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Abstract—This work studies hardware complexity (physical level 
characteristics) of the recently proposed compacted matrix 
instruction scheduler for dynamically scheduled, superscalar 
processors. Previous work focused on the matrix scheduler’s 
architecture and argued in support of its speed and scalability 
advantages; however, neither actual physical-level investigations 
nor models were reported for it.  Using full-custom layouts in a 
commercial 90 nm fabrication technology, this work investigates 
the latency and energy variations of the compacted matrix and its 
accompanying logic as a function of the issue width, the window 
size and the number of global checkpoints. This work also 
proposes an energy optimization that throttles unnecessary pre-
charges and evaluations. This optimization reduces energy by 
10% and 18% depending on the scheduler size. 

Keywords: Compacted matrix schedulers, Physical level 
implementation, Latency, Energy. 

1.  INTRODUCTION 
Dynamically-scheduled processors exploit instruction 

level parallelism by buffering instructions and scheduling 
them potentially out of the program order. The instruction 
scheduler, responsible for the buffering and scheduling, 
typically comprises wakeup and select sides. Instructions wait 
in the wakeup stage to become ready, i.e., until all their input 
operands become available. The select side chooses a set of 
ready instruction to be sent for execution taking resource 
constraints into consideration. The scheduling loop formed 
between the wakeup and the select sides is critical for 
performance  [6]. This scheduling loop’s delay is a function of 
the scheduler size (often synonymous to the window size) and 
to a lesser extent of the issue width.  

Scheduler is a performance-critical component of 
processors. Large schedulers by issuing more instructions 
every cycle can improve the instruction per cycle (IPC) 
completion rate. However, commercial processors do not use 
large schedulers because they are slow, hence negating the 
performance benefits of higher IPC (e.g., the Intel and AMD 
desktop/server processors have integer scheduler sizes of 24 to 
32 entries). Larger and hence slower schedulers decrease clock 
period, which offset any IPC benefits gained through using 
them, and hence lead to lower overall performance.  

The instruction scheduler’s wakeup side serves three roles: 
i) it holds instructions waiting for their inputs to be produced, 
ii) it matches waiting instructions with incoming results, and 
iii) it identifies ready-for-execution instructions (all input 
operands are available). The matching functionality of the 
wakeup can be implemented using content addressable 
memories (CAMs)  [1]  [6] or dependency matrices  [1]  [3]. The 
latter is faster and consumes less power than the former. The 
compacted matrix scheduler (CMS) exploits typical program 
behavior to reduce the matrix width, and hence the wakeup 
latency  [5]. CMS uses an indirection table, called wakeup 
allocation table or WAT, to manage the subscription of 
columns serving as communication channels where producer 
instructions wake up their consumer instructions. 

Although arguments have been made in support of CMS’s 
speed and scalability advantages  [5], neither actual physical 
level measurements nor models have been reported for it. 
Models can be used by computer architects to study the 
latency and energy of various alternatives during early stages 
of architectural level exploration where physical-level 
implementation is either impossible to develop, or 
unaffordable due to time and/or cost constraints. Accordingly, 
this work investigates the delay and energy variations of the 
CMS and WAT as a function of the issue width (IW), the 
window size (WS), and the number of speculation-recovery 
global checkpoints (NoGCs).  

For this investigation, full-custom implementations were 
developed in a commercial 90 nm fabrication technology. To 
the best of our knowledge, this is the first work to study the 
physical-level implementation and optimizations of CMS and 
checkpointed WAT. A physical-level study is further useful in 
exposing design inefficiencies or optimization opportunities. 
Accordingly, this work proposes an energy optimization that 
throttles pre-charge and evaluation for unallocated matrix 
columns. This optimization reduces energy depending on the 
scheduler size (e.g., for 32×20 and 64×20 matrices, this 
optimization reduces energy by 10% and 18% respectively). 

The rest of this paper is organized as follows: Section  2 
reviews CMS and WAT. Section  3 and  4 discusses physical-
level implementation and evaluation results respectively. 
Finally, Section  5 summarizes key findings.  



