
A Physical-Level Study of the Compacted Matrix
Instruction Scheduler for Dynamically Scheduled

Superscalar Processors
Elham Safi, Andreas Moshovos, and Andreas Veneris

Electrical and Computer Engineering Department
University of Toronto

Toronto, Canada
{elham, moshovos, veneris} @eecg.toronto.edu

Abstract—This work studies hardware complexity (physical level
characteristics) of the recently proposed compacted matrix
instruction scheduler for dynamically scheduled, superscalar
processors. Previous work focused on the matrix scheduler’s
architecture and argued in support of its speed and scalability
advantages; however, neither actual physical-level investigations
nor models were reported for it. Using full-custom layouts in a
commercial 90 nm fabrication technology, this work investigates
the latency and energy variations of the compacted matrix and its
accompanying logic as a function of the issue width, the window
size and the number of global checkpoints. This work also
proposes an energy optimization that throttles unnecessary pre-
charges and evaluations. This optimization reduces energy by
10% and 18% depending on the scheduler size.

Keywords: Compacted matrix schedulers, Physical level
implementation, Latency, Energy.

1. INTRODUCTION
Dynamically-scheduled processors exploit instruction

level parallelism by buffering instructions and scheduling
them potentially out of the program order. The instruction
scheduler, responsible for the buffering and scheduling,
typically comprises wakeup and select sides. Instructions wait
in the wakeup stage to become ready, i.e., until all their input
operands become available. The select side chooses a set of
ready instruction to be sent for execution taking resource
constraints into consideration. The scheduling loop formed
between the wakeup and the select sides is critical for
performance [6]. This scheduling loop’s delay is a function of
the scheduler size (often synonymous to the window size) and
to a lesser extent of the issue width.

Scheduler is a performance-critical component of
processors. Large schedulers by issuing more instructions
every cycle can improve the instruction per cycle (IPC)
completion rate. However, commercial processors do not use
large schedulers because they are slow, hence negating the
performance benefits of higher IPC (e.g., the Intel and AMD
desktop/server processors have integer scheduler sizes of 24 to
32 entries). Larger and hence slower schedulers decrease clock
period, which offset any IPC benefits gained through using
them, and hence lead to lower overall performance.

The instruction scheduler’s wakeup side serves three roles:
i) it holds instructions waiting for their inputs to be produced,
ii) it matches waiting instructions with incoming results, and
iii) it identifies ready-for-execution instructions (all input
operands are available). The matching functionality of the
wakeup can be implemented using content addressable
memories (CAMs) [1] [6] or dependency matrices [1] [3]. The
latter is faster and consumes less power than the former. The
compacted matrix scheduler (CMS) exploits typical program
behavior to reduce the matrix width, and hence the wakeup
latency [5]. CMS uses an indirection table, called wakeup
allocation table or WAT, to manage the subscription of
columns serving as communication channels where producer
instructions wake up their consumer instructions.

Although arguments have been made in support of CMS’s
speed and scalability advantages [5], neither actual physical
level measurements nor models have been reported for it.
Models can be used by computer architects to study the
latency and energy of various alternatives during early stages
of architectural level exploration where physical-level
implementation is either impossible to develop, or
unaffordable due to time and/or cost constraints. Accordingly,
this work investigates the delay and energy variations of the
CMS and WAT as a function of the issue width (IW), the
window size (WS), and the number of speculation-recovery
global checkpoints (NoGCs).

For this investigation, full-custom implementations were
developed in a commercial 90 nm fabrication technology. To
the best of our knowledge, this is the first work to study the
physical-level implementation and optimizations of CMS and
checkpointed WAT. A physical-level study is further useful in
exposing design inefficiencies or optimization opportunities.
Accordingly, this work proposes an energy optimization that
throttles pre-charge and evaluation for unallocated matrix
columns. This optimization reduces energy depending on the
scheduler size (e.g., for 32×20 and 64×20 matrices, this
optimization reduces energy by 10% and 18% respectively).

The rest of this paper is organized as follows: Section 2
reviews CMS and WAT. Section 3 and 4 discusses physical-
level implementation and evaluation results respectively.
Finally, Section 5 summarizes key findings.

