. In 
implementation, the degree of line similarity is a user-specified parameter usually de-
fined so that 70-80% of the bit positions are identical. 

Subsections 2.1 and 2.2 that follow contain heuristics to select wT and wR in delay 
and power minimization, respectively. Subsection 2.3 contains theory that allows the 
correction process to be performed efficiently. 
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2.1 Delay Optimization 

The determining factor for the delay of a circuit is its critical path(s). In order to 
shorten the critical path, the number of levels of logic needs to be reduced. Therefore, 
during every iteration of the algorithm, wT is a wire on some critical path of the circuit. 
Throughout the execution of the algorithm we also use the heuristics presented in the 
following paragraphs. 

Given a set of lines on a critical path, we first target the input wires of a high fan-in 
gate(s). The intuition is that the more inputs a gate has, the less reliant this gate is on any 
particular input and it will be easier to find equivalent corrections. To reduce the levels of 
logic, we also attempt to replace wT with a replacement wire wR that has a lower logic 
level and then correct the design in some less critical region. For example, consider the 
circuit in Fig. 1 (a). If we replace wire wT = g6 → g7, shown in boldface, which is on the 
critical path, with wire wR = g2 → g7 (dotted line) and we are also able to fix this error, 
the critical path is reduced from three levels of logic to two levels and so does the delay.  

 
(a)                                     (b) 

Fig. 1. (a) Delay optimization; (b) Power optimization. 

 
Additionally, wR should have similar logic values to wT. The intuition is that if we 

replace wT with a wire with similar logic values, we alter the functionality of the circuit 
less and the rewiring algorithm will be able to return with a larger number of equivalent 
corrections. To increase the number of wires with bit-lists similar to wT we also consider 
candidates that have very different bit-lists and then we introduce an inverter. 

2.2 Power Optimization 

One characteristic of the power consumption of a circuit is the transition density [5] 
of the gates it contains. Reducing the transition density of the circuit gates results in a 
lower power consumption. Therefore, we give priority to target logic wT that fan-outs 
gates with a high transition density value. In addition, power gain may result because of 
the removal of the dangling circuitry that is dominated by the gate that drives wT [7]. For 
example, if we eliminate (the fan-out of) gate g6 in Fig. 1 (b) we can also eliminate gates 
g3 and g4. 
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Similar to delay optimization, the first heuristic suggests that wR has similar logic 
values to wT. Among all similar wires, we give priority to a wR with a high probability of 
zeros (ones) if it will be connected to the input of an AND/NAND (OR/NOR) gate. A wire 
with a high probability of zeros (ones) will dominate the logic value at the output of an 
AND/NAND (OR/NOR) gate since this is the controlling value of the gate and it will result in 
a lower transition density. A metric of the probability of zeros (ones) of a line l can be 
easily calculated with the use of the bit-list of l. 

We also give higher priority to stem candidates for the target logic wT. One approach 
is to attempt to find an alternative wire for the stem itself. Another approach is to attack 
each branch of the stem separately and find (possibly different) alternate wires wR for 
each one of them, as shown in Fig. 1 (b) (dotted lines). We give preference to the latter 
approach as it guarantees that the set of alternative wires returned is always a superset of 
those returned by the former. Finally, when we fail to find a valid correction(s) for wT, we 
skip wT during the next few iterations of the algorithm since the same target wire is likely 
not to perform well in circuits that are structurally similar. 

2.3 Correction 

During the correction stage, the algorithm attempts four types of logic transforma-
tions: (i) gate replacement (ii) deletion of an existing fan-in of a gate G, (iii) addition of a 
new fan-in to a gate G, and (iv) replace an existing fan-in of a gate G with some other 
wire. 

The correction algorithm that we use extends the results presented in [11]. To im-
plement this algorithm, following error introduction we maintain two bit-lists at each line 
l in the circuit, the lcorr and lerr list. These bit-lists are generated by “splitting” the original 
bit-list on l, described at the beginning of this section. The i-th bit of lcorr (lerr) contains 
the logic value of l during simulation of the i-th vector with correct (failing) primary out-
put responses that also produces a sensitized path from l to some primary output. These 
lists are re-calculated via bitwise parallel logic/fault simulation at each iteration of the 
optimization algorithm for different target logic.   

To perform type (i) and (ii) corrections, for every candidate error line l that qualified 
diagnosis, the algorithm applies the logic transformation, one at a time, on the gate that 
drives l. Then it performs one local simulation step using the bit-lists at the fan-in of the 
gate and keeps the correction only if it gives complemented lerr values but maintains all 
lcorr values [11]. 

The procedure above can be also applied to type (iii) and (iv) logic transformations 
[11]. Considering that the number of candidate new fan-ins may be large, we use the fol-
lowing theorem to check whether a transformation has the potential to correct the design. 
 
Theorem 1  Let suspicious AND/NOR (OR/NAND) gate G that drives line l. G can be cor-
rected by a type (iii) transformation if every bit entry in lerr is a logic 1 (0). 
 
Proof: Without loss of generality assume that G is an AND gate and let 0 be the value of 
the i-th entry of lerr for some i. By definition of lerr it means that the i-th failing input vec-
tor produces a logic 0 on l and there is a sensitized path for this vector from l to some 
primary output. However, this indicates that some existing fan-in(s) of G already has the 
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controlling value 0 when this vector is simulated and no single additional fan-in to G can 
complement the value of l and correct the design. 

If gate G qualifies Theorem 1 the algorithm searches for a new fan-in that can be 
added and correct the design. Theorem 2 provides a necessary and sufficient condition 
for a candidate wire to qualify as an additional fan-in. We omit the proof of this theorem 
as it is along the same lines with the one for Theorem 1. 
 