2. BACKGROUND 
In typical modern processors, instructions first pass 

through register renaming, and then enter the instruction 
scheduler where they wait until they can proceed and execute. 
The instruction scheduler comprises wakeup and select sides. 
The wakeup side keeps track of the data dependencies among 
WS instructions (without loss of generality, we assume that 
the window size and the scheduler size are the same).  An 
instruction remains dormant while some of its input/source 
operands are still outstanding. Once all of the source operands 
of an instruction become ready, the instruction is “woken up” 
and becomes ready to send execution request to the select 
logic. The wakeup side produces a vector of size WS showing 
the ready status of all of its instructions. The select side 
chooses at most IW instructions of those marked as ready in 
the request vector taking into consideration resource 
constraints (e.g., availability of functional units). The select 
side uses a priority encoder that typically chooses the oldest 
ready instruction to be sent for execution. 

 The rest of this section reviews three scheduler 
architectures: the CAM-based scheduler, the regular 
(uncompressed) matrix-based scheduler and the compacted 
(compressed) matrix-based scheduler. 

2.1 CAM-Based Scheduler 
Depicted in Figure 1, CAM-based scheduler (e.g., 

implemented in MIPS R10000) has WS entries. Each entry 
includes a tag field and a ready bit per source operand  [6]. As 
up to IW instructions are selected for execution, their result 
tags (e.g., indexes of the physical registers or reservation 
stations) are broadcast on the result buses. Broadcasting of a 
result tag is delayed for an appropriate number of clock cycles, 
defined by the instruction’s execution latency. Each result bus 
is connected to comparators, one per source operand tag at 
each entry. The comparators match the waiting source operand 

tags against the result tags. For X instructions, each having Y 
source operands, and with Z result broadcast buses, 
X×Y×Z×Log2(WS) single-bit comparators are required; assuming 
that window size (WS) is equal to the number of physical 
registers. Once all source operands for an instruction become 
ready, it sends an execution request to the select logic. 

2.2 Matrix-Based Schedulers 
The conventional WS×WS matrix scheduler has a row and a 

column per instruction  [1]  [3]; instruction’s column index and 
row index are the same as its scheduler entry index. A row 
records the instruction’s input dependencies whereas a column 
marks instruction’s true output dependencies. The matrix 
operates as follows. A matrix row c is allocated to an 
instruction when it enters into the scheduler. For each source 
operand that is still pending, if the instruction at the scheduler 
entry c consumes the result produced by the instruction at 
scheduler entry p, matrix cell (c,p) is set to one. Just before an 
instruction produces its result, it clears all cells along its 
associated column. In this way, the producer notifies all its 
consumers of its result availability. When a row is all zero, the 
corresponding instruction turns on its row-ready bit in order to 
send an execution request to the select logic.  

Figure 2(a) to (c) illustrate subsequent snapshots of the 
wakeup matrix for an eight-entry instruction scheduler (Q).   
In addition to a matrix row and a matrix column, a Q entry is 
associated with an instruction; each Q entry maintains a 
destination tag, source tags and a valid bit. These fields are 
used during executing instruction and clearing instruction’s 
associated column. The scheduling decisions are performed 
using the matrix cells alone. In this discussion, QX refers to the 
instruction stored at scheduler entry x. At time T=0, Q has five 
valid entries. The cell (1,7) is set since Q1 depends on Q7 . Q7 
is ready since its row is all clear. In superscalar processors, up 
to IW instructions can be issued (i.e., sent for execution) per 
cycle. Also, up to IW instructions can be renamed and 
allocated into Q. At time T=1, Q7 issues and accordingly 
clears its column 7, resulting in Q1 and Q4 becoming ready. 
Also, at time T=1, two new instructions are simultaneously 
allocated into Q0 and Q6 respectively. When new instructions 
enter into Q, their dependencies are recorded in the matrix. Q0 
uses R11, produced by Q1, hence cell (0,1) is set. Q0 also uses 
R2 that is ready. For Q6, the cells (6,1) and (6,4) are set since 
Q6 uses R14 and R12 respectively. At time T=2, Q1 and Q4 
become ready, hence their columns and scheduler entries are 
cleared. As a result, Q0 becomes ready. However, Q5 and Q6 
are still waiting for Q2 producing R14.  

Figure 2 : Scheduling with the dependency matrix.  