2. BACKGROUND
In typical modern processors, instructions first pass

through register renaming, and then enter the instruction
scheduler where they wait until they can proceed and execute.
The instruction scheduler comprises wakeup and select sides.
The wakeup side keeps track of the data dependencies among
WS instructions (without loss of generality, we assume that
the window size and the scheduler size are the same). An
instruction remains dormant while some of its input/source
operands are still outstanding. Once all of the source operands
of an instruction become ready, the instruction is “woken up”
and becomes ready to send execution request to the select
logic. The wakeup side produces a vector of size WS showing
the ready status of all of its instructions. The select side
chooses at most IW instructions of those marked as ready in
the request vector taking into consideration resource
constraints (e.g., availability of functional units). The select
side uses a priority encoder that typically chooses the oldest
ready instruction to be sent for execution.

 The rest of this section reviews three scheduler
architectures: the CAM-based scheduler, the regular
(uncompressed) matrix-based scheduler and the compacted
(compressed) matrix-based scheduler.

2.1 CAM-Based Scheduler
Depicted in Figure 1, CAM-based scheduler (e.g.,

implemented in MIPS R10000) has WS entries. Each entry
includes a tag field and a ready bit per source operand [6]. As
up to IW instructions are selected for execution, their result
tags (e.g., indexes of the physical registers or reservation
stations) are broadcast on the result buses. Broadcasting of a
result tag is delayed for an appropriate number of clock cycles,
defined by the instruction’s execution latency. Each result bus
is connected to comparators, one per source operand tag at
each entry. The comparators match the waiting source operand

tags against the result tags. For X instructions, each having Y
source operands, and with Z result broadcast buses,
X×Y×Z×Log2(WS) single-bit comparators are required; assuming
that window size (WS) is equal to the number of physical
registers. Once all source operands for an instruction become
ready, it sends an execution request to the select logic.

2.2 Matrix-Based Schedulers
The conventional WS×WS matrix scheduler has a row and a

column per instruction [1] [3]; instruction’s column index and
row index are the same as its scheduler entry index. A row
records the instruction’s input dependencies whereas a column
marks instruction’s true output dependencies. The matrix
operates as follows. A matrix row c is allocated to an
instruction when it enters into the scheduler. For each source
operand that is still pending, if the instruction at the scheduler
entry c consumes the result produced by the instruction at
scheduler entry p, matrix cell (c,p) is set to one. Just before an
instruction produces its result, it clears all cells along its
associated column. In this way, the producer notifies all its
consumers of its result availability. When a row is all zero, the
corresponding instruction turns on its row-ready bit in order to
send an execution request to the select logic.

Figure 2(a) to (c) illustrate subsequent snapshots of the
wakeup matrix for an eight-entry instruction scheduler (Q).
In addition to a matrix row and a matrix column, a Q entry is
associated with an instruction; each Q entry maintains a
destination tag, source tags and a valid bit. These fields are
used during executing instruction and clearing instruction’s
associated column. The scheduling decisions are performed
using the matrix cells alone. In this discussion, QX refers to the
instruction stored at scheduler entry x. At time T=0, Q has five
valid entries. The cell (1,7) is set since Q1 depends on Q7 . Q7
is ready since its row is all clear. In superscalar processors, up
to IW instructions can be issued (i.e., sent for execution) per
cycle. Also, up to IW instructions can be renamed and
allocated into Q. At time T=1, Q7 issues and accordingly
clears its column 7, resulting in Q1 and Q4 becoming ready.
Also, at time T=1, two new instructions are simultaneously
allocated into Q0 and Q6 respectively. When new instructions
enter into Q, their dependencies are recorded in the matrix. Q0
uses R11, produced by Q1, hence cell (0,1) is set. Q0 also uses
R2 that is ready. For Q6, the cells (6,1) and (6,4) are set since
Q6 uses R14 and R12 respectively. At time T=2, Q1 and Q4
become ready, hence their columns and scheduler entries are
cleared. As a result, Q0 becomes ready. However, Q5 and Q6
are still waiting for Q2 producing R14.

Figure 2 : Scheduling with the dependency matrix.