Theorem 2  Let suspicious gate G with controlling value c that drives line l. A new 
fan-in l' to G corrects the design if and only if it has:  
 
• value c in all l'err bit entries, and  
• value c  in every l'corr entry where its respective lcorr entry is 1 (0) if G is an AND/NOR 

(NAND/OR) gate  
 

To increase the number of candidate fan-in wires we also consider adding a wire 
which is the fan-out of a new gate with two fan-ins from existing wires in the circuit. We 
calculate these new functions in a brute-force manner by setting a user defined limit on 
the maximum number of the new two input gates we consider. Finally, we treat type (iv) 
logic transformations as a two step process. In the first step, we remove the suspicious 
fan-in l' from G and update lists lerr and lcorr at the output of G. Next, we treat it as a type 
(iii) logic transformation. 

3. EXPERIMENTS 

We implemented the method and ran it on a Sun Ultra 10 workstation on ISCAS ’85 
combinational circuits. Results on delay and power minimization are shown in Tables 1 
and 2, respectively, where run-times are in minutes, delay figures are in nanoseconds and 
power is measured in microwatts. The details of the ATPG and DEDC algorithms we use 
are found in [3] and [11]. We use SIS [8] to detect/delete newly generated redundancies 
between successive optimization steps. 

For delay optimization, we first optimize the circuits using Design Compiler(TM) by 
Synopsys and then run the proposed method. We use a high mapping effort and a virtual 
clock with a small clock period to enforce Synopsys to try its best in terms of delay op-
timization. The results can be found in Table 1. Column 1 shows the circuit name and 
column 2 has the number of transformations the circuit undergoes to reach the final op-
timized version. Columns 3 and 4 contain the original delay (after optimization by De-
sign Compiler(TM)) and final delay (after applying our method), respectively. The per-
centage of delay improvement can be found in column 5. It is seen, in most circuits, de-
lay improvement ranges from about 2 to 5 percent over Synopsys. The last column con-
tains the run-time. 

In power minimization, we initially optimize the circuits for area with SIS [8] 
(scripted.rugged) and we use MED [5] to obtain the transition density of each gate. 
Column 1 of Table 2 contains the circuit name and column 2 has the number of transfor-
mations performed on each circuit. Columns 3, 4 and 5 contain the original power, the  
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Table 1. Results on delay minimization. 

ckt 
name 

# of 
modif. 

original 
delay (ns) 

final 
delay (ns) 

% 
decrease 

time 
(min) 

C432 3 13.22 12.95 2.04% 3.2 
C499 0 11.06 11.06 0% 4.5 
C880 5 11.78 9.13 22.6% 7.3 

C1355 0 12.42 12.42 0% 5.3 
C1908 7 14.69 13.96 4.97% 6.9 
C2670 4 10.82 10.69 1.20% 8.1 
C3540 4 22.85 21.64 5.30% 12.8 
C5315 5 18.38 17.66 3.92% 10.0 
C7522 3 21.64 20.89 3.47% 14.3 

Table 2. Results on power minimization. 

ckt 
name 

# of 
corr. 

original 
pwr (uW) 

final 
pwr (uW) 

pwr 
decr. 

area 
decr. 

hit 
ratio 

time 
(min) 

C432 21 0.02529 0.01979 21.01% 11.9% 34% 7.6 

C499 37 0.08947 0.07574 15.0% 5.9% 19.5% 12.4 

C880 39 0.05595 0.04708 15.6% 4.1% 17.2% 11.0 

C1355 55 0.08479 0.07908 7.3% 3.0% 43.7% 14.1 

C1908 68 0.08565 0.06316 26.1% 9.7% 29.9% 16.2 

C2670 96 0.14712 0.11183 24.0% 18.6% 56% 19.7 

C3540 6 0.23360 0.19618 15.9% 7.8% 41.7% 20.1 

C5315 33 0.39137 0.33473 14.1% 5.3% 36% 23.9 

C7522 7 0.70403 0.58719 16.3% 4.9% 30.6% 29.4 

 
final power and the percentage of improvement, respectively. It is seen, power is reduced 
by 15.0% on the average. The next column contains the change incurred in the area due 
to the power optimization transformations. As expected, the area of the circuit is posi-
tively affected and decreased by 4.9% on the average. The delay of the designs does not 
deteriorate, as we skip transformations that reduce the power but increase the delay. The 
success ratio, that is, the number of times the approach found an equivalent correction(s) 
during optimization is contained in column 7. It should be noted that although the suc-
cess ratio for circuit C499 is low this is also the case with existing design rewiring tech-
niques [1]. The final column contains the CPU time. 

To demonstrate the overall effectiveness of the proposed process, we apply a 
two-stage optimization procedure to three circuits originally optimized for area with SIS. 
In the first stage, we use our methodology to perform power optimization with no delay 
consideration. During the second stage, the circuit obtained is further optimized for delay. 
To measure the overall performance, we compute the power/delay product of the final 
circuit obtained by multiplying the power consumption and delay. Naturally, the goal is 
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to reduce this product. The result of this two-stage optimization process is plotted in Fig. 
2 where the power delay product is normalized by its original value. It can be seen that 
the algorithm improves performance noticeably.  

 
Fig. 2. Delay/Power Product Improvement. 

4. CONCLUSIONS 

We presented an application of the method in [10] to delay and power minimization. 
We also described the theory and heuristics that allow for an efficient implementation. 
Experiments show that the optimization saving is significant in most benchmark circuits. 
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