Figure 1: CAM-based wakeup 



2.3 Compacted Matrix Scheduler (CMS) 
The size of the conventional matrix is proportional to WS2 

making larger schedulers difficult to implement. However, in 
practice similar IPC performance can be achieved using a 
compacted matrix with fewer columns  [5]. Several 
observations motivated compacted matrix schedulers: 
(i) irrespective of the scheduler size, about 70% of the 
instructions either have no consumer(s) in the scheduler or do 
not need to broadcast any result (e.g., branch or store); (ii) 
large schedulers are rarely full of producers and are often still 
refilling from pipeline flushes; and (iii) matrix snapshots 
during execution show that a few active dependencies exist 
per cycle, hence most of the WS matrix columns are unused at 
any given time and the matrix width can be reduced. Previous 
work demonestates that sufficient number of matrix columns 
are respectively 12-16 for typical (e.g., up to 128) and 20 for 
larger scheduler sizes  [5].  

CMS takes advantage of the aforementioned observations 
and postpones allocating a column to an instruction until its 
first consumer enters the scheduler. Reducing the matrix width 

improves the speed of larger schedulers at the cost of a 
negligible IPC performance loss  [5].  CMS uses a redirection 
table, called wakeup allocation table or WAT, to assign 
columns to producer instructions. WAT is required because in 
compacted matrix unlike the conventional matrix, the 
instruction’s column index is not the same as its scheduler 
entry index. The WAT manages column subscriptions by 
finding producers’ column indices for consumer’s source 
operands. To assign a column to a producer, WAT assigns the 
column to the destination register of the instruction. A column 
free list (CFL) is also required to keep a list of free columns.  

2.3.1 Wakeup Allocation Table 
Shown in Figure 4, the WAT has one entry per architectural 

register. Each WAT entry can be in one of the following four 
states: unallocated (the register value is unavailable and the 
producer instruction has not been assigned a column yet), 
allocated (a column is assigned to the producer, but producer’s 
result, register value, is unavailable), ready (the register value 
is available), and de-allocated (the column was released after 
the producer and/or all of its consumers left the scheduler). 
The WAT entry width is Log2(WS)+2 as it stores either a row 
(or scheduler entry) index or a column index and two bits to 
encode one of the four WAT states. The WAT operations are 
WAT lookup (read), WAT update (write), GC allocation and 
GC restoration.  

The rest of this section describes WAT operations and 
WAT outputs by means of an example. Using the instruction 
sequence shown in Figure 3, the rest of this section discusses 
the following scenarios: a producer entering the scheduler 
(CASE 1), the first consumer enters the scheduler (CASE 2), a 
subsequent consumer enters the scheduler (CASE 3), the 
producer executes (CASE 4), and  the producer’s associated 
column is released (CASE 5).  

CASE 1 – Producer enters the scheduler (WAT Update):  
When a new instruction enters the scheduler, the WAT entry 
corresponding to the destination architectural register is 
updated with the instruction’s row index (or scheduler entry 
index); however, no column is allocated for the instruction. 
For example, when I1 with destination R1 enters Q2, the WAT 
entry associated with R1 is set to “unallocated, 2”, meaning 
that R1’s value will be produced by I1 at Q2,. 

In superscalar processors, up to IW scheduler entries may 
be concurrently allocated. Hence, up to IW WAT updates may 
proceed simultaneously. However, when write-after-write 
(WAW) dependencies exist, only the last update should 
proceed into the WAT. Hence, WAW dependencies must be 
detected among the IW co-renamed instructions; the 
destination of each instruction is compared with those of its 
preceding instructions. The WAT update is restricted to the 
last writer for a specific destination architectural register (I4 at 
Q7 updates the WAT entry for the destination R3). 

CASE 2 – First consumer enters the scheduler (a WAT 
Lookup followed by a WAT Update): Assume that I2 with 
source R1 is allocated into Q4. The WAT lookup for source R1 
returns “unallocated, 2”, indicating that R1 is produced by I1 at 
Q2. Since I2 is the first consumer of I1, a free column (e.g., 3) 

Figure 4: geometries and block diagrams for the CMS and the WAT 

Figure 3: Instruction sequence example 



is allocated for I1 by the CFL. The WAT entry for R1 is set to 
“allocated, 3”, meaning that as of now column 3 belongs to I1, 
the producer of the architectural register R1. I1 must also be   
informed of its newly-assigned column index so that it can 
clear it when I1’s result becomes ready. An extra field per 
scheduler entry keeps the column index if any column is 
allocated. Finally, the matrix cell (4,3) is set to one to record 
the read-after-write (RAW) dependency of I2 on I1.  