Figure 1: CAM-based wakeup

2.3 Compacted Matrix Scheduler (CMS)
The size of the conventional matrix is proportional to WS2

making larger schedulers difficult to implement. However, in
practice similar IPC performance can be achieved using a
compacted matrix with fewer columns [5]. Several
observations motivated compacted matrix schedulers:
(i) irrespective of the scheduler size, about 70% of the
instructions either have no consumer(s) in the scheduler or do
not need to broadcast any result (e.g., branch or store); (ii)
large schedulers are rarely full of producers and are often still
refilling from pipeline flushes; and (iii) matrix snapshots
during execution show that a few active dependencies exist
per cycle, hence most of the WS matrix columns are unused at
any given time and the matrix width can be reduced. Previous
work demonestates that sufficient number of matrix columns
are respectively 12-16 for typical (e.g., up to 128) and 20 for
larger scheduler sizes [5].

CMS takes advantage of the aforementioned observations
and postpones allocating a column to an instruction until its
first consumer enters the scheduler. Reducing the matrix width

improves the speed of larger schedulers at the cost of a
negligible IPC performance loss [5]. CMS uses a redirection
table, called wakeup allocation table or WAT, to assign
columns to producer instructions. WAT is required because in
compacted matrix unlike the conventional matrix, the
instruction’s column index is not the same as its scheduler
entry index. The WAT manages column subscriptions by
finding producers’ column indices for consumer’s source
operands. To assign a column to a producer, WAT assigns the
column to the destination register of the instruction. A column
free list (CFL) is also required to keep a list of free columns.

2.3.1 Wakeup Allocation Table
Shown in Figure 4, the WAT has one entry per architectural

register. Each WAT entry can be in one of the following four
states: unallocated (the register value is unavailable and the
producer instruction has not been assigned a column yet),
allocated (a column is assigned to the producer, but producer’s
result, register value, is unavailable), ready (the register value
is available), and de-allocated (the column was released after
the producer and/or all of its consumers left the scheduler).
The WAT entry width is Log2(WS)+2 as it stores either a row
(or scheduler entry) index or a column index and two bits to
encode one of the four WAT states. The WAT operations are
WAT lookup (read), WAT update (write), GC allocation and
GC restoration.

The rest of this section describes WAT operations and
WAT outputs by means of an example. Using the instruction
sequence shown in Figure 3, the rest of this section discusses
the following scenarios: a producer entering the scheduler
(CASE 1), the first consumer enters the scheduler (CASE 2), a
subsequent consumer enters the scheduler (CASE 3), the
producer executes (CASE 4), and the producer’s associated
column is released (CASE 5).

CASE 1 – Producer enters the scheduler (WAT Update):
When a new instruction enters the scheduler, the WAT entry
corresponding to the destination architectural register is
updated with the instruction’s row index (or scheduler entry
index); however, no column is allocated for the instruction.
For example, when I1 with destination R1 enters Q2, the WAT
entry associated with R1 is set to “unallocated, 2”, meaning
that R1’s value will be produced by I1 at Q2,.

In superscalar processors, up to IW scheduler entries may
be concurrently allocated. Hence, up to IW WAT updates may
proceed simultaneously. However, when write-after-write
(WAW) dependencies exist, only the last update should
proceed into the WAT. Hence, WAW dependencies must be
detected among the IW co-renamed instructions; the
destination of each instruction is compared with those of its
preceding instructions. The WAT update is restricted to the
last writer for a specific destination architectural register (I4 at
Q7 updates the WAT entry for the destination R3).

CASE 2 – First consumer enters the scheduler (a WAT
Lookup followed by a WAT Update): Assume that I2 with
source R1 is allocated into Q4. The WAT lookup for source R1
returns “unallocated, 2”, indicating that R1 is produced by I1 at
Q2. Since I2 is the first consumer of I1, a free column (e.g., 3)

Figure 4: geometries and block diagrams for the CMS and the WAT

Figure 3: Instruction sequence example

is allocated for I1 by the CFL. The WAT entry for R1 is set to
“allocated, 3”, meaning that as of now column 3 belongs to I1,
the producer of the architectural register R1. I1 must also be
informed of its newly-assigned column index so that it can
clear it when I1’s result becomes ready. An extra field per
scheduler entry keeps the column index if any column is
allocated. Finally, the matrix cell (4,3) is set to one to record
the read-after-write (RAW) dependency of I2 on I1.

