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This paper presents SigVM, the first blockchain virtual machine that extends EVM to support an event-driven
execution model, enabling developers to build truly decentralized smart contracts. Contracts in SigVM can emit
signal events, on which other contracts can listen. Once an event is triggered, corresponding handler functions
are automatically executed as signal transactions. We build an end-to-end blockchain platform SigChain and a
contract language compiler SigSolid to realize the potential of SigVM. Experimental results show that our
benchmark applications can be reimplemented with SigVM in a truly decentralized way, eliminating the
dependency on centralized and unreliable mechanisms like off-chain relay servers. The development effort of
reimplementing these contracts with SigVM is small, i.e., we modified on average 3.17% of the contract code.
The runtime and the gas overhead of SigVM on these contracts is negligible.
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1 INTRODUCTION

Blockchain has become a revolutionary technology that powers decentralized ledgers. Ethereum, the
second largest blockchain, introduces smart contracts, which further fuel blockchain innovations on
real-world applications in various domains, including financial systems, supply chains, and health
cares. A smart contract is a program operating on the blockchain ledger to encode customized
transaction rules. Once deployed, the contract and the encoded rules are then faithfully executed
and enforced by all participants of the blockchain platform, eliminating any potential counter-party
risks in the future.

A Smart contract in Ethereum can generate events. An event is a record of data to log state
changes or contract activities. To implement events, the Ethereum Virtual Machine (EVM) [Buterin
2014] puts all generated event records into a dedicated region of the blockchain state called event
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logs. This region is write-only for smart contracts but it can be queried by any external user who runs
an Ethereum full node. The original design of the event mechanism in Ethereum is to facilitate the
integration of on-chain components and off-chain components in a blockchain-powered application.
For example, the transfer function of the popular ERC-20 contract for fungible tokens typically
emits a transfer event besides updating the token ledger state in the contract [Fabian Vogelsteller
2015]. It expects that a digital wallet application will run an Ethereum full node as its back-end,
monitor these events, and update its front-end GUI accordingly to show the token balance to users.

As smart contracts become more and more complicated and inter-dependent, the existing event
logging mechanism in Ethereum becomes increasingly inadequate. In many scenarios, the correct-
ness of one smart contract is dependent on its timely responses to critical events from other smart
contracts. For example, in Ethereum, there are oracle contracts [ChainLink 2020; provable.xyz
2019], which feed off-chain data, such as the digital asset prices, to the blockchain; there are also
decentralized finance (DeFi) smart contracts [Foundation 2019; Leshner and Hayes 2019; Oved and
Mosites 2017], for which the most recent price of a digital asset is critical, e.g., collateral liquidation
is required when the asset price drops below a certain threshold. The DeFi contracts therefore
have to timely respond to asset price change events from the oracle contracts. Unfortunately, it is
impossible to implement such an event-driven execution model in Ethereum. This is because, 1)
event logs are write-only for smart contracts and a contract cannot respond to emitted events from
other contracts automatically; 2) a smart contract execution can only be triggered (in)directly via
function calls by external user transactions.

To this end, many blockchain applications circumvent this problem via off-chain relay servers [De-
noeud 2020]. A server constantly monitors the blockchain ledger. When a critical event from a
source contract (e.g., an oracle contract) occurs, the server will send a poke transaction to a target
contract (e.g., a DeFi contract) to drive the contract to respond to the event. However, this adhoc
solution has two undesirable consequences. First, it creates a central point of failure that defeats the
purpose of encoding transaction rules as smart contracts on blockchain platforms. If the off-chain
relay server of the target contract fails, the contract will not properly respond to critical events.
Secondly, the blockchain platform may not process the poke transaction on time due to insufficient
transaction fees or network congestion. The target contract may also undesirably interact with
other users before it incorporates the critical updates carried by the poke transaction.

In this paper, we present a novel end-to-end blockchain framework that extends Ethereum to
support an event-driven execution model. The core of our framework is SigVM, a novel virtual
machine that extends EVM with new opcodes to introduce signal events, a special kind of events
that enables a new way for multiple contracts to interact with each other. To realize SigVM, we
develop SigSolid, a modified version of Solidity programming language that can utilize new opcodes
in SigVM, and SigChain, a prototype blockchain that implements SigV M.

In SigVM, contracts can emit signal events, on which other contracts can listen. When a contract
listens to a signal event, it binds a function as its handler. When the event is triggered, the handler
function will be automatically executed. This new signal event mechanism enables truly decen-
tralized smart contracts to timely respond to critical events, eliminating the reliance on off-chain
centralized relay servers. Thus, SigVM introduces a native support of event-driven execution to
replace the ad-hoc event-driven executions currently used by smart contracts that rely on off-chain
relay servers. Indeed, SigVM does not remove all off-chain dependencies for smart contracts that
require external data like asset prices.

One challenge SigVM faces is how to integrate the execution of handler functions with the
existing smart contract framework. In SigVM, a transaction from a user to a smart contract can
emit signal events to trigger multiple handler functions. If we naively implement the execution of
these functions synchronously as function calls, the cascading execution process may cause the
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transaction to exceed the block gas limit. Furthermore, a user who triggers a signal event will have
to pay the gas cost for the execution of all of the associated handler functions. This is undesirable,
because the user triggering the event is often the service provider while the contracts containing
the handler functions are service users. For example, an oracle maintainer sends a transaction to
trigger an event to update the price of a digital asset in an oracle contract and this event is listened
by many other contracts to react upon the price update. It is counter-intuitive to ask the oracle
maintainer to pay for the execution cost of the contracts using the oracle service.

To address this challenge, SigVM executes handler functions asynchronously as signal transac-
tions, a special kind of transactions generated by the SigVM execution engine when a signal event
is emitted. These special transactions will be packed along with regular transactions in blocks.
This asynchronous execution mechanism enables SigVM to circumvent the block gas limit issue.
Because SigVM executes signal transactions asynchronously, miners can pack them in separate
blocks. This mechanism also enables SigVM to charge the transaction fee of each signal transaction
differently to introduce proper incentives. A smart contract that binds a handler function pays
the transaction fee of the corresponding signal transaction in SigVM. The transaction fee will be
slightly higher than the average of normal transactions in the same block!, which incentivizes
miners to prioritize their execution.

Another challenge SigVM faces is the possibility that a smart contract interacts with other users
undesirably before it can integrate critical state updates in an asynchronous signal transactions.
Note that the centralized off-chain relay server solution faces the same challenge. The typical
solution of paying high transaction fee does not eliminate this risk, because powerful miners can
selectively pack interfering transactions ahead of the signal/poking transactions.

SigVM addresses this challenge with a novel contract event lock mechanism. If a contract has
any pending signal transactions, SigVM allows to lock the contract. Any normal transactions
interacting with a locked contract become no-ops. The miner who packs the transaction will receive
no transaction fees and the transaction will be recycled back to pending transaction pools. It may be
packed again in the future when the pending signal transactions are processed and the contract is
unlocked. This mechanism effectively stops any interfering transactions from exploiting a contract
in the middle of signal event handling.

We evaluate SigVM by reimplementing 23 smart contracts from 13 popular decentralized appli-
cations that are critical to the economic ecosystem of Ethereum. Our results show that the signal
event mechanism in SigVM efficiently replaces off-chain relay servers and significantly reduces the
applications’ exposure to interfering transactions. We show that the performance overhead incurred
by SigChain over Ethereum blockchain is negligible. Our results show that the SigSolid language
powered by SigVM is practical to use. The development effort of migrating smart contracts to SigVM
is small, i.e., we modified on average 3.17% of contract code. Using the transactions history for 5
smart contracts, we also show that SigVM gas incentive mechanism is practical. For the majority
of the applications, the number of gas units consumed by a signal transaction is smaller than the
one consumed by the corresponding poke transaction. This is because of the code simplifications
introduced by using SigVM signal events instead of adhoc methods based on off-chain relay servers.

1.1 Contribution
In summary, this paper makes the following contributions:

e SigVM: We present the first blockchain virtual machine that extends EVM with an event-
driven execution model to enable truly decentralized smart contracts (§4-5). It enables an
easy integration into blockchains that work with EVM-based execution environment.

The average value is computed by miners during transactions packing.
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e Signal transaction and contract event locking: We propose a novel asynchronous signal
transaction design with a formal semantics to address the series of challenges of integrating
SigVM with a blockchain platform (§4-5). We also propose a novel contract event locking
mechanism to prevent interference against signal transactions (§4-5).

e Implementation: We develop an end-to-end prototype blockchain framework powered by
SigVM (§5). It includes SigSolid, a modified version of Solidity programming language that
utilizes the new opcodes in SigVM, and SigChain, a prototype blockchain for SigVM to enable
safe, efficient and easy to use event-driven programming model for smart contracts.

e Experimental evaluation: We present an evaluation using 23 smart contracts from 13
popular distributed applications (§6). Our results show that SigVM efficiently eliminates the
reliance on relay servers. The development effort of reimplementing existing applications
on Ethereum for SigVM is small, i.e., on average 3.17% of the contract code is modified.
Compared with Ethereum, SigVM transaction execution runtime overhead is negligible. The
results proves that SigVM is practical and enables the development of truly decentralized
and robust contracts.

Aside from the aforementioned technical sections, we present a motivating example of devel-
oping smart contracts in SigVM in Section 2, recall some definitions and terminologies related
to blockchain and Ethereum in Section 3, and discuss related work, limitations of SigVM, and
conclusions in Sections 7, 8, and 9.

