
On Simulation-based Metrics that Characterize the

Behavior of RTL Errors
Zissis Poulos

University of Toronto
10 King’s College Road,

Toronto, Canada
zpoulos@eecg.toronto.edu

Ryan Berryhill
University of Toronto

10 King’s College Road,
Toronto, Canada

ryan@eecg.toronto.edu

John Adler
University of Toronto

10 King’s College Road,
Toronto, Canada

adler@eecg.toronto.edu

Andreas Veneris
University of Toronto

10 King’s College Road,
Toronto, Canada

veneris@eecg.toronto.edu

ABSTRACT

Recent advances in automated debugging offer significant re-
ductions in the manual effort required to localize RTL errors.
These tools return relatively compact sets of RTL locations
that can be potential error sources. However, once these lo-
cations are returned, the engineer still has to perform detailed
analysis to discard irrelevant locations and identify the cul-
prit. This process happens without any further guidance from
the debugger. In this work, we perform a statistical analy-
sis that exposes a significant discrepancy between RTL errors
and other unrelated locations returned by these tools. The
analysis is conducted on industrial designs and is based on
metrics extracted from simulation. Our methodology deter-
mines that specific continuous distributions can effectively
characterize the behavior of RTL errors. Using these well-
defined metrics one can automate the process of further prun-
ing the RTL locations returned by debuggers, effectively ac-
celerating the localization of error sources.

Author Keywords

Failure Triage; Design Debugging; Satisfiability; Model
Fitting

1. INTRODUCTION

Functional verification has grown to become the primary bot-
tleneck in the modern design cycle [5]. Design debugging,
the task of localizing and correcting an error once it has been
revealed, can account for the majority of time spent in ver-
ification [4]. These tasks can be made even more complex
when applied during regression testing, where thousands of
input vectors are used to exercise a large portion of the design
functionality. Traditionally, functional verification reveals an

SummerSim-SPECTS 2016 July 24-27 Montreal, Quebec, Canada
c©2016 Society for Modeling & Simulation International (SCS)

error when an observation value differs from the expected re-
sponse. This provides an error trace that is then used in de-
sign debugging. Due to the large number of vectors and the
potential co-existence of multiple design errors at this stage,
hundreds of error traces may be exposed. Performing design
debugging with hundreds of error traces is a daunting task.

Automated debugging tools [12, 7, 1, 2] exist to somewhat
mitigate the substantial engineering resources required by
these tasks. Given an error trace, a debugging tool returns a
set of possible error sources in the RTL, known as the suspect
set. It is then the task of an engineer to determine which of the
suspects is the actual source of the error and implement the
fix in a process known as detailed debug. These tools are ex-
haustive and, as such, the suspect set is guaranteed to contain
the actual error source. However, it may include several other
locations that are not responsible for the failure, but merely
represent noise in the suspect set. This stifles attempts at au-
tomation, as it then becomes the responsibility of an engineer
to investigate each suspect location and determine which one
is truly the source of the error.

Toward the goal of easing this challenge, this paper presents
a statistical analysis of the suspect sets returned by an auto-
mated debugging tool. Various features of the returned sus-
pect locations are measured and compared in order to identify
those that distinguish the actual error source from other loca-
tions. In practice, these results can then be used as the basis
for a post-processing step that filters out noise from the sus-
pect sets returned by an automated debugging tool. Doing so
reduces the amount of time engineers must spend investigat-
ing irrelevant suspect locations.

Aside from automated design debugging, this filtering system
has applications in automated failure triage as well. Auto-
mated failure triage seeks to group a set of error traces into
bins, where all of the error traces in a given bin have the same
root cause. Recent work in the field of failure triage applies
similar feature-based techniques exclusively to the problem

of failure binning [10]. Naturally, it is expected that such ap-
proaches can achieve more accurate results if the suspect sets
contain less noise.

In greater detail, the presented analysis is as follows. Two
specific simulation-based metrics are extracted for each of the
suspects that are identified by automated debugging. These
metrics, which we refer to as temporal distance and excitation
resistance, quantify key behaviors observed by suspect loca-
tions. Particularly, temporal distance expresses the amount of
time it takes for an error to propagate to an observation point,
while excitation resistance offers a measure of difficulty in
exciting the error. Given this empirical data, we then perform
model fitting to explore known distributions that can explain
the observations. The distributions are fitted across two dis-
joint sets of suspects. The first is the set of suspect locations
that represent the actual error source, while the second is the
set of suspect locations that are unrelated. It is found that
these sets follow different distributions with respect to the
metrics at hand. Effectively this discrepancy renders these
metrics a proper means of distinguishing error sources from
noise in the suspect set where they belong. Our findings can
stimulate further use of these and similar other simulation
metrics towards pruning a large portion of unrelated suspects,
thereby saving substantial engineering resources for design
debugging and improving the accuracy of failure triage.

The remainder of this paper is organized as follows. Section 2
presents background information relevant to the contributions
and the simulation metrics at hand. Section 3 describes our
methodology for evaluating the usefulness of these metrics
for debugging and failure triage. Finally Section 4 presents
the results of this evaluation and Section 5 concludes the
work.