CASE 3 – Subsequent consumer enters the scheduler
(WAT Lookup): I3 at Q6 is a subsequent consumer of R1. The
WAT lookup for source R1 returns “allocated, 3”, and the
matrix cell (6,3) is set to record the RAW dependency of I3 on
I1. This and the preceding scenarios show that a WAT lookup
for a source architectural register returns either the producer’s
row index (CASE 2) or column index (CASE 3).

In superscalar processors, if RAW dependencies exist
between a pair of IW co-renamed instructions, the producer’s
columns index (e.g., I1) may be assigned at the same cycle a
consumer needs it (e.g., I2 or I3). However, the WAT will not
be updated by the end of the cycle. Hence, RAW dependencies
among co-renamed instructions must be detected as depicted
in Figure 5; the source of each instruction is compared against
the destinations of all its co-renamed preceding instructions.
The circuitry for detecting RAW and WAW dependencies can
be shared between the renaming’ register alias table (RAT)
and the WAT, since renaming also requires this information.

CASE 4 – Producer completes execution (WAT Update):
When producer I1 starts execution, after an appropriate number
of cycles, depending on I1’s execution latency, its column
(column 3 has been assigned to I1) is cleared and matrix-based
wakeup proceeds (Section 2.3.3). At this point, the R1’s WAT
state changes to ready. If the producer clears its column at the
same time a consumer enters the scheduler, the column reset is
prioritized over the dependency-indauced matrix cell set.
Otherwise, deadlock can occur as the consumer would await a
never-happening column reset.

CASE 5 – Column is released (WAT Update): A column
is freed if (i) its producer and/or (ii) all its consumers have left
the scheduler. The latter is an optimization for when a pipeline
flush occurs between a register’s producer and consumer(s).

Even if the producer stays in the scheduler, the register state
can be changed to de-allocated and its column can be freed. If
the processor supports speculative scheduling (i.e., consumers
of a load are granted execution predicting a hit in the L1 data
cache), a column is not freed once the producer writes back its
result. If the load misses, the consumers will be reset in the
scheduler and wait for a second column broadcast from the
load upon hit. Thus, an instruction can broadcast on the same
column multiple times; in this case, only after the producer
leaves the scheduler, its associated column will be freed.

2.3.2 Recovery from Mispeculation
The WAT like the RAT is a speculative structure and

requires support to recover from mispeculations. For WAT,
recovery can be done using global checkpoints (GCs); GCs are
copies of the WAT content taken when a rollback due to
mispeculation is possible (e.g., on predicted branches).

Checkpointing for the matrix is not required as long as the
scheduler entries’ valid bits for squashed instructions are
cleared. Some rows may keep obsolete information when
pipeline flushes occur. However, obsolete information does
not harm if the select logic is prevented from receiving false
requests. To do so, for each entry, the valid bit is ANDed with
the ready bit to produce the request to the select logic.

2.3.3 Dependency Matrix Operations
Shown in Figure 4, the compacted matrix has WS rows and

20 columns (Section 2.3). The matrix operates as follows: A
matrix row is updated for a new instruction r by finding the
column numbers for the producers of the instruction’s source
operands from the WAT (e.g., c1 and c2) and setting the matrix
cells (e.g., (r,c1) and (r,c2)). These steps proceed in parallel
with rename and dispatch (writing the instruction into the
scheduler). Before an instruction completes execution, its
matrix column is cleared. When the instruction’s matrix row
cells are all zero, its row-ready bit is set, interpreted as a
request by the select logic. Figure 6 summarizes the actions
that take place in the CMS and WAT.

3. PHYSICAL-LEVEL IMPLEMENTATION
This section describes the physical level implementation

of the WAT and CMS.