2 EXAMPLE

Listing 1 presents the simplified code snippet of parts of MakerDAO to illustrate building au-
tonomous contracts with SigVM. Lines preceded with "-" and "+" are changes we made to the
original implementation to adopt SigSolid. MakerDAO is a decentralized finance protocol, which
provides collateral-backed stablecoin called Dai [Foundation 2019]. It follows the Maker Protocol
to keep Dai softly pegged to USD by a fixed ratio. This is accomplished by backing Dai with
crypto assets based on the market prices. In order to generate Dai, users send collaterals to the
Collateralized Debt Position smart contract to create a vault. To meet the long-term solvency of the
system, the ratio between the deposit to the vault and the Dai the vault owner obtains must be
greater than a threshold decided by a MakerDAO governance committee at all time. Once the ratio
drops below the set threshold, the Maker Protocol forces the collateral to be liquidated.
MakerDAO components: There are four contracts in Listing 1, Median, OSM, Spotter and Vat.
A Median contract is an oracle that maintains the spot price of one digital asset type. A group of
authorized maintainers send batched transactions via the feed function to report the real world
spot price (line 8). The function computes the median of the reported price as the oracle spot price.
The latest oracle price can be accessed via the peek function (line 3).

OSM is the acronym of Oracle Security Module. OSM delays the price obtained from Median by
an hour. Based on the MakerDAO documentation, this is to allow an emergency committee to
supervise the oracle prices. In case of an emergency, the committee may pause the price feed and the
MakerDAO system via administrative interfaces (omitted in the code snippet). A Spotter contract
collects spot prices from multiple OSM contracts for different kinds of digital asset collaterals.

Vat is the core vault engine which stores and tracks all the Dai and collaterals. Spotter eventually
invokes Vat to file the price change (line 43). Note that all other modules rely on Vat to implement
the desired finance service for users. For example, when a user joins the MakerDAO protocol to
mint Dai with Ethereum or other digital assets as collaterals, MakerDAO calls the function move
(line 55) in Vat to update the vault. When a user submits a transaction to liquidate a position (i.e.,
sell the collaterals), MakerDAQ calls the function grab (line 54) to update.
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TR RN

60

contract Median {
uint val; // price
function peek() public view returns (uint,bool) //Peek gets current price of digital

asset

{ return (val, val > @); }

signal Pr(uint,bool); //price update signal
address[] s-t;
//Feed to set current price of a digital asset

function feed(uint[] p,uint[] v,bytes[] r,bytes[] s, address[] _s-t) public {
// check the signature info in r, s, v

//Target handler addresses

val = computeMedian(p);

s-t = _s-t; // targets are only OSM modules
Pr.emit(val,val>0@).target(s-t).delay(Q);//emit to OSM
Yoo}

contract OSM {
struct Feed { uint val; bool has; }
Feed cur, nxt;
uint b; //last price feed block number
address[] s-r;

=

bytes[] s-m;

/

//obtained prices

//allowed accounts
/accessible methods

function peek() public view returns(uint,bool) //Spotter call peek to acquire price feed
{ return (cur.val, cur.has); }
signal DPr(uint,address) //delayed price update signal
address[] s-t;
function poke() public { //Poke to update price from Median
function prUpdt(uint wut,bool ok) handler { //Handler function to get price from Median
require(block.timestamp >= b + HOUR);
(uint wut,bool ok) = Median(median).peek(); //peek current price

if (ok) {

//target handler addresses

cur = nxt;nxt = Feed(wut, true);
b = uint(block.timestamp-(block.timestamp % HOUR));

DPr.emit(wut,this.address).target(s-t).delay(HOUR);
3

constructor (address median, ...) public {
prUpdt.bind(median,Median.Pr,0.1,false,s-r,s-m); //Handler prUpdt binds to signal Pr

3

contract Spotter{
//poke to update price from OSM
function poke(address osm) public {

(bytes val,

bool has) = 0SM(osm).peek();

//calculate variable "spot" based on "val"

vat.file(bytes(osm),"spot",spot);//file price to Vat

Yoo 3

contract Vat {

=

+
i
=

address[] s-r;

bytes[] s-m;

/

// move here the body of Spotter contract

//allowed accounts
/accessible methods

function prUpdt(uint data,address osm) handler { //Handler to receive price from OSM
//calculate variable "spot" based on "data"

file(bytes(osm),"spot",spot); //file price to Vat

}

function grab(...) external {...} // CDP Confiscation used for CDP liquidation
function move(...) external {...} // move function used for Dai join or exit
constructor (address osm@, address osml, ...) public {

// bind handlers to OSMs PriceFeed signal

prUpdt.bind(osm@,0SM.DPr,0.1, true,s-r,s-m);

prUpdt.bind(osm1,0SM.DPr,0.1, true,s-r,s-m);

}

}

Listing 1. Simplied code snippet of MakerDAO
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Fig. 1. Overview of smart contracts and user interaction in MakerDAO.

Off-chain relay server poking: It is not feasible to implement this price information propagation
fully on chain via function calls because the oracle maintainers and the MakerDAO administrators
are different groups of people. The asset price oracle service might be used by many different
DeFi contracts and the oracle maintainers are not willing to pay excess transaction fee cost for the
executions of MakerDAO. Also, OSM needs to introduce one hour delay to the price feed, which is
not feasible to implement on-chain in Ethereum.

MakerDAO therefore relies on off-chain relay servers to drive the price information flow. Fig. 1

illustrates the interaction between off-chain servers and the contracts. The off-chain relay servers
are expected to call poke in OSM (line 25) for each digital asset every one hour to extract the price
from the Median contracts. They are also expected to call poke in Spotter (line 39) frequently
to feed the price information to the core engine. Function poke files the price change into Vat,
which will update its internal state to change the behaviors of the implemented Dai join, exit, and
liquidation functionalities accordingly.
Security risks and loss: The off-chain relay server design has significant security risks. Knowing a
reasonably accurate price for digital assets is critical for the security of MakerDAO. If the off-chain
relay server fails or the network is congested so that poke transactions are not processed in time,
the core MakerDAO engine would operate with outdated price information and make incorrect
liquidation decisions.

On March 12 2020, the price of crypto currencies dropped significantly. Meanwhile, the Ethereum
network became overwhelmed with too many transactions. Critical poke transactions containing
price information were delayed, causing the core MakerDAO engine to operate with stale prices
for hours. As a result, many MakerDAO users had their positions liquidated while getting much
less collateral back comparing to the amount they should have retained with the correct prices.
Even after the prices returned to the required level, the collateral was auctioned because its price
oracle failed to update price feed. The root cause of this event is the market crash and the network
congestion, but the off-chain relay servers design exacerbated the delay during the market collapse.
The total financial loss of MakerDAO users during this event is approximately $4.5M [Foundation
2020].
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SigSolid powered by SigVM: We next show how to implement the oracle components of Maker-
DAO in SigSolid, our modified Solidity language that can utilize special SigVM operations for an
event-driven execution model.

SigSolid allows a contract to define its signal events via the signal keyword (line 5). The contract
can emit declared events during its execution together with event data, targeted contracts to receive
the events, and a delay in number of blocks (line 13). SigSolid also introduces a new function
modifier handler. Functions declared with the keyword handler are signal handler functions that
can be attached to signal events (lines 26 and 49). Once bound, handler functions will be invoked
as a separate signal transaction with the data supplied by the event as parameters.

Note that the third parameter of a bind statement is a positive real number as the gas incentive
provided by the contract. For example, 0.1 in line 35, 58, 59 denotes that the contract is willing to
pay a gas price 10% higher than the average gas price of other regular transactions in the same
block computed by miners during transactions packing. The fourth parameter of a bind statement,
loc, is either true or false, indicating whether the generated signal transactions from this handler
function will lock the contract from regular transactions or not. If it is true, then the contract
locking mechanism is enabled. Regular transactions will not be able to interact with the contract
if there is a pending signal transaction. The fifth and sixth parameters specify exceptions for the
contract locking mechanism, i.e., white-lists of addresses and methods that are allowed for regular
transactions during locking (s-r at lines 19 and 47 and s-m at lines 20 and 48, respectively)”.
Implementation of Median, OSM, and Vat in SigSolid: To implement the desired price infor-
mation flow, we define a signal event in Median (line 5) and a signal event in OSM (line 23). Instead
of passively waiting for other contracts to call peek, Median emits a price feed Pr event whenever
there is a valid batch of oracle price updates (line 13). This event is automatically handled by the
function in OSM at line 26, which in turn emits a delayed price feed event DPr with a delay of one
hour. The emitted DPr will be eventually handled by the prUpdt function in Vat (line 49) to file the
new price information. This function replaces the original poke in Spotter. The contract Spotter
is merged into Vat.

Event-driven execution with SigVM: Once deployed on SigChain, the modified code in Listing 1
will enable the desirable information to flow fully on-chain. When the oracle maintainers send a
transaction to invoke the function feed in Median (line 8) to provide a new price. The contract
will emit the Pr event (line 15) with the calculated mean asset price as the event data. Because
OSM registered the function prUpdt (line 26) as the handler for Pr event, SigVM will generate a
signal transaction to invoke prUpdt with the corresponding event data as the parameter. SigVM
will execute the generated signal transaction automatically and asynchronously. The transaction
will cascadingly emit the DPr signal event (lines 32) with the asset price and an address id (which
represents the digital asset type). This event will be emitted with a delay of one hour. Because Vat
registers the function prUpdt to handle the DPr event from OSM contracts, after one hour delay,
SigVM will generate and execute a signal transaction to invoke prUpdt with the asset price and the
asset address as parameters automatically. prUpdt in Vat will finally file the price change at line 52.
Contract event locking: The advantage of setting the handler function in Vat is to utilize the
contract event lock mechanism in SigVM. After the one-hour delay of the DPr event, SigVM will
lock the Vat contract from arbitrary regular transactions until the signal transaction that invokes
prUpdt is executed. This prevents Vat from interacting with potentially malicious users before it
incorporates critical updates from the signal transaction, e.g. minting Dai or liquidating collaterals

2s-r and s-m provide a contract administrator access to execute regular transactions on a locked contract, e.g., in case of an
emergency, by using s-r and s-m to specify administrator’s address and which method the administrator is allowed to
execute, respectively.
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with outdated digital asset prices. This lock mechanism is lightweight because it only affects one
contract. Other contracts deployed on the blockchain are not affected.