CASE 3 – Subsequent consumer enters the scheduler 
(WAT Lookup): I3 at Q6 is a subsequent consumer of R1. The 
WAT lookup for source R1 returns “allocated, 3”, and the 
matrix cell (6,3) is set to record the RAW dependency of I3 on 
I1. This and the preceding scenarios show that a WAT lookup 
for a source architectural register returns either the producer’s 
row index (CASE 2) or column index (CASE 3).  

In superscalar processors, if RAW dependencies exist 
between a pair of IW co-renamed instructions, the producer’s 
columns index (e.g., I1) may be assigned at the same cycle a 
consumer needs it (e.g., I2 or I3). However, the WAT will not 
be updated by the end of the cycle. Hence, RAW dependencies 
among co-renamed instructions must be detected as depicted 
in Figure 5; the source of each instruction is compared against 
the destinations of all its co-renamed preceding instructions. 
The circuitry for detecting RAW and WAW dependencies can 
be shared between the renaming’ register alias table (RAT) 
and the WAT, since renaming also requires this information. 

CASE 4 – Producer completes execution (WAT Update):  
When producer I1 starts execution, after an appropriate number 
of cycles, depending on I1’s execution latency, its column 
(column 3 has been assigned to I1) is cleared and matrix-based 
wakeup proceeds (Section  2.3.3). At this point, the R1’s WAT 
state changes to ready. If the producer clears its column at the 
same time a consumer enters the scheduler, the column reset is 
prioritized over the dependency-indauced matrix cell set. 
Otherwise, deadlock can occur as the consumer would await a 
never-happening column reset.  

CASE 5 – Column is released (WAT Update): A column 
is freed if (i) its producer and/or (ii) all its consumers have left 
the scheduler. The latter is an optimization for when a pipeline 
flush occurs between a register’s producer and consumer(s). 

Even if the producer stays in the scheduler, the register state 
can be changed to de-allocated and its column can be freed. If 
the processor supports speculative scheduling (i.e., consumers 
of a load are granted execution predicting a hit in the L1 data 
cache), a column is not freed once the producer writes back its 
result. If the load misses, the consumers will be reset in the 
scheduler and wait for a second column broadcast from the 
load upon hit. Thus, an instruction can broadcast on the same 
column multiple times; in this case, only after the producer 
leaves the scheduler, its associated column will be freed. 

2.3.2 Recovery from Mispeculation 
The WAT like the RAT is a speculative structure and 

requires support to recover from mispeculations. For WAT, 
recovery can be done using global checkpoints (GCs); GCs are 
copies of the WAT content taken when a rollback due to 
mispeculation is possible (e.g., on predicted branches). 

Checkpointing for the matrix is not required as long as the 
scheduler entries’ valid bits for squashed instructions are 
cleared. Some rows may keep obsolete information when 
pipeline flushes occur. However, obsolete information does 
not harm if the select logic is prevented from receiving false 
requests. To do so, for each entry, the valid bit is ANDed with 
the ready bit to produce the request to the select logic.  

2.3.3 Dependency Matrix Operations 
Shown in Figure 4, the compacted matrix has WS rows and 

20 columns (Section  2.3). The matrix operates as follows: A 
matrix row is updated for a new instruction r by finding the 
column numbers for the producers of the instruction’s source 
operands from the WAT (e.g., c1 and c2) and setting the matrix 
cells (e.g., (r,c1) and (r,c2)). These steps proceed in parallel 
with rename and dispatch (writing the instruction into the 
scheduler). Before an instruction completes execution, its 
matrix column is cleared. When the instruction’s matrix row 
cells are all zero, its row-ready bit is set, interpreted as a 
request by the select logic.  Figure 6 summarizes the actions 
that take place in the CMS and WAT.    

3. PHYSICAL-LEVEL IMPLEMENTATION 
This section describes the physical level implementation 

of the WAT and CMS. 

3.1 WAT 
A non-checkpointed WAT is a multi-ported register file. 

Assuming a MIPS-like instruction set architecture, where the 
instructions may have at most two source operands and one 
destination operand, the WAT needs to support 3xN reads and 
N writes per cycle, where N is the number of instructions 
required to be renamed per cycle. 2xN read ports are used to 
rename the two source operands, and another N read ports are 
needed to read the current mappings of the destinations for the 
purpose of recovery using the reorder buffer  [7]. N write ports 
are also used to write new mappings for the destinations.  