3.1 WAT
A non-checkpointed WAT is a multi-ported register file.

Assuming a MIPS-like instruction set architecture, where the
instructions may have at most two source operands and one
destination operand, the WAT needs to support 3xN reads and
N writes per cycle, where N is the number of instructions
required to be renamed per cycle. 2xN read ports are used to
rename the two source operands, and another N read ports are
needed to read the current mappings of the destinations for the
purpose of recovery using the reorder buffer [7]. N write ports
are also used to write new mappings for the destinations.

Figure 5: RAW dependency checking

Figure 6: Actions included in various pipeline stages for WAT and CMS

Depicted in Figure 7, a checkpointed WAT embeds GCs,
copies of the WAT cells. Figure 7(a), shows the main WAT
cell with multiple read and write ports. The GC cells, depicted
in Figure 7 (b), are organized in a bi-directional shift register,
shown in Figure 7 (c). Figure 7 (d), (e) and (f) respectively
illustrate the precharge circuitry, the sense amplifier logic used
during reads, and the write drivers used during writes.

This work uses the serial-access-buffer (SAB) GC
organization mechanism as it is faster and simpler than the
alternative [7]. SAB organizes the GCs in a bi-directional shift
register with connections between adjacent cells; only one of
the GCs is connected to the main WAT cell through pass
gates [1] [7]. GC allocation is done by shifting the GC cells to
the right, copying the WAT data cell to the adjacent vacant
position. Restoring from a GC may require multiple steps
since the appropriate GC must be shifted into the WAT main
cell. A SAB GC cell consists of a register and a multiplexer
controlling the shift direction. SAB uses two non-overlapping
clocks and two external control signals irrespective of the
number of GCs. Multiple reads may access the same WAT
entry; hence, the main WAT cell must be capable of driving a
capacitance proportional to the number of WAT ports and
GC(s). To protect the cell’s data during multiple accesses,
decoupling buffers isolate the WAT data cell and the read
ports [9] [1]. Differential read and write operations are used
due to their superior latency, energy and noise margins. To
reduce power, the following techniques were employed: (i)
pulse operations for the wordlines, periphery circuits and
sense amplifiers, (ii) multi-stage static CMOS decoding, and
(iii) current-mode read and write operations.

3.2 Compacted Matrix
Figure 8(a) shows the architecture of the compacted matrix

scheduler and its interface with the select logic. Figure 8(b)
also illustrates the matrix column’s transistor-level
implementation. The matrix receives its inputs, the grant (or
upcoming execution completion) signals, from the select logic,
and produces the row-ready outputs (the data inputs are active-
low). When a new instruction is allocated into a scheduler
entry, its associated matrix row is updated with a bit pattern
where the dependencies for instruction sources are set by the
data decoders. Up to IW instructions may enter the scheduler
concurrently; hence, up to IW matrix rows may be updated
simultaneously. Therefore, the matrix includes IW data
decoders that provide IW sets of bit patterns, each with as
many bits as the number of matrix columns (20 in our
implementation as per discussion of Section 2.3).

Each matrix cell consists of an SRAM cell. The write ports
for update and read ports for producing row-ready outputs are
single-ended. Up to IW instructions may write into IW
different matrix rows simultaneously. Hence, each matrix cell
needs IW write ports. Figure 8(b) shows the transistor-level
implementation of a column. The grant signals entering from
the right side become vertical and are sent over the
corresponding columns. The vertical broadcast signals clear
the corresponding columns. A bitwise-NOR of all matrix cells
along a row generates the row’s row-ready output (single-
ended read ports implement the NOR gate). Up to IW different
columns may be cleared simultaneously. The row-ready
signals are first pre-charged to high. A single set matrix cell
per row (in this implementation a set cell keeps the value zero)

 \

Figure 7: WAT building blocks (a) Multi-ported SRAM cell, (b) SAB GC cell, (c) SAB GC organization mechanism, (d) pre-chargers, (e) sense amplifiers

and (f) write drivers

can pull-down the row-ready to zero. If all row cells are unset
(i.e., all cells are set to one), the row-ready stays high,
interpreted as a request for execution by the select logic.
Producing all row-ready output signals proceeds in parallel.