Transaction fees: Different from the Ethereum gas mechanism that transaction fees are always
paid by external users. The transactions fees of signal transactions in SigChain are paid by the
smart contracts who register the corresponding handler functions. In our example, OSM and Vat
must have sufficient native token balance to cover the signal transaction fees. We believe this is a
much smaller burden than maintaining an off-chain relay server to send poke transactions.
Advantages: This example highlights the advantages of SigVM. SigVM eliminates the dependency
on the unreliable poking mechanism and off-chain relay servers. The execution model of SigVM
guarantees that the core vault engine operates with the one-hour delayed prices reported by the
oracle maintainers. Listing 1 highlights the expressiveness of SigSolid. Challenging features like
time delays can be implemented in SigSolid in a straightforward way.

3 BACKGROUND

In this section, we briefly recall some background on the Ethereum blockchain which is also
valid for other blockchains, e.g., Avalanche [Sekniqi et al. 2020], Conflux [Li et al. 2020b], and
Near [Foundation 2021], that work with EVM-based execution environment.

3.1 Ethereum blockchain

The Ethereum blockchain is a state machine constituted of a global state and transactions that modify
the state. The state includes account information such as the account Ether balance. Ethereum
supports two types of accounts: user accounts and smart contract accounts. Each account is
associated with a unique address. Users can interact with the blockchain by issuing transactions
using their user accounts. Smart contract accounts are software objects that manage transactions.
Beside the account balance, a smart contract state stores the account’s storage trie and the EVM
code that executes incoming transactions. Smart contracts can create internal transactions to other
smart contracts. The internal transactions are nested from a top-level transaction, an external
transaction, initiated by a user account. If a transaction is aborted then the effects of all nested
internal transactions will be reversed.

3.2 Transactions Execution and Gas

A transaction contains the addresses of sender and recipient accounts, the transferred value of
native tokens (can be zero), a data, and a gas value. If a transaction recipient account is a user
account then the transaction’s data is empty and the transaction constitutes of transferring the value
of native tokens from the sender account to the recipient account. Otherwise, if the transaction
recipient account is a smart contract then the transaction’s data identifies a function of the recipient
smart contract’s code together with arguments passed to the function. When the transaction is
received, the corresponding smart contract’s function is executed by the EVM, modifying the
smart contract’s storage trie accordingly. The execution of each EVM command, such as read/write
operations on the underlying storage trie, is associated with a gas fee. The transaction’s gas value
must exceed the accumulated gas fees at the end of execution, otherwise the transaction is aborted.

3.3 Events

Important components of smart contracts are events. Events in EVM allow to log meaningful
changes to a smart contact that the smart contract wants to communicate to external entities
connected to the blockchain, e.g., DApps, so they listen to these events and act accordingly. For
instance, as shown in Listing 2 when an address transfer an ERC20 token to another address,
the ERC 20 token smart contract will emit a Transfer event containing all of the data about the
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token transfer (line 11). The logs of emitted events are stored on the blockchain and are accessible
through the address of the smart contract account that emitted them. EVM does not yet support an
event-driven programming model, i.e., smart contracts can emit events but cannot listen to them.

1 contract ERC20 {

2 mapping (address => uint256) balances;

3 mapping (address => mapping (address => uint256)) allowed;
4

5

6

event Transfer (address from, address to, uint256 value);

function transfer(address receiver, uint256 numTokens) public returns (bool) {

8 require(numTokens <= balances[msg.sender]);
9 balances[msg.sender] = balances[msg.sender]-numTokens;
10 balances[receiver] = balances[receiver]+numTokens;

11 emit Transfer(msg.sender, receiver, numTokens);
12 return true;

Listing 2. Code snippet of ERC 20 token smart contract.

4 SIGVM DESIGN

This section formalizes the design of SigVM. Similar to other smart contract virtual machines like
EVM [Buterin 2014], SigVM contains two layers, the virtual machine execution layer that dictates
how SigVM executes a transaction and the block processing layer that dictates how the blockchain
state evolves over multiple transactions in a block.

4.1 Core SigVM Language

(prog) u= program {inst)*
(inst) u= (EVMinst) | (SIGinst)
(SIGinst) := createsignal sn|deletesignal sn|detach (m,s) |bind (m,s,gr, loc, s-r,s-m) | emit (s,s-t,d)

Fig. 2. Core language signal related instructions syntax of SigVM. a* indicates zero or more occurrences of a.

Fig. 2 lists the syntax of a simple programming language used to formalize our approach. Our
language extends the standard EVM operations EVMinst (e.g., load and push) with new operations
SIGinst, e.g., createsignal and bind, to enable an event-driven execution model under SigVM.
For brevity, in Fig. 2 we omit standard EVM operations EVMinst since they are not necessary in
understanding the design of SigVM. However, our implementation of SigVM actually supports all
standard EVM opcodes including arithmetic and inter-contract call operations.

In SIGinst, createsignal and deletesignal opcodes handle the creation and deletion of a
signal event with name sn, respectively. The opcodes bind and detach allow handler functions to
listen and unlisten to signal events.

The function bind(m,s, gr, loc, s-r, s-m) attaches a handler function m to a signal event s € S
with a gas ratio gr. The signal transaction fee is computed by miners by calculating the average
gas price of regular transactions packed in the same block multiplied by 1 + gr. The last three
parameters of bind dictates how the locking mechanism is enforced for the signal event: a boolean
locking flag loc. Regular transactions are allowed to execute if loc is false. Otherwise, if loc is true
only regular transactions initiated by addresses in the array s-r and are executing functions in
the array s-m are allowed to execute. The contract is locked for other regular transactions until
the pending signal transactions finish. detach(m, s) detaches a handler function m from a signal
s. Finally, emit(s, s-t, d) emits signal events for signal s with a delay of d. s-t, signal targets, is an

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 149. Publication date: October 2022.



149:10 Zihan Zhao, Sidi Mohamed Beillahi, Ryan Song, Yuxi Cai, Andreas Veneris, and Fan Long

createsignal sn € inst(£(pc)) s-h[(ad,sn)] = nil
g := gascost(createsignal) s-h’ := s-h[(ad,sn) — 0] ¢’ = ¢[pc > next(£(pc))]

(gas, _, (i,m, ad, ¢) o stack, bal,s-h, _) =[ createsignal sn |= (gas+g,_, (i,m,ad, ") o stack, bal,s-h", )

deletesignal sn € inst(£(pc)) s-h{(ad,sn)] # nil
g := gascost(deletesignal) s-h’ := s-h[(ad, sn) - nil] ¢’ = ¢[pc  next(£(pc))]

(gas, _, (i,m, ad, ¢) o stack, bal,s-h, _) =[ deletesignal sn [= (gas+g,_, (i,m,ad, ") o stack, bal,s-h", )

bind (m’, s, gr, loc,s-r,s-m) € inst(£(pc)) s = (ad’,sn) s-h[s] # nil (Lad, ,_,_,_) ¢s-h[s]
g := gascost(bind) s-h’ := s-h[s — (m’,ad, gr, loc, s-r, s-m) W s-h[s]] ¢’ == t[pc — next(£(pc))]

(gas, _, (i,m, ad, ¢) o stack, bal,s-h, _) =[ bind (m’, s, gr, loc, s-r,s-m) |= (gas + g, _, (i, m, ad, ¢’) o stack, bal,s-h’, )

detach (m’,s) € inst(£(pc)) s = (ad’,sn) (m',ad, _,_,_,_) € s-h[s]
g := gascost(detach) s-h’ :=s-h[s > s-h[s]\ (m,ad, , ,_,_)] ¢’ = ¢[pc > next(£(pc))]

as, _, (i,m,ad, ) o stack, bal,s-h, _) =| detach (m’,s) |= (gas+g,_, (i,m,ad, {") o stack, bal,s-h", _
(gas._. (i.m,ad, £) o stack, bal,s-h, _) =[ detach (m’,s) |= (gas +g, _. (i.m,ad, ¢’) o stack, bal,s-h’, )

emit (s,s-t,d) € inst(¢(pc))
g := gascost(emit) e-sig’ := emitSig(s, e-sig, s-h, s-t, d) ¢’ = ¢[pc — next(£(pc))]

(gas, _, (i,m, ad, £) o stack, bal, s-h, e-sig) =[ emit (s,s-t,d) = (gas+g, _, (i,m,ad, £’) o stack, bal, s-h, e-sig”)

Fig. 3. Program semantics in SigVM. For a function f, we use f[a + b] to denote a function g such that
g(c) = f(c) for all ¢ # a and g(a) = b. The function inst returns the instruction at some given control location
while next gives the next instruction to execute. gascost returns the gas price for a given opcode. We use o to
denote sequence concatenation. We use nil to represent undefined, i.e., s-h[s] = nil means that the signal s
does not exist.

array of addresses that specifies the contracts that will be poked by the emitted signal. If s-t is not
empty then s pokes only contracts with addresses in s-t. Otherwise, when s-t is empty, s pokes all
contracts that contain handler functions attached to s. For each poked contract, a signal transaction
that executes the corresponding handler function is created.