 

Figure 5:  RAW dependency checking 

Figure 6: Actions included in various pipeline stages for WAT and CMS 



Depicted in Figure 7, a checkpointed WAT embeds GCs, 
copies of the WAT cells. Figure 7(a), shows the main WAT 
cell with multiple read and write ports. The GC cells, depicted 
in Figure 7 (b), are organized in a bi-directional shift register, 
shown in Figure 7 (c). Figure 7 (d), (e) and (f) respectively 
illustrate the precharge circuitry, the sense amplifier logic used 
during reads, and the write drivers used during writes.  

This work uses the serial-access-buffer (SAB) GC 
organization mechanism as it is faster and simpler than the 
alternative  [7]. SAB organizes the GCs in a bi-directional shift 
register with connections between adjacent cells; only one of 
the GCs is connected to the main WAT cell through pass 
gates  [1]  [7]. GC allocation is done by shifting the GC cells to 
the right, copying the WAT data cell to the adjacent vacant 
position. Restoring from a GC may require multiple steps 
since the appropriate GC must be shifted into the WAT main 
cell. A SAB GC cell consists of a register and a multiplexer 
controlling the shift direction. SAB uses two non-overlapping 
clocks and two external control signals irrespective of the 
number of GCs. Multiple reads may access the same WAT 
entry; hence, the main WAT cell must be capable of driving a 
capacitance proportional to the number of WAT ports and 
GC(s). To protect the cell’s data during multiple accesses, 
decoupling buffers isolate the WAT data cell and the read 
ports  [9]  [1]. Differential read and write operations are used 
due to their superior latency, energy and noise margins. To 
reduce power, the following techniques were employed: (i) 
pulse operations for the wordlines, periphery circuits and 
sense amplifiers, (ii) multi-stage static CMOS decoding, and 
(iii) current-mode read and write operations.  

3.2 Compacted Matrix 
Figure 8(a) shows the architecture of the compacted matrix 

scheduler and its interface with the select logic. Figure 8(b) 
also illustrates the matrix column’s transistor-level 
implementation. The matrix receives its inputs, the grant (or 
upcoming execution completion) signals, from the select logic, 
and produces the row-ready outputs (the data inputs are active- 
low). When a new instruction is allocated into a scheduler 
entry, its associated matrix row is updated with a bit pattern 
where the dependencies for instruction sources are set by the 
data decoders. Up to IW instructions may enter the scheduler 
concurrently; hence, up to IW matrix rows may be updated 
simultaneously. Therefore, the matrix includes IW data 
decoders that provide IW sets of bit patterns, each with as 
many bits as the number of matrix columns (20 in our 
implementation as per discussion of Section  2.3). 

Each matrix cell consists of an SRAM cell. The write ports 
for update and read ports for producing row-ready outputs are 
single-ended. Up to IW instructions may write into IW 
different matrix rows simultaneously. Hence, each matrix cell 
needs IW write ports. Figure 8(b) shows the transistor-level 
implementation of a column. The grant signals entering from 
the right side become vertical and are sent over the 
corresponding columns. The vertical broadcast signals clear 
the corresponding columns. A bitwise-NOR of all matrix cells 
along a row generates the row’s row-ready output (single-
ended read ports implement the NOR gate). Up to IW different 
columns may be cleared simultaneously. The row-ready 
signals are first pre-charged to high. A single set matrix cell 
per row (in this implementation a set cell keeps the value zero) 

 \ 

 
Figure 7: WAT building blocks (a) Multi-ported SRAM cell, (b) SAB GC cell, (c) SAB GC organization mechanism, (d) pre-chargers, (e) sense amplifiers 

and (f) write drivers 



can pull-down the row-ready to zero. If all row cells are unset 
(i.e., all cells are set to one), the row-ready stays high, 
interpreted as a request for execution by the select logic. 
Producing all row-ready output signals proceeds in parallel.  

For column subscription, an additional SRAM cell per 
column is set (to zero) to indicate that the column is currently 
allocated. Up to IW columns may be allocated per cycle 
during renaming; hence, each column-subscription cell, which 
exist per matrix column, needs IW read/write ports. These 
ports are also used for column de-allocation (set column-
subscription cell to one). Up to IW columns may need to be 
cleared during result write-back. For each column, the 
column-subscription cell data is ANDed with the input grant 
to determine if broadcast on the column is permitted. In 
compacted matrix, compared to a conventional matrix, the 
row-ready critical path has one extra gate delay penalty due to 
the column-subscription technique; however, the compacted 
matrix’s reduced latency is supposed to offset this penalty.  