For column subscription, an additional SRAM cell per
column is set (to zero) to indicate that the column is currently
allocated. Up to IW columns may be allocated per cycle
during renaming; hence, each column-subscription cell, which
exist per matrix column, needs IW read/write ports. These
ports are also used for column de-allocation (set column-
subscription cell to one). Up to IW columns may need to be
cleared during result write-back. For each column, the
column-subscription cell data is ANDed with the input grant
to determine if broadcast on the column is permitted. In
compacted matrix, compared to a conventional matrix, the
row-ready critical path has one extra gate delay penalty due to
the column-subscription technique; however, the compacted
matrix’s reduced latency is supposed to offset this penalty.

If the grant signal for a column is active, the normal
precharge and evaluation operations proceed; otherwise, they
are unnecessary. To prevent unnecessary activities, and hence
to reduce the energy consumption, an extra switch (pass
transistor) per column, shown circled in Figure 8(b), is added.
For 32×20 and 64×20 matrices, this optimization reduces total
energy by 10% and 18% respectively.

4. EVALUATION
This section presents the latency and energy measurements
from the physical implementation for CMS and WAT.
Section 4.1 details the implementation and measurement

methodologies. Sections 4.2 and 4.3 present the latency and
energy measurements as well as analysis for the CMS and
WAT respectively. Finally, Section 4.4 presents empirical
models for quick estimation of delay and energy.

4.1 Design and Measurement Methodology
We restrict our attention to WATs with 0, 4, 8 or 16 GCs

because previous work demonstrated that for the SRAM-based
RATs, similar in structure to the SRAM-based WATs
considered in this work, 16 GCs or less are sufficient to
achieve performance close to what is possible with infinite
GCs [4]. The number of architectural registers is either 32 or
64 corresponding to typical processors without or with
floating-point register sets. The number of physical registers
varies from 32 to 256 in power of two steps. We developed
full-custom layouts for all components using the Cadence tool
set in a 90 nm commercial fabrication technology with a 1.2V
supply voltage. For circuit simulations, SpectreTM was used,
and worst-case latency and energy values are reported.

Circuit designs can be tailored to achieve different latency
and energy tradeoffs. In an actual commercial design, a target
latency and/or energy is decided and used as a specification
for tuning components. In lieu of an actual specification for
the target operating frequency, we used CACTI 4.2 [8], a tool
providing latency, power and area estimations for caches and
SRAMs, to obtain upper bounds on the latencies of SRAMs
that would be similar in size to the WAT [8]. Using CACTI,
for the base 4-way superscalar WAT, we determined an upper
bound on the critical path delay by estimating the delay of a
64-bit, 64-entry SRAM with 12 read and four write ports. This

 \

Figure 8: (a) Matrix overcall organization and (b) Matrix column’s transistor level implementation

120

150

180

210

240

270

32 128 256 256

D
el

ay
(p

s)

Number of matrix rows= WS

Matrix Read Matrix Write

(a) 2 way

(32×20)

290

335

380

425

470

515

64 128 256 512
Number of matrix rows=WS

Matrix Read Matrix Write

(b) 4 way

(64×20)

Figure 9: Matrix read and write latency for (a) 2-way and (b) 4-way matrix
schedulers.

0

20

40

60

80

32 64 128 256

En
er

gy
(p

j)

Number of matrix rows = WS
(a) 2 way

Matrix Read Matrix Write

0

40

80

120

160

200

64 128 256 512
Number of matrix rows =WS

Matrix Read Matrix Write

(b) 4 way

Figure 10: Matrix read and write energy for (b) 2-way and (b) 4-way
schedulers.

upper bound is reasonable since non-checkpointed
WATs/RATs are identical to multi-ported SRAMs.

4.2 Compacted Matrix
Figure 9 (a) and (b) report compacted matrix read and write

latencies for 2-way and 4-way superscalar schedulers
respectively. Figure 10 shows the corresponding energy
measurements. The number of matrix rows (equal to WS)
varies from 32 to 512. Each matrix has 20 columns
(Section 2.3) since using column subscription technique 20
columns are sufficient for large scheduler sizes.