4.2 Operational Semantics

A program configuration in SigVM is a tuple p = (gas, vars, stack, bal, s-h, e-sig) where gas is the
gas counter, vars is composed of the persistent valuation of program variables, stack is the call
stack, bal is a mapping from addresses to the corresponding balances, s-h, signal handlers, is a
mapping that maps each signal to a set of handlers that are attached to this signal, and e-sig, emitted
signal transactions, is a set of emitted signal transactions.

The activation frames in stack are represented using tuples (i, m, ad, £) where i € T is a task
(invocation) identifier, m € M is a function name, ad € A is the address of the contract that m
belongs to, and ¢ is a valuation of local variables, including a program counter.

A signal identifier is a tuple s = (ad, sn), where ad € A is the address of the contract emitting
the signal and sn is the signal name. s-h[s] is a set of tuples (m, ad, gr, loc, s-r, s-m) where m is the
name of the handler function bound to the signal s by the contract with the address ad, and gr
is the gas ratio. The parameters loc, s-r, and s-m dictate the locking mechanism. loc is a boolean,
s-r is an array of addresses, and s-m is an array of methods signatures. We assume that a signal
s = (ad, sn) exists only if s-h[s] # nil and if a signal is not attached to any method handler then
we have s-h[s] = 0.

The activation frames in the emitted signal transactions set e-sig are represented using tuples
(j,s,m,ad, gr,d), where j € Sl is a unique identifier of the signal transaction, s = (ad’, sn) is the
signal identifier, m is the handler method name, ad is the address of the contract containing the
handler method, gr is the gas ratio, and d is the delay.
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Algorithm 1 Signals to emit.

1: procedure emitSig(s, e-sig, s-h, s-t, d)

2: Q «— e-sig;

3 for each (m,ad, gr, , _,_) € s-h[s]

4: if s-t = e or ad € s-t

5 Q — (j,s,m,ad,gr,d)w@Q; jeSIfresh
6 return Q;

7: end procedure

Fig. 3 presents the small step semantics for SigVM signal related opcodes. The notation p =[
a |= / represents the state transition of y to y’ after executing operation a.

A transition labeled by createsignal sn corresponds to the creation of a new signal with the
name sn. The new signal is identified with s = (ad, sn) where is ad is the address of the current
contract. s-h[s] is set to the empty set. The gas counter is incremented with the gas cost of the
operation. A transition labeled by deletesignal sn corresponds to the removal of the signal with
the name sn. The signal is identified with s = (ad, sn) where ad is the address of the current
contract. s-h[s] is set to nil.

A transition labeled by bind (m’, s, gr, loc, s-r, s-m) corresponds to attaching the signal s to the
method m’ and assigning gr as the gas ratio with locking parameters loc, s-r, and s-m. s must
exist, i.e., s-h[s] # nil. Also, the current contract must not have bound another method to s, i.e.,
(L,ad, , _,_) ¢ s-h[s] where ad is the contract address. We then insert (m’, ad, gr, loc, s-r, s-m)
in the set s-h[s] to mark that the contract ad assigned the method m’ to s with a gas ratio gr. A
transition labeled by detach (m’,s) corresponds to detaching a handler m’ from a signal s. The
transition results in the removal of (m’,ad, _, , ,_) from the set s-h[s].

Finally, a transition labeled by emit (s, s-t, d) corresponds to emitting a signal s after a delay d. If
s-t is not empty s pokes contracts associated with addresses in s-t. Otherwise, s pokes all contracts
with attached handlers for s. We use the function emitSig defined in Algorithm 1 to update the
emitted signal transactions set e-sig with the newly emitted signal transactions accordingly.

An execution of an externally invoked method m of a contract stored in the address ad is a
sequence p = g =[ a1 |[= 1 =[ a2 |= ... =[ an |= p of transitions starting in the configuration
1o = (0,vars, (i, m, ad, &), bal, s-h, €) where £, = loclnit(vars, m) represents the initial state of m,
and leading to a configuration p = (gas, vars’, €, bal’, s-h’, e-sig) where the call stack is empty. We
use the notation p = p,, (o) to say that the execution p of m transforms g to p.

Note that for brevity we omit the rules that check the current used gas against the limit to
terminate execution early. In particular, during transaction execution each time an instruction
opcode operation is executed, its corresponding gas consumption is recorded and the total used
gas is calculated. The execution will be terminated early if the total used gas is greater than the
pre-defined gas limit. This is the standard practice in Ethereum to address the termination problem
and our SigVM implementation follows the same principle.

4.3 Transaction Execution

Blockchain state: A blockchain state in SigVM is a tuple o = (h, acts, s-h, eh-sig) where h is
the current block height, acts stores the states of all accounts on the blockchain. acts maps each
account address ad to acts(ad) = (non, b, vars, c) where non is the account nonce, b is the account
balance, vars is the persistent valuation of contract variables, and c is the immutable contract code.
eh-sig is a mapping that maps each block height to a set of emitted signal transactions pending
until the block height is attained to be executed. For a block height h, the activation frames in the
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(nong, bg, varss, cs) = acts(ady) bs > gp+bo ad, € A fresh varsg := init(ady,)
Vad € A. acts[ad] = (_,b, _,_) = bal{[ad] :=b bal, := bal;[ads +— bal;[ads] — bg; ad; + bal;[ad;, ] + bg]
o = loclnit(varsg, m) (gas, vars, €, bal, s-h’, e-sig) = py, (0, varsy, (i, m, ady, &), baly, s-h, €)

gp > gas X unitGasPrice(h) eh-sig’ := sigPartition (h, eh-sig, e-sig) acts; := updBal(acts, bal)
actsy = actsq[ads — (nong + 1, bal[ads] — gp, varss, cs); ad, +— (nong, bal[ad, ], vars, c)]

(h, acts, s-h, eh-sig) =[ createTx (ads, nons, by, m, c, gp) ]]=>t (h, actsy, s-h’, eh-sig”)

(nong, b, varsg, cs) = acts(ads) (nong, by, varsy, ¢;) = acts(ad;)
V ad € A. acts[ad] = (_,b, ,_) = bal;[ad] :==b baly := bal;[ads + bal;[ads] — val; ad; +— bal;[ad;] + val]
bs > gp + val lockPerm(h, s-h, eh-sig, ad;, m, ads)
£y = locInit(vars;, m) (gas, vars, €, bal, s-h’, e-sig) = pp, (0, vars;, (i, m, ad,, £), balz, s-h, €)
gp > gas X unitGasPrice(h) eh-sig’ := sigPartition (h, eh-sig, e-sig) actsy := updBal(acts, bal)
actsy := actsy[ads — (nong + 1, bal[ads] — gp, varss, cs); ad; — (nong, bal[ad,], vars,c;)]

(h, acts, s-h, eh-sig) =[ regularTx (ads,ad;, m,val,gp) ]="* (h,actsy, s-h’, eh-sig’)

3 h’ < h.eh-sig[h’] = (j,s,m,ad;,g) Wq (nony, by, vars;, c;) = acts(ad;)
gp = gas X unitSigGasPrice(h, gr) b; > gp Vad € A. acts[ad] = (_,b,_,_) = bal;[ad] :=b

£ = loclnit(varsy, m) (gas, vars, €, bal, s-h’, e-sig) := pp, (0, vars;, (i, m,ady, £), baly, s-h, €)
eh-sig, := eh-sig[h’ - q] eh-sig, := sigPartition(h, eh-sig,, e-sig)
acts; := updBal(acts, bal) actsy := actsy[ad; — (non; + 1,bal[ad;] — gp, vars,c;) |

(h, acts, s-h, eh-sig) =[ signalTx (j,s, m, ad;,gr) ]]=>t (h, actsy, s-h’, eh-sig,)
Fig. 4. Transactions execution rules. init returns the initial state of a contract persistent variables. unitGasPrice
returns the unit gas price at the block h. unitSigGasPrice returns the average unit gas price payed by
regular transactions packed in the block h multiplied by 1 + gr. updBal(acts, bal) returns acts; s.t. for every
acts[ad] = (non, b, vars, c), acts; [ad] = (non, bal[ad], vars, ¢).

emitted signal transactions set eh-sig[h] are represented using tuples (j, s, m, ad, gr), where j is
the unique signal transaction identifier, s is the signal identifier, m is the handler method name, ad
is the address of the contract containing the handler method, and gr is the gas ratio.
Transactions execution: Fig. 4 presents the transaction execution rules for SigVM. We use
o =[ tx ][=" ¢’ to denote the blockchain state transition from o to ¢’ after executing a transaction
tx. In SigVM, we note three kinds of transactions: (1) create transaction which creates a new account
and transfers balance, (2) regular transaction which executes a smart contract method and transfers
balance, and (3) signal transaction which is a special transaction generated by signal emitted in
previous blocks and does not transfer balance.

A transition labeled by createTx (ads, nons, bo, m, ¢, gp) corresponds to an account creation
transaction initiated by the account with the address ad; and nonce non; transferring a balance
by to the new contract account. ¢ parameter is for the code of a smart contract to deploy in the
new account and m is the name of constructor method in the contract. gp is the gas price payed
by the sender to execute the transaction. The transition creates a fresh address ad,, for the new
account and ensures that the balance of the sender is sufficient to pay for the transaction. Also,
the transition includes an execution of the constructor method m, i.e., p,;, over the newly created
contract initial state. The emitted signal transactions map eh-sig is updated with the newly emitted
signals during the execution of m, i.e., e-sig using the function sigPartition that partitions emitted
signal transactions based on the values of the block height h and the delay period d defined in
Algorithm 2°.

A transition labeled by regularTx (ads, ad;, m, val, gp) corresponds to a regular transaction
initiated by the account with the address ad; targeting the method m in the contract associated

3Note that the units of the delay period d are in the number of blocks. Similar to the standard practice, the number of blocks
is estimated based on the block generation rate.
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Algorithm 2 Signal transactions partition.