If the grant signal for a column is active, the normal 
precharge and evaluation operations proceed; otherwise, they 
are unnecessary. To prevent unnecessary activities, and hence 
to reduce the energy consumption, an extra switch (pass 
transistor) per column, shown circled in Figure 8(b), is added. 
For 32×20 and 64×20 matrices, this optimization reduces total 
energy by 10% and 18% respectively.  

4. EVALUATION 
This section presents the latency and energy measurements 
from the physical implementation for CMS and WAT. 
Section  4.1 details the implementation and measurement 

methodologies. Sections  4.2 and  4.3 present the latency and 
energy measurements as well as analysis for the CMS and 
WAT respectively. Finally, Section  4.4 presents empirical 
models for quick estimation of delay and energy. 

4.1 Design and Measurement Methodology 
We restrict our attention to WATs with 0, 4, 8 or 16 GCs 

because previous work demonstrated that for the SRAM-based 
RATs, similar in structure to the SRAM-based WATs 
considered in this work, 16 GCs or less are sufficient to 
achieve performance close to what is possible with infinite 
GCs  [4]. The number of architectural registers is either 32 or 
64 corresponding to typical processors without or with 
floating-point register sets. The number of physical registers 
varies from 32 to 256 in power of two steps. We developed 
full-custom layouts for all components using the Cadence tool 
set in a 90 nm commercial fabrication technology with a 1.2V 
supply voltage. For circuit simulations, SpectreTM was used, 
and worst-case latency and energy values are reported.  

Circuit designs can be tailored to achieve different latency 
and energy tradeoffs. In an actual commercial design, a target 
latency and/or energy is decided and used as a specification 
for tuning components. In lieu of an actual specification for 
the target operating frequency, we used CACTI 4.2  [8], a tool 
providing latency, power and area estimations for caches and 
SRAMs, to obtain upper bounds on the latencies of SRAMs 
that would be similar in size to the WAT  [8]. Using CACTI, 
for the base 4-way superscalar WAT, we determined an upper 
bound on the critical path delay by estimating the delay of a 
64-bit, 64-entry SRAM with 12 read and four write ports. This 

 \ 

Figure 8:  (a) Matrix overcall organization and (b) Matrix column’s transistor level implementation 
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Figure 9: Matrix read and write latency for (a) 2-way and (b) 4-way matrix 
schedulers. 
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Figure 10: Matrix read and write energy for (b) 2-way and (b) 4-way 
schedulers.

upper bound is reasonable since non-checkpointed 
WATs/RATs are identical to multi-ported SRAMs.  

4.2 Compacted Matrix  
Figure 9 (a) and (b) report compacted matrix read and write 

latencies for 2-way and 4-way superscalar schedulers 
respectively. Figure 10 shows the corresponding energy 
measurements. The number of matrix rows (equal to WS) 
varies from 32 to 512. Each matrix has 20 columns 
(Section  2.3) since using column subscription technique 20 
columns are sufficient for large scheduler sizes.  

The matrix read delay (wakeup delay) is the time period 
between the select logic’s grant activation and row-ready 
discharge. Increasing the number of matrix rows increases 
matrix read latency as it increases the size, and hence the 
latencies of the decoder and select logic’s priority encoder. For 
example, when WS increases by 8x from 64 to 512, read 
latency increases by 46.7%.  The scheduler delay is the sum of 
the matrix read delay (wakeup delay) and the select logic 
delay. The scheduler delay increases logarithmically by 
increasing the number of matrix rows (equal to WS) when IW 
is fixed. The matrix write delay is the time period between the 
dependency-data preparation and the matrix cell’s value 
change. Matrix read latency is longer that write latency. For a 
fixed IW, matrix write delay and energy increase 
logarithmically for larger entry counts (equal to WS).  

Increasing the number of matrix columns (matrix width) 
increases row-ready NOR gate’s size, and hence the wakeup 
delay. Increasing the matrix width also increases the load on 
the row clock driver, and hence the driver’s delay. By 
transistor resizing and output buffering, significant delay 
increase can be avoided at the cost of more energy. While we 

do not show these results in the interest of space, for a fixed 
WS and IW, both read and write latencies increase linearly 
with a very small slope for larger matrix widths. For example, 
for the 64×20 matrix, the read delay increases by 21.6% as the 
number of column increases from 16 to 20. 