The matrix read delay (wakeup delay) is the time period
between the select logic’s grant activation and row-ready
discharge. Increasing the number of matrix rows increases
matrix read latency as it increases the size, and hence the
latencies of the decoder and select logic’s priority encoder. For
example, when WS increases by 8x from 64 to 512, read
latency increases by 46.7%. The scheduler delay is the sum of
the matrix read delay (wakeup delay) and the select logic
delay. The scheduler delay increases logarithmically by
increasing the number of matrix rows (equal to WS) when IW
is fixed. The matrix write delay is the time period between the
dependency-data preparation and the matrix cell’s value
change. Matrix read latency is longer that write latency. For a
fixed IW, matrix write delay and energy increase
logarithmically for larger entry counts (equal to WS).

Increasing the number of matrix columns (matrix width)
increases row-ready NOR gate’s size, and hence the wakeup
delay. Increasing the matrix width also increases the load on
the row clock driver, and hence the driver’s delay. By
transistor resizing and output buffering, significant delay
increase can be avoided at the cost of more energy. While we

do not show these results in the interest of space, for a fixed
WS and IW, both read and write latencies increase linearly
with a very small slope for larger matrix widths. For example,
for the 64×20 matrix, the read delay increases by 21.6% as the
number of column increases from 16 to 20.

Previous work demonstrate the speed and power efficiency
of the conventional (uncompressed) matrix scheduler
compared to the CAM-based scheduler [1]. The same results
are applicable to the compacted matrix schedulers.

4.3 WAT
Figure 11 report WAT read and write latency as the entry

width varies from 7 to 11 (corresponding to schedulers of 32
to 512 entries). For each entry width, four stacked bars are
presented each for WATs with 0, 4, 8, and 16 GCs.

For a fixed IW and NoGCs, WAT latency increases
logarithmically with the entry width. For example, WAT read
and write latencies increase by 13% and 11.6% as the entry
width increases from 8 to 11 (WS increases from 64 to 512)
for the 4-way WAT with no GCs.

For a fixed WS and IW, both latency and energy increase
exponentially with increasing NoGCs. For example, for the 4-
way WATs, writes are 1.1%, 2.5% and 6.7% slower with 4, 8
and 16 GCs compared to the non-checkpointed WAT.
Previous work shows that for RAT using very few GCs (e.g.,
four) leads to optimal overall performance (execution time)
because of the impact of increasing NoGCs on renaming
latency [6]. Our results show a similar trend for the WAT.

Figure 12 shows the WAT energy as a function of the entry
width (log2(WS)+2) and NoGCs. Energy increases slightly by
increasing the entry width due to the additional bitlines and
sense amplifiers, and longer wordlines. The GC allocation’s
and restoration’s latency and energy are not shown in the
interest of space. These percentage of these operations is
negligible compared to that of the WAT reads and writes .

A comparison of the 2-way and 4-way delay measurements
for the CMS and WAT suggests that latency increases
quadratically as the issue width (IW) increases. Increasing IW
increases the number of read and write ports for both CMS
and WAT; hence, it significantly increases latency and energy.

4.4 Empirical Models
This work also developed empirical delay and energy

models for the CMS and WAT. Projections from circuit level
delay and energy characterization data available from physical
level implementations can be used in formulating empirical
models. In other words, our empirical models were developed
by extrapolating on the measurements of the organizations that
we implemented in 90 nm technology. These models can
predict CMS and WAT delay as a function of several
architectural parameters. These models can be used by
computer architects during architectural level explorations
where many different configurations are considered while
developing physical level implementations for them is
unaffordable due to time and cost constraints. As an example,
we present latency models for the 4-way schedulers. Equations
(1) and (2) estimate matrix read and write latencies, while
equations (3) and (4) estimate WAT read and write latencies.

120

150

180

210

240

270

7 8 9 10 11 7 8 9 10 11

D
el

ay
(p

s)
0 4 8 16Number of GCs

WAT Read WAT Write

Entry width = Log 2(WS) + 2
6 read ports & 2 write ports

(a) 2 way

Number of entries = 32

290

335

380

425

470

515

7 8 9 10 11 7 8 9 10 11

De
la

y(
ps

)

0 4 8 16Number of GCs

WAT Read WAT Write

Entry width = Log2(WS) + 2
12 read ports & 4 write ports

(b) 4 way

Number of entries = 64

0.5%

1.6%
5.3%

1.1%

2.5%

7.6%

Figure 11: WAT read and write latency for (a) 2-way, and (b) 4-way schedulers

Matrix Read Delay (ps) = 4.1128×WS0.6159 (1)