1: procedure sigPartition(h, eh-sig, e-sig)

2 Q « eh-sig;

3 for each (j,s,m, ad, gr,d) € e-sig

4 h' <« h+d;

5 Q — Q[h' — (j,s,m,ad,gr) w Q[h']];
6 return Q;

7: end procedure

with the address ad; and transferring a balance val to ad;. gp is the gas price payed by the sender
to execute the transaction. The transition ensures that the balance of the sender is sufficient to pay
for the transaction. To ensure that the regular transaction is not executing a locked smart contract
because of pending signal transactions we define a boolean function lockPerm which returns true
when the regular transaction is allowed to execute and false otherwise.

lockPerm(h, s-h, eh-sig, ad;, m,ads) =Vs € S. ((Vh" <h. B (_s,_ ads,_,_) € eh-sig[h’]) v
(! (L, ady, _, loc, s-r,s-m) € s-h[s]. =loc V (ads € s-r Am € s-m)) )

3! denotes unique existential quantifier. lockPerm returns true when either

o there are no pending signal transactions ready to execute that are associated with the contract
ad; (ad; is called by the regular transaction);

o for every pending signal transaction that is ready to execute, we have that regular transactions
initiated by ad; that call the method m (m is a method of the contract ad,) are allowed to
execute.

If a contract detaches a handler from a signal while signal transactions are queued, regular transac-
tions will be blocked until the signal transactions are executed (lockPermission returns false).

A transition labeled by signalTx (j,s, m, ad;, gr) corresponds to a signal transaction executing
a method m in the contract with the address ad;. gr is the gas ratio. Similar to above, the transition
ensures that the balance of ad; is sufficient to pay for the transaction. We remove the executed
signal transaction from the set of pending signal transactions at a block height less or equal to the
current block height, i.e., 3h" < h (j, s, m,ad,, gr) € eh-sig[h’].
Block execution: an execution of a new block of transactions blk in SigVM is a sequence oy =[
inc [=™ o1 == inc(oy) =[ tx; [= 02 =[ txz [=" ... =] txn_1 =" on of transitions starting
in the initial blockchain state oy = (h, actsy, s-hy, eh-sig,) and leading to a blockchain state o, =
(h + 1, actsp, s-hp, eh-sig, ) where the transition oy =[ inc ]]ﬂhJr1 o1 == inc(op) simply increments
the block height in the blockchain state oy resulting in inc(og) = (h + 1, actsy, s-hy, eh-sig,) and tx,,
..., tx,_1 are the transitions of the transactions constituting the block blk, i.e., blk = {tx; ... tx,_1}.

5 IMPLEMENTATION

In this section we describe an implementation of an end-to-end blockchain platform that supports
SigVM. Our implementation consists of two main components: SigSolid, an extension of Solidity
language together with a compiler to support SigVM features, and SigChain, a blockchain client
based on a Rust-based client implementation of the Conflux protocol [Li et al. 2020b; Network 2021].
As input, our implementation accepts smart contracts written in SigSolid and it then deploys and
executes them using SigChain. Our implementation supports all EVM opcodes with the addition of
SigVM opcodes for signal events presented in Section 4.
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5.1 SigSolid

Our SigSolid language provides high-level language features for using SigVM opcodes to create, bind,
and emit signal events while maintaining support for all Solidity language features. The SigSolid
compiler extends the Solidity compiler [Ethereum 2020] with a new preprocessing parser that
transforms signal related statements to inlined assembly instructions that use the corresponding
SigVM opcodes. The resulting code is then complied to assembly code using the Solidity compiler
which bypasses the inlined assembly code. The outputted byte code is produced from the entire
assembly code including the introduced signal related opcodes.

The new high-level programming language features introduced by SigSolid are the following*:

e Signal declaration: The statement signal S(parmType) declares a signal event S where
parmType is the list of data types associated with the event parameters. SigSolid compiler
translates the above statement into SigVM createsignal opcode.

Handler declaration: using the keyword handler a function is declared as a signal handler.
For instance, function foo(...) handler { ... ] corresponds to defining a handler function foo.
Bind signal: The statement foo.bind(addr, S, gr, loc, s-r, s-m) binds the handler function foo
to a signal event S of a contract stored in the address addr. gr is the gas ratio. loc, s-r, and s-m
are the parameters for the locking mechanism to enforce. The above statement translates
into SigVM bind opcode.

o Detach signal: The statement foo.detach(addr, S) detaches the handler function foo from the
signal event S of the contract stored in the address addr. The above statement translates into
SigVM detach opcode.

Emit signal: The statement S.emit(parm).target(t).delay(d) emits a declared signal event S
where parm are the passed values of signal parameters, t is an array of addresses of the
recipients intended by the emitted signal, d is a non-negative integer that specifies the number
of blocks as the delay. The above statement translates into SigVM emit opcode.

SigVM is designed to prevent denial-of-service attacks in which an attacker triggers a large
number of signal events to block regular transactions of a victim contract. Such attacks are possible
only when the victim contract listen to an event from a contract deployed by the attacker in a way
that blocks regular transactions. The victim contract can simply detach its handler function to
stop listing to events from the attacker. Also, the contract locking mechanism in SigVM allows the
victim contract to remove the locking partially by specifying a list of trusted addresses for which
regular transactions are not blocked (using s-r, and s-m in signal binding).

5.2 SigChain

Our SigChain extends Conflux-rust [Network 2021] to support signal transaction execution®. In
particular, it extends the Conflux-rust EVM with the implementations of SigVM signal instructions.
The execution of a signal transaction in SigChain is similar to that of a regular transaction. The
main difference is that it starts at a handler function attached to emitted signal rather than a user
specified function. The blockchain state is augmented with signal events related fields that we
presented in Section 4. Also, it maintains a list of all accounts with pending signal transactions
which provides an efficient method for miners to retrieve pending signal transactions.

In SigChain, a smart contract who registers a handler function will pay the transaction fee cost
of the associated signal transaction. If the smart contract is unable to pay the fee of its signal
transaction, the signal transaction execution will stay in the pending transaction pool until the
contract obtains sufficient native tokens to cover the fee. Note that simple native token transfer

4SigSolid repository, https://github.com/SigVM/SigSolid
5SigChain repository, https://github.com/SigVM/SigChain-conflux
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transactions that interact with the fallback method of the contract are not affected by the contract
locking mechanism by default.

Enforcing contract locking: In SigChain we extend the transactions pool implementation in
Conflux-rust. In particular, when processing a block SigChain checks that for each: (1) regular
transaction whether the transaction is allowed under the locking mechanism or the pending signal
transactions queue is empty (see lockPerm); and (2) signal transaction that the transaction is indeed
the next transaction in the queue. If these verification steps fail, the transaction will not be executed
and will have no effect. Miners who pack the transaction will receive no transaction fee reward from
the transaction. SigChain also enforces contract event locking at the boundary of inter-contract calls.
It checks whether the caller and the called function are permitted under the locking mechanism or
the pending signal s queue of the callee is empty. If the check fails, the whole transaction will be
reverted with no effect and the miner will receive no transaction fee reward. For the delegate call
opcode, the check is skipped because delegate calls do not change the state of the callee.

REMARK 5.1. Similar to locks in other programming languages, the locking mechanism in SigVM if
not used properly can result in a deadlock. For instance, if two contracts exchange signal transactions
and the handler function of each contract call a function in the other contract (through regular
transaction) then this will result in a deadlock when both contracts block regular transactions while
signal transactions did not finish. This is because each signal transaction will be awaiting for the
corresponding regular transaction that it invoked which cannot proceed since the other contract is
locked while processing its signal transaction. To avoid such issues smart contract developers are
provided with the locking whitelist mechanism using the parameters s-r and s-m when binding signals.
The whitelist will allow to execute specific functions from designated addresses to avoid deadlock.

5.3 Gas Mechanism

To incentivize miners to pack signal transactions as soon as possible, signal transactions pay a
higher gas price than regular transactions. In SigChain, we set the gas price of signal transactions
to be the average gas price of regular transactions in the block multiplied by one plus the gas incentive
ratio set during handler binding. This mechanism ensures that the gas price of signal transactions
will always be competitive comparing to regular transactions. Miners will always be incentivized to
pack signal transactions even in the presence of regular transactions with high fees. Because these
regular transactions will raise the gas price of signal transactions, thus miners earn the profits by
packing signal transactions instead of other regular transactions with low gas fees.

To avoid situations where the average gas price of regular transactions cannot be determined
due to an overabundance of signal transactions, SigChain sets a separate gas limit for signal
transactions to reserve room for regular transactions. SigChain limits the total gas consumption of
signal transactions in a block to be less than % of the block gas limit. We set this limit based on
the current Ethereum ratio between contract internal and regular transactions of 1 : 9 [Etherscan
2021].

SigVM gas mechanism is designed to follow EIP-1559 protocol of Ethereum [Buterin et al. 2019]
(implemented in London hard fork upgrade in August 2021). The EIP-1559 protocol introduces
a burning mechanism of base fees in transactions to speed up the mining of native token Ether,
incentivize it, and boost Ether’s price by reducing the supply of Ether. In particular, in EIP-1559
protocol a base gas fee is fixed for transactions to be included in a block. Then, when transactions
are executed the base fees are burned and removed from circulation. Using this protocol, SigM
gas mechanism is designed to prevent malicious miners from mining gas fees through signal
transactions. Malicious miners cannot profit by raising the average gas price in a block, by generating
(fake) transactions with high gas fees, resulting in a higher gas price for signal transactions. In
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particular, under EIP-1559 since the base fees of transactions are burned and not paid to miners, then
the attack by malicious miners to raise the gas price of signal transactions will not be profitable.