Previous work demonstrate the speed and power efficiency 
of the conventional (uncompressed) matrix scheduler 
compared to the CAM-based scheduler  [1]. The same results 
are applicable to the compacted matrix schedulers.  

4.3 WAT  
Figure 11 report WAT read and write latency as the entry 

width varies from 7 to 11 (corresponding to schedulers of 32 
to 512 entries). For each entry width, four stacked bars are 
presented each for WATs with 0, 4, 8, and 16 GCs.  

For a fixed IW and NoGCs, WAT latency increases 
logarithmically with the entry width. For example, WAT read 
and write latencies increase by 13% and 11.6% as the entry 
width increases from 8 to 11 (WS increases from 64 to 512) 
for the 4-way WAT with no GCs.  

For a fixed WS and IW, both latency and energy increase 
exponentially with increasing NoGCs. For example, for the 4-
way WATs, writes are 1.1%, 2.5% and 6.7% slower with 4, 8 
and 16 GCs compared to the non-checkpointed WAT. 
Previous work shows that for RAT using very few GCs (e.g., 
four) leads to optimal overall performance (execution time) 
because of the impact of increasing NoGCs on renaming 
latency [6]. Our results show a similar trend for the WAT. 

Figure 12 shows the WAT energy as a function of the entry 
width (log2(WS)+2) and NoGCs. Energy increases slightly by 
increasing the entry width due to the additional bitlines and 
sense amplifiers, and longer wordlines. The GC allocation’s 
and restoration’s latency and energy are not shown in the 
interest of space. These percentage of these operations is 
negligible compared to that of the WAT reads and writes . 

A comparison of the 2-way and 4-way delay measurements 
for the CMS and WAT suggests that latency increases 
quadratically as the issue width (IW) increases. Increasing IW 
increases the number of read and write ports for both CMS 
and WAT; hence, it significantly increases latency and energy.  

4.4 Empirical Models  
This work also developed empirical delay and energy 

models for the CMS and WAT. Projections from circuit level 
delay and energy characterization data available from physical 
level implementations can be used in formulating empirical 
models. In other words, our empirical models were developed 
by extrapolating on the measurements of the organizations that 
we implemented in 90 nm technology.  These models can 
predict CMS and WAT delay as a function of several 
architectural parameters. These models can be used by 
computer architects during architectural level explorations 
where many different configurations are considered while 
developing physical level implementations for them is 
unaffordable due to time and cost constraints. As an example, 
we present latency models for the 4-way schedulers. Equations 
(1) and (2) estimate matrix read and write latencies, while 
equations (3) and (4) estimate WAT read and write latencies.  
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Figure 11: WAT read and write latency for (a) 2-way, and (b) 4-way schedulers 

 
Matrix Read Delay (ps) = 4.1128×WS0.6159                                  (1) 
 
Matrix Write Delay (ps) = 3.8119×WS 0.6159                                 (2) 
 
WAT Read  Delay (ps)  = 1.7543×e0.1524NoGCs  + 22.77×ln(WS) + 
330.42            NoGCs>=0, WS>=128                                    (3)   

 
WAT Write Delay (ps) = 5.5818×e0.1322× NoGCs +  13.946×ln(WS) + 
330.42            NoGCs>=0, WS>=128                                    (4) 

5. CONCLUSIONS 
This work investigates the delay and energy variations of 

the recently proposed CMS and WAT, its accompanying logic. 
Previous work discussed the speed and scalability advantages 
of CMS; however, neither actual physical-level investigations 
nor models were reported for it. Using full-custom layouts in a 
commercial 90 nm fabrication technology, this work 
investigated the latency and energy variation of CMS and 
WAT as a function of the issue width, the window size and the 
number of global checkpoints. An energy optimization for the 
matrix was also proposed that reduces energy by 10% or 18% 
depending on the scheduler size. 

Our results show that for a fixed issue width and global 
checkpoint count, CMS delay and energy increase 
logarithmically with increasing the number of matrix rows (or 
the window size). For a fixed window size, issue width and 
global checkpoint count, the matrix delay increases linearly 

with increasing the number of columns. For a fixed issue 
width and global checkpoint count, WAT latency increases 
logarithmically for larger window sizes. For a fixed window 
size and issue width, both WAT latency and energy increase 
exponentially with increasing checkpoint count. The results of 
this work support the previously claimed latency and energy 
scalability of the compacted matrix schedulers. 
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Figure 12: WAT read and write latency and energy for (a) 2-way , and (b) 4-way schedulers. 