Matrix Write Delay (ps) = 3.8119×WS 0.6159 (2)

WAT Read Delay (ps) = 1.7543×e0.1524NoGCs + 22.77×ln(WS) +
330.42 NoGCs>=0, WS>=128 (3)

WAT Write Delay (ps) = 5.5818×e0.1322× NoGCs + 13.946×ln(WS) +
330.42 NoGCs>=0, WS>=128 (4)

5. CONCLUSIONS
This work investigates the delay and energy variations of

the recently proposed CMS and WAT, its accompanying logic.
Previous work discussed the speed and scalability advantages
of CMS; however, neither actual physical-level investigations
nor models were reported for it. Using full-custom layouts in a
commercial 90 nm fabrication technology, this work
investigated the latency and energy variation of CMS and
WAT as a function of the issue width, the window size and the
number of global checkpoints. An energy optimization for the
matrix was also proposed that reduces energy by 10% or 18%
depending on the scheduler size.

Our results show that for a fixed issue width and global
checkpoint count, CMS delay and energy increase
logarithmically with increasing the number of matrix rows (or
the window size). For a fixed window size, issue width and
global checkpoint count, the matrix delay increases linearly

with increasing the number of columns. For a fixed issue
width and global checkpoint count, WAT latency increases
logarithmically for larger window sizes. For a fixed window
size and issue width, both WAT latency and energy increase
exponentially with increasing checkpoint count. The results of
this work support the previously claimed latency and energy
scalability of the compacted matrix schedulers.

REFRENCES

[1] M. Goshima , K. Nishino , T. Kitamura , Y. Nakashima , Sh.Tomita , S.
Mori, “A High-Speed Dynamic Instruction Scheduling Scheme for
Superscalar Processors”, International Symposium on Microarchitecture,
225-236, Dec.2001.

[2] R. Heald et al., “A Third-Generation SPARC V9 64-b Microprocessor”,
IEEE Journal of Solid-State Circuits, 35(11): 1526-1538, Nov. 2000.

[3] A. Henstrom, “Scheduling Operations Using a Dependency Matrix”,
United States Patent 655709 , Apr. 2003.

[4] A. Moshovos, “Checkpointing Alternatives for High Performance,
Power-Aware Processors”, International Symposium on Low Power
Electronics and Design, 318-321, Aug. 2003.

[5] P.G. Sassone, J. Rupley, II, E. Brekelbaum, G.H. Loh and Bryan Black,
“Matrix Scheduler Reloaded”, International Symposium on Computer
Architecture, 335-346, May 2007.

[6] S. Palacharla, “Complexity-effective Superscalar Processors”, Ph.D.
Thesis, University of Wisconsin-Madison, 1998.

[7] E. Safi, A. Moshovos and A.Veneris, “On the Latency and Energy of
Checkpointed, Superscalar Register Alias Tables”, To appear in IEEE
Transactions on VLSI.

[8] D. Tarjan, S. Thoziyoor and N. P. Jouppi, CACTI 4.0, HP Labs
Technical Report HPL-2006-86, 2006.

[9] V. Zyuban, “Inherently Lower-Power High-Performance Superscalar
Architectures”, PhD Thesis, University of Notre Dame, Jan. 2000.

0

20

40

60

80

7 8 9 10 11 7 8 9 10 11

En
er

gy
(p

j)

0 4 8 16Number of GCs

WAT Read WAT Write

Number of entries = 32

Entry width = Log 2(WS) + 2
6 read ports & 2 write ports

(a) 2 way

0

40

80

120

160

200

7 8 9 10 11 7 8 9 10 11

En
er

gy
(p

j)

0 4 8 16Number of GCs

WAT Read WAT Write

Number of entries = 64

7.2%
13.6
24.5%

3.5%
6.7%
12%

Entry width = Log2(WS) + 2
12 read ports & 4 write ports

(b) 4 way
\

Figure 12: WAT read and write latency and energy for (a) 2-way , and (b) 4-way schedulers.