6 EVALUATION

In this section we outline an empirical study of SigVM using 23 contracts from 13 decentralized
applications (DApps) on Ethereum using SigSolid language described in Section 5.1. Our empirical
study is driven by the following questions:
(1) Can SigVM enable truly decentralized contracts? Specifically, can we implement popular
smart contracts from Ethereum in SigVM to eliminate off-chain centralized relay servers?
(2) Is SigVM easy to use? What is the development effort of implementing smart contracts in
SigVM?
(3) What is the performance overhead of SigVM compared with Ethereum? What is the run time
of transactions in SigVM?
(4) What is the gas consumption for transactions in SigChain?
(5) What kinds of security risks are associated with off-chain relay server solutions? Can the
contract event lock mechanism in SigVM eliminate these risks?
We run the experiments on a 8 cores machine (2.6 GHz Intel Core i7) with 16 GB memory.

Solidity SigSolid
Application Contract of | loc | se | hf | loc’ | diff
Median 1 175 | 1 0 177 | 2
MakerDAO OSM 2 178 | 1 1 174 | 6
Spot&Vat 1 116 | 0 1 116 | 5
Compound Timelock 3 113 |1 |1 |115 |12
Augur Universe 1 | 711 |1 |1 |727 | 15
MultiSigWallet MultiSig 1 256 |1 |1 |270]19
Historical Price Feed | HistoricalPrice | 1 | 564 | 1 1 [555 |4
Idex Exchange 1 |1223|1 |1 |1231|38
Aave LendingPool 1 35 |1 |1 |[359 |4
Metronome Metronome 1 125 | 1 1 133 | 8
DAIHardFactory DAIHard 1 505 |1 |1 |533]29
PriceFeed 1 (201 |1 [0 |203 |2
KyberDxMarket DSValue 2 122 |1 |1 |26 |4
Medianizer 1 195 |0 |1 197 | 2
PriceFeed 1 (201 |1 [0 |203 |2
DutchExchange DSValue 2 122 |1 |1 |26 |4
Median 1 2604| 0 1 2606| 2
PriceFeed 1 (201 |1 [0 |203 |2
PriceFeed DSValue 2 |22 |1 |1 |26 |4
Median 1 199 | 0 1 201 | 2
PriceFeed 1 (201 |1 [0 |203 |2
Oraclelnterface DSValue 2 |22 |1 |1 |26 |4
Medianizer 1 | 483 |0 |1 |[485 |2

Table 1. Empirical results. Characteristics of applications: lines of code (loc) and number of poke functions
(pf). Characteristics of applications using signal events: number of signal events (se), number of handler
functions (hf), lines of code (loc’), and lines of code difference (diff).
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6.1 Benchmark Evaluation

We collect some benchmarks whose contracts need relay server to trigger and poke the correspond-
ing transactions on Ethereum. Our benchmark set contains 23 contracts from 13 DApps deployed
on Ethereum, including MakerDAO [Foundation 2019], Compound [Leshner and Hayes 2019], and
Augur [Peterson et al. 2019]°. Compound is a decentralized lending service platform where users
could deposit one type of digital asset as collateral to borrow another type of digital asset from
its shared pool. Augur is a decentralized prediction market where users bet on future results of
real-world events. In [Zhao et al. 2022], we provide descriptions for the other DApps. In total,
the 13 DApps manage more than $3B of digital assets on the Ethereum network, making up an
essential part of the Ethereum economic ecosystem. We rewrite the contracts into SigSolid in order
to eliminate relay server and evaluate its performance.

Table 1 presents the experimental statistics of our benchmark. Each DApp contains one or more
contracts that are interdependent with each other but are potentially maintained by different groups
of users. In our evaluation, we focus on 23 contracts (column Contract) that are relying on off-chain
relay servers to invoke poke functions.

We reimplemented the benchmark contracts in SigSolid with the goal of eliminating off-chain
relay servers from the picture. Because SigSolid is compatible with Solidity, our modification
is merely replacing the poke functions with SigSolid signal event statements. We are able to
reimplement all 23 contracts in SigSolid. Columns se and Af in Table 1 present the number of declared
signal events and the number of declared handler functions in the new contract implementation,
respectively. Column diff presents the number of lines difference between the new and old code.

By inspecting the line of codes and the line differences of all of contracts at Column loc, loc’
and diff, we note that the difference is around 10 lines. The new code is typically simpler than the
original code while the reimplementation effort is lightweight. We modified on average 3.17% of
the contract code. Therefore, the work of modifications into SigSolid is feasible for smart contract
developers.

Blockchain | Normal transfer | Contract call | Poke transaction | Signal transaction
SigVM 43423y 225.878ys 409.918ys 400.579ys
Ethereum 42.435us 223.105us 408.433 s -

Table 2. Average time for transactions execution on SigVM and Ethereum. 1us = 107%s.

6.2 SigChain Performance Evaluation

Now we present a performance evaluation of SigChain against the Ethereum blockchain. In this
experiment, we selected four types of transactions: native currency transfer, blockchain state read
transaction, regular poke transaction, and signal transaction. For blockchain state read transaction,
we use the Peek function of the Median contract that reads the current price of digital asset (line 3
in Listing 1). For regular poke transactions, we invoke the 0SM Poke function to update the price
from Median (line 25 in Listing 1). For signal transaction, we use the signal event that invokes the
handler function prUpdt (line 26 in Listing 1) that replaces the OSM Poke function. In the experiment,
we execute each transaction type 1000 times on each blockchain.

In Table 2, we report the average execution time for four types of transactions. Note that the
signal transaction in the fifth column is only available in SigChain.

For the three common transaction types supported by the two blockchains, i.e., normal transfer,
contract call and poke transaction, the performance of SigChain closely matches Ethereum. The
biggest overhead is 2.73us for the blockchain state read transaction. Thus, we believe that SigChain

®Benchmark repository, https://github.com/SigVM/conflux-signal-handler-case-study
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does not cause a notable performance overhead over Ethereum. Indeed, the throughputs in terms of
the number of transactions per second (TPS) that can be generated by both Ethereum test network
(disabling the proof-of-work consensus) and SigChain reach the same rate of 98 TPS. Note that this
TPS is considered even high for Ethereum main network which processes only 7 to 30 transactions
per second because of the consensus protocol and block size restrictions.

Interestingly, the experiment shows that the signal transaction for price update is a bit faster
under SigChain than the corresponding poke transaction under SigChain as well. This is because
of the code simplifications introduced by using signal events (e.g., removing unnecessary guards
statements, lines 27 and 31 in Listing 1). This shows that the SigSolid version of smart contract by
removeing some unnecessary requirements, allows to decrease the run time and still guarantee the
correctness and the security of the smart contract.

EVM-based high performance blockchains, e.g., Avalanche, Near, Polygon, Conflux, can achieve
thousands of transactions per second, therefore, the consensus is no longer the bottleneck and the
transaction execution may become the bottleneck. Hence, this evaluation shows that SigVM can be
adopted as well by those high performance blockchains since it is an extension of EVM and has
similar performance with regard to transaction execution time compared to the EVM of Ethereum.

Application| Function PTxG| STxG | Blocks BAvGPr| PTxAvGPr| PTxAvGFe | STxGFe
Spot Poke | 25571| 26672 | 14444015- 58.64 57.53 1471099.63 | 1720450.68
14444123
MakerDAO | OSM Poke | 55881 | 54073 | 14442977 68.44 69.34 3874788.54 | 4070831.73
14444015
Compound | executeTr- | 46090 | 45992 | 14402761 31.5 29.8 1373482 1593622.8
ansaction 14430843
MultiSig— executeTr- | 49853 | 48913 | 12278821 205.41 226.35 11284226.55| 11051941.26
Wallet ansaction 13773042
Historical | Poke 55963 | 54512| 12117196-| 169.9 156.97 8784512.11 | 10187747.68
Price Feed 12175764

Table 3. Poking and Signal Transactions Gas Consumption. Characteristics of transactions: the name of the
poke function invoked by the transaction (column Function), the total gas units consumed by calling the poke
function (column PTxG), the total gas units consumed by the handler function (column STxG), the blocks
ranges from which the 10 poke transactions were obtained (column Blocks), the average gas price over the
blocks in the column Blocks (column BAvGPr), the average gas price over the 10 poke transactions (column
PTxAvGPr), the average gas fees over the 10 poke transactions (column PTxAvGFe), and the gas fees for a
signal transaction (column STxGFe). The unit for the gas price and fees columns is GWei.

6.3 SigChain Gas Consumption Evaluation

We now present an evaluation of the gas mechanism for signal transactions in SigChain. In this
experiment, we collect the gas informations for the 10 most recent poke transactions on Ethereum for
four DApps. For each poke transaction type, we collect the average gas price over the corresponding
blocks range and the average gas price over the 10 transactions. Then, we compute the average gas
fees for each poke transaction by multiplying the total gas units consumed by the poke function
and the average gas price over the 10 poke transactions. We also compute the the gas fees for each
signal transaction by multiplying the total gas units consumed by the handler function and the
average gas price over blocks range multiplied by 1+ 0.17.

In Table 3, the column Blocks presents the blocks range containing the 10 poke transactions.
Column BAvGPr presents the average gas price over the blocks range. Column PTxAvGPr presents

"We assume that the gas rate is gr = 0.1.
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= P(interference) under poking = P(interference) under SigVM
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Fig. 5. Transaction interference rate.

the average gas price over the 10 transactions. Column PTxG presents the total gas units consumed
by the poke function. Column PTxAvGFe presents the average gas fee over the 10 poke transactions,
i.e., PTxAvGFe = PTxG X PTxAvGPr. Column STxG presents the total gas units consumed by the
handler function for signal transaction. The last column STxGFe presents the average gas fees for
each signal transaction, i.e., STxGFe = STxG X BAvGPr x 1.1.

The results in Table 3 show that the increase in the gas fees for signal transactions over poke
transactions is reasonable. This is because that most of signal transactions consume less gas than
their counterparts (columns STxG and PTxG in Table 3). In particular, signal transactions allow
to remove some guards statements (e.g., "require") that become useless. For instance, in the case
of Compound some conditional checks in executeTransaction are removed because they are
guaranteed by SigChain. This allows to simplify the implementation and reduce gas consumption.
Interestingly, the signal transaction for the MultiSigWallet application has less gas fees than its
counterpart poke transaction which was surprising.

6.4 Eliminate Risks of Off-chain Relay Server

We next study the risk of regular transactions interfering with poke transactions when using
off-chain relay servers. We also evaluate whether SigVM eliminates this risk.

Interfering Transactions: Using off-chain relay servers to simulate event-driven execution
models may make the contract vulnerable to interfering transactions, i.e., a user may interact with
a contract before a critical poke transaction. This may cause the contract to execute interference
transactions in an incorrect state (e.g., liquidating assets with an incorrect asset price). Such
interfering transactions can naturally occur during network congestion if the gas price of poke
transactions are not high enough. They can also be caused by malicious miners who ignore
transaction fees and prioritize such transactions intentionally. In this experiment, we use simulation
to find the threshold number of transactions that can cause congestion to the Ethereum network
resulting on transaction interference.

We setup an experiment with the MakerDAO contracts to quantitatively illustrate this problem.
In this experiment, we start a single-node Ethereum test network that generates blocks (disabling
the proof-of-work consensus) with one block generated each 10 seconds. We developed a random
transactions generator to generate three types of transactions, 1) simple transfer transactions that
do not interact with MakerDAO, 2) MakerDAO transactions, and 3) poke transactions that attempt
to update price for MakerDAO. In the experiment, the ratio of the three kinds of transactions is
10 : 4 : 1, respectively. The ratio is chosen to take into account that there are many transactions that
are irrelevant to MakerDAO and that there are also a decent number of transactions that interact
with MakerDAO due to its popularity. The gas price for the three transactions follows the normal
distribution with an average: 15, a standard deviation: 5, and a maximum: 50. Note that to facilitate
experimentation, we changed the delay period for the price feed event DPr in MakerDAO from one
hour to 10 seconds, i.e., one block delay.

We run the experiment multiple times and gradually increase the throughput of the transactions
generator to 90 TPS to simulate the different congestion levels of a blockchain network. Each

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 149. Publication date: October 2022.



149:20 Zihan Zhao, Sidi Mohamed Beillahi, Ryan Song, Yuxi Cai, Andreas Veneris, and Fan Long

run lasts 5 minutes. Fig. 5 summarizes our results, showing the chance of a poke transaction
being interfered by other MakerDAO transactions that are issued later than the poke transaction
grows as we increase the transactions generator throughput. Interfering transactions occur starting
from a transaction generation rate > 20 TPS and goes as high as 0.15 when the transactions
generator sends 80 TPS. We repeat the experiment with the new MakerDAO contracts in our
SigChain platform by replacing poke transactions with the automatic signal event mechanism. The
transaction interference never occurs because of our novel contract event lock mechanism.

Indeed, the results show that the lock mechanism is effective for guarding the interests of contract
participants. Attackers will send transactions to interfere with the online market before a price or
a proposal is settled. Then, the normal poking transactions become unreliable for normal users.
Thus, the lock mechanism prevents such undesired and malicious contract interactions before the
signal transaction is executed. It stabilizes the running process of online market.

6.5 Case Study Validation & Analysis

We select the three applications MakerDAO, Compound, and Augur as case studies and we report
our experience in analyzing the code of the new contracts. We validate that all three applications
function correctly with the new contract code and they no longer depend on off-chain relay servers.

6.5.1 Case Study: MakerDAO. As described in Section 2, we reimplemented the three contracts
in the oracle components of MakerDAO, eliminating the dependency on off-chain relay servers.
The new contracts powered by SigVM ensure that the core MakerDAO engine will always operate
with the updated price of its underlying digital asset. In addition, before the MakerDAO contract
processes these price feed signal transactions, by lock mechanism, other transactions like liquidation
and bidding will be put on-hold to avoid them operating with stale price information.

6.5.2 Case Study: Compound. Compound protocol is a decentralized market to lend or borrow
assets. Users communicate with the Compound contracts to supply, withdraw, borrow and repay
assets. In the protocol, the key parameters of the market, such as interest rate, risk model and
underlying price, are managed by a decentralized government body in Compound [Leshner and
Hayes 2019]. Any proposals of updating the parameters must be voted for approval and queued
in Timelock contract. To give market participants time to react for any parameter changes, the
queued proposals will be executed in the required delay specified in the proposals.

In the original Compound design, contract’s Governor calls queueTransaction (line 13) to queue
proposals. But to implement the desired delay, Governor or an off-chain relay server needs to send
another poke transaction to call executeTransaction (line 27) right after the completion the delay
period and before the proposal expiration time. executeTransaction first checks whether the
proposal is queued and if the current timestamp falls in the required interval (lines 32-33). If so,
the proposal is executed. This design is not desirable because the Governor or the off-chain relay
server may fail and/or the poke transaction may not be packed in time.

Therefore, we reimplemented the Timelock contract in SigSolid and validated it with our
SigChain platform. Listing 3 presents the simplified code snippet of Timelock. Lines preceded with
“-"and “+" signs are changes we made to the code. Through such modification in SigSolid, we elimi-
nate the dependency on poke transactions with the signal event mechanism. We define a new signal
event called TimeUp at line 11. The queueTransaction function will emit this event with the speci-
fied delay (line 25). Instead of being a public function, the executeTransaction function is declared
as an event handler (line 28). When the contract is constructed, we bind executeTransaction as
the handler for TimeUp events in the same contract. Thus, executeTransaction will be automat-
ically executed once the specified delay time (measured in the number of blocks) has past after
each TimeUp event. More significantly, many conditional checks in Solidity such as owner check,
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1 contract Timelock {

2 struct LockedTx { //Information of a transaction

3 address target;uint txvalue;string signature;

4 bytes datain;uint user_delay;bool ready; 3}

5 mapping (bytes=>LockedTx) queuedTx;

6 //max delay when poking executeTransaction

7 uint public constant GRACE_PERIOD = 14 days;

uint public delay;// Base delay to execute

address[] s-r; //allowed accounts

bytes[] s-m; //accessible methods

signal TimeUp(bytes); //signal event

address[] s-t; //target handler addresses

13 function queueTransaction(address target,uint txval,

14 string memory signature,bytes memory data,uint userDelay)
15 public returns (bytes) {

16 // Hash transaction parameters as index

17 bytes txHash=keccak256 (abi.encode(target, txval,signature,data,userDelay));
18 //Replace timestamp with offset delay

19 - require(eta>=getBlockTimestamp () .add(delay));

20 + require(userDelay >= delay);

21 // Push the new transaction to queuedTx

22 queuedTx[txHash]=LockedTx (target, txval,signature,bdata,userDelay, true);
23 // Emit signal event with txHash to itself

24 + s-t=[this.address];

25 + TimesUp.emit (txHash).target(s-t).delay(userDelay);

+ o+ o+ o+ o+

26 // handler for executing tx

27 - function executeTransaction(bytes txHash) public {

28 + function executeTransaction(bytes txHash) handler {
29 //remove check that sender is admin

30 - require(msg.sender == admin);

31 //remove checks that tx is in the correct period

32 - require(getBlockTimestamp() >= eta);

33 = require(getBlockTimestamp () <= eta + GRACE_PERIOD);
34 // use queuedTx[txHash] to do function call

35 3

36 constructor (address ad,uint del,address[] accs) public{

37 + s-r = accs; //signal initializations

38 + s-m = [abi.encode("queueTransaction(address,uint, string,bytes,uint)"), ... 1;
39 //bind handler to signal

40 + executeTransaction.bind(this.address,TimeUp,0.1,true,s-r,s-m);

41 } ...}

Listing 3. Code snippets of Timelock.sol in Compound

timestamp check are completely removed in SigSolid because signal transaction is automatically
executed along with both the owner address and one target delay as discussed in Section 4. The
requirements are totally guaranteed by the execution engine of SigVM. The removal of conditional
checks decreases the total run time of the transactions and improves the security of the execution
even though smart contract developers ignore the necessary checks.

We deployed the modified Timelock contract together with the rest of Compound contracts in
SigChain. The deployed Compound application in SigChain operate successfully and there is no
need to run off-chain server to poke the executeTransaction function anymore.

6.5.3 Case Study: Augur. Augur is a decentralized prediction market where users can bet on future
real-world outcomes [Peterson et al. 2019]. It follows 4 stages: creation of the market, trading,
reporting outcomes and prediction settlement. During reporting stage, a reporter reports results
of a real-world event by staking REP tokens on one of the outcomes of the market. If a Dispute
Bond (a fixed threshold of staked REP tokens) is reached on an alternative outcome that is different
from the Tentative Winning Outcome selected by the initial reporter (the market creator), then the
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contract Universe is IUniverse {
//daily block rate of the network
uint public dBlkR;

T RN

i3 signal DSig(); //daily signal event
5 + address[] s-t; //target handler addresses
6 + address[] s-r; //allowed accounts
7+ bytes[] s-m; //accessible methods
8 //handler function
9 + function Update() handler {
10 + sweepInterest();
11 //signal emission
12 + s-t = [this.address];
13 + DSig.emit(this.address).target(s-t).delay(dBlkR); }
14 function sweepInterest() public returns (bool) {...}
15 + function setBlkRate(uint _dBl1kR) public {
16 + require (_dBlkR >= MIN_RATE);
17 + dBlkR = _dBlkR; 3}
18 + function start_emit() public {
19 + s-t = [this.address]; //target address
20 + DSig.emit().target(s-t).delay(@); } //emit a signal immediately
21 constructor (Augur _augur, ..., uint _dBlkR) public {
22 + dBlkR = _dBlkR; //set handler execution period
23 //update s-r and s-m
24 + A
25 //bind handler to signal
26 + Update.bind(this.address,DSig,0.1,true,s-r,s-m);

27 P I |

Listing 4. Code snippets of Universe.sol in Augur

alternative outcome becomes the new Tentative Winning Outcome. This process happens every 24
hours.

The contract that implements this process in Augur is Universe. Every 24 hours, the sweepInt-
erest function in Universe has to be executed to finalize the last round results and to start a new
round if required. Because this functionality is not feasible to implement in EVM, Augur instead
relies on external users to periodically poke sweepInterest.

Listing 4 presents the code snippet of our Universe contract implementation in SigSolid. We
define a delay signal event called DSig at line 4 and we define a handler function called Update for
this event (lines 9-13). The handler function calls sweepInterest. It also recursively emits the DSig
event with a delay of one day (in the number of blocks) at the end (line 13). Therefore once the first
DSig event is triggered (via the start_emit function), the Update function will be automatically
invoked once every 24 hours.

We deployed the new Universe contract together with the rest of contracts in Augur in our
SigChain platform. The deployed version of Augur operates successfully and the sweepInterest
function is automatically called every 24 hours as expected. This example highlights the expres-
siveness of SigSolid powered by SigVM. This recursive event handler pattern enables developers to
create customized infinite timer ticks conveniently. The desired handler function will be automati-
cally and periodically invoked as signal transactions by the execution engine of SigVM, as long as
the contract has enough native tokens to pay for the transaction fee of the recurring transactions.

7 RELATED WORK

Event-driven proxy services: On Ethereum, there are a number of proposals involving proxy
service of function executions in respondence to event emission. EventWarden [Li and Palanisamy
2020] is a proxy service for a user to create a smart contract specifying events to listen, the function
handler to call when an event occurs, and the service fee for the executor. Executors of the system
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monitor the event log, invoke the specified function, and earn a service fee in return. Similarly,
Ethbase [Ethereum 2018] provides a registry smart contract where users can deposit and subscribe
to an automatic function invocation service. When the specified event is seen in the log, miners
invoke the callback function accompanied by a proof of the event emission to the registry. Both
EventWarden and Ethbase are variants of off-chain relay server solutions, although they provide
incentives on chain via smart contracts so that any external user could act as an off-chain relay
server to send poke transactions to claim the reward. They share similar weakness as the off-chain
relay server solution, i.e., the reliance on external users to send poke transactions on time and their
willingness to pay high enough fees for these poke transactions to be packed on time. Different
from these approaches, our solution modifies the blockchain system to enable native support of
an event-driven execution. SigVM brings the whole execution process on-chain and completely
eliminates the dependency on off-chain relay actors.

Smart contracts programming: In addition to Solidity, a number of new languages have been
designed for smart contracts programming, including, Vyper [Team 2020], Simplicity [O’Connor
2017], Liquidity [OCamlPRO 2020], Sophia [eernity dev team 2020], Move [Blackshear et al. 2020],
DeepSEA [Sjoberg et al. 2019], and Obsidian [Coblenz et al. 2019]. Unlike SigVM, the above
languages do not support an event-driven execution model. Interestingly, because the event-driven
execution model is highly demanded and many smart contracts are unsecurely simulating such an
execution model via off-chain relay servers, SigVM also improves the security of these contracts by
eliminating the need of such insecure practice. Also the aforementioned languages either introduces
new syntaxes that leads to new learning curve for developers or suppress expressiveness in order
to gain security guarantees. On the other hand, SigSolid is a practical extension on Solidity with
minor changes in the syntax while improving security and usability of the language.

Recent smart contract languages such as RhoLang [Cooperative 2019], Scilla [Sergey et al.
2019], and Nomos [Das et al. 2021] replace inter-contract function calls with message-passing
mechanisms to eliminate bugs like re-entrance. Although those message-passing mechanisms are
also asynchronous, they behave otherwise like function calls and cannot implement the desired
event-listener model to eliminate off-chain relay servers. In fact, it would be difficult to implement
many DeFi contracts like MakerDAO in those languages, because these contracts depend on
synchronous inter-contract function calls. Making a function call asynchronous via message-
passing may make such a contract vulnerable to malicious manipulation attacks that front-run the
asynchronous massage-passing transaction.

General purposes programming languages such as JavaScript support event-driven asynchronous
programming. However, they are not commonly used to write smart contracts.

Security and correctness validation: Another path taken by many to improve the security of
smart contract programming is through static verification and runtime validation tools. There is
a rich body of literature on detecting vulnerabilities in smart contracts through static analysis
and modular verification [Bhargavan et al. 2016; Hildenbrandt et al. 2018; Kalra et al. 2018; Luu
et al. 2016; Nikoli¢ et al. 2018; Permenev et al. 2020]. For instance, Oyente [Luu et al. 2016] uses
symbolic executions to verify smart contracts against various attacks including re-entrance and
mishandled exception attacks. Verx [Permenev et al. 2020] uses delayed abstraction to detect and
verify temporal safety properties automatically. Solythesis [Li et al. 2020a] inserts runtime checks
to enforce customized validation rules. KEVM [Hildenbrandt et al. 2018] defines a formal semantics
of EVM in K and verifies smart contracts against user-defined specifications. These techniques
enhance security of smart contract programming mostly by preventing unintended behaviors in
smart contract codes and cannot be used to eliminate the dependency on off-chain relay servers.

Scheduled transaction execution: Bitcoin supports a native mechanism called timelocks to delay
transaction execution [Antonopoulos 2017]. The transaction-level timelock feature can be utilized
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by specifying an execution delay with the nLocktime field. Additional timelock features, Check
Lock Time Verify (CLTV) and Check Sequence Verify (CSV), were introduced later to the scripting
language. CLTV limits the availability of the associated Unspent Transaction Output (UTXO) until
a certain age. CSV utilizes the the value of nSequence, a transaction field, to prevent mining of
a transaction until the time limit specified for the UTXO is met. These features are proven to be
useful in layer 2 designs, such as state channels and the Lightning Network. The timelock features
provides a convenient way to delay transaction execution on Bitcoin. However, with the lack of
programmability on Bitcoin and the difficulty of generalizing such a design to non-UTXO networks,
the usability of such a design is limited. Another implementation of delayed or periodic transaction
is to setup relay servers through the network client as we discussed before this is not desirable.

8 LIMITATIONS
New we discuss SigVM’s limitations and potential vulnerabilities.

e SigVM does not remove off-chain dependencies of a protocol if the protocol needs external
data like asset prices. However, SigVM removes the reliance on off-chain relay servers to
poke different contracts of the protocol to propagate new data across those contracts.

e Signal transactions might not be executed immediately when the delay period expires. To

address the issue that can be caused by the delayed execution of signal transactions, we

proposed the locking mechanism to allow users to lock smart contracts while waiting for
signal transactions to be executed.

SigVM requires that smart contracts with handler methods to consistently have sufficient

funds to pay for the signal transactions. However, note that transactions to top-up handler

contracts’ funds in SigVM are both less time-critical and significantly less frequent than the
poking transactions used to simulate event-driven execution in EVM.

It is possible that two contracts as described in Remark 5.1 run into a deadlock. For instance,

this will happen if each contract’s signal event depends on the signal event of the other

contract. In this case, the two signal transactions that created the deadlock will be reverted
by SigVM and become no-ops. To resolve the deadlock, the two contracts can use the locking

whitelist mechanism provided by SigVM to resolve the deadlock as explained in Remark 5.1.

e Unmaintained smart contracts risk to be exploited by miners to mine gas tokens by emitting
spurious signal events targting those contracts. However, note that our gas mechanism is
designed SigVM based on the Ethereum EIP-1559 protocol [Buterin et al. 2019] and the
exploitation described above is profitable for attackers only if EIP-1559 is not enabled in the
environment. Furthermore, SigVM allows a smart contract to detach its handler method from
an event emitter to stop listening to spurious signal events and prevent the smart contract
from wasting its gas to pay for signal transactions.

9 CONCLUSION

As smart contracts become more complicated and inter-dependent with each other, the event-driven
execution model is an increasingly demanded feature. Unsatisfied by current blockchain virtual
machines, smart contracts start to use unreliable mechanisms such as off-chain relay servers to
insecurely simulate event-driven execution. Unlike other software applications smart contracts also
pose new challenges for integrating an event-driven execution model, e.g., decentralized runtime
environment and incentive mechanisms. SigVM provides the first blockchain virtual machine with
an integrated solution to natively enable event-driven execution models on-chain. Such automatic
transaction execution eliminates the poking of relay servers. It reduces network congestion. Also,
the contract locking mechanism avoids unexpected contract interactions before signal transaction
is executed. For instance, for the MakerDAO market regular transactions will be disabled before
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the spot prices are updated. In addition, under the new gas price mechanism for signal transactions,
the extra gas price ratio will incentivize miners to execute signal transactions ahead of regular
transactions. It will allow to prioritize signal transactions and execute them in the desired block
delay.

SigVM is developed as an extension of EVM allowing an easy integration into blockchains that
work with EVM-based execution environment, e.g., Avalanche, Conflux, and Near, to maintain
compatibility (due to the popularity of the EVM stack for developers).
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