2. PRELIMINARIES

2.1 SAT-based Automated Debugging

The analysis presented here is based on suspect locations ob-
tained using the Boolean Satisfiability (SAT)-based debug-
ging algorithm of [12]. Given an error trace exposing some
failure, the algorithm returns the set of all design locations
where a fix can be made to correct the error (the suspect
set). Traditionally, SAT-based debugging operates at the gate-
level, returning each logic gate where a fix can be imple-
mented. In this paper, it is assumed that the debugger op-
erates at the RTL-level, so that suspects can be e.g., modules,
always-blocks, conditions, expressions, etc. Before introduc-
ing the algorithm itself, it is necessary to first define the nota-
tion, which will be used throughout this paper.

Given a sequential circuit C and an error trace of k clock
cycles, the set of primary input, observation points, and
state variables (flip flops) of C are denoted by X =
{x1, x2, ..., x|X|}, Y = {y1, y2, ..., y|Y |}, and V =
{v1, v2, ..., v|V |}, respectively. Similarly, let V ′ denote the
next-state variables (inputs to flip flops). The set of initial
states for C is denoted as I . The transition relation of C is
denoted as T . It is represented as a Boolean formula over the
variables of X , Y , and V , such that x∧y∧v∧T ∧v′ evaluates
to 1 if and only if applying x to the primary input during state

v causes the circuit to transition to state v′ and produce output
y. Let X i denote the primary input values from the error trace
in cycle i, and allow Yi to denote the expected response at the
observation points in cycle i. Let B = {b1, ..., b|B|} denote
the set of RTL blocks that may be returned as suspects, where
bij is the output of block j in cycle i. In an Iterative Logic Ar-

ray (ILA) unrolling of the transition relation T , let T i denote
T with its primary input, state elements, and primary output
indexed with i. This represents the i-th copy of the transition
relation, or in other words, the i-th time-frame of the ILA.

The algorithm begins by constructing an enhanced transition
relation Ten from the original transition relation of the cir-
cuit. It is constructed by the addition of a set of error-select
lines E = {e1, ..., e|B|}. One error-select line is added per
RTL block in B. If ei = 0 then the behavior of block bi is
unchanged. Setting ei = 1 replaces block output bi with an
unconstrained free variable. Subsequently, the enhanced tran-
sition relation is unrolled into an ILA representation with k
time-frames. Additional constraints are constructed from the
error trace to force the primary input to X i in each time-frame
i. Similar constraints are added to force the primary output to
the expected response values Yi. The state elements in the
first time-frame are constrained to a particular initial state us-
ing the formula for I . Finally, the number of simultaneously
active error select lines is constrained to n using a cardinality
constraint φn.

As such, for an error trace consisting of k time-frames, the
problem is encoded as the following Boolean formula:

I ∧
k
∧

i=1

(

T i
en ∧ X i ∧ Yi

)

∧ φn (1)

Each satisfying assignment to the formula of Eq. 1 corre-
sponds to an n-tuple of suspect locations where a fix can be
implemented to make the circuit output the expected response
for the particular error trace. An all-solutions SAT solver is
used to find every such n-tuple of suspect locations. For the
remainder of this paper, it is assumed that n = 1 and therefore
the locations returned by the automated debugger are individ-
ual RTL blocks.

This approach is exhaustive, in that it finds every design loca-
tion where a change can be implemented to correct the erro-
neous behavior. In this paper we assume that a single error is
responsible for the behavior exposed in the error trace. Due to
the exhaustive nature of the approach and this assumption, the
returned suspect set is guaranteed to contain the actual design
error. However, in practice it tends to include many other
locations, as there are often many unrelated blocks where a
change can be made to mask the failure. A spurious suspect
refers to such a result i.e., a suspect location returned by the
debugger that is not the actual error source.

We refer to the set of suspect RTL blocks as suspect set
S = {s1, ..., s|S|}, with S ⊆ B. Furthermore, SAT-based
debugging allows us to retrive the exact time-frame in which

I

1 k m− 2 m− 1 m

.s1

s2

s3

Y

X

X

Figure 1: Error trace and suspect blocks

a block’s error-select line is set to 1 for the first time. We refer
to this time-frame as the excitation time ti of suspect block si.

Example 1: To demonstrate the above concepts consider an
error trace, as depicted in Figure 1, where we show the se-
quential behavior of the circuit for that trace using its Iter-
ative Logic Array (ILA) representation. In more detail, an
error at block s2 is excited in cycle m − 2 and propagates
to cause a mismatch at an observation point in cycle m. The
generated error trace of length m is then passed to an auto-
mated debugger. The result is a suspect set S1 = {s1, s2, s3}
of design components that can explain the wrong output. Sus-
pects s1, s2 and s3, excited in time-frame k, m − 2 and
m − 1 respectively, along with their propagation paths are
illustrated in Fig. 1. Note that the erroneous component is
included in the set S as suspect s2, thus suspects s1 and s3
are considered spurious.

For various reasons, it is desirable to limit the number of spu-
rious suspects returned. During detailed debug, the engineer
must spend time investigating each of the suspects. Therefore
fewer spurious suspects results in less wasted time. Addition-
ally, having fewer of these spurious suspects is expected to
be a major benefit to automated failure triage approaches as
developed in [10]. The presence of fewer spurious suspects
would accelerate the failure binning procedure, as there are
fewer suspects to consider. Perhaps more importantly, it is
expected to increase the accuracy of that method, as an indi-
cation of how likely a suspect is to be spurious can be used as
an additional feature when prioritizing the failures.

2.2 Simulation Metrics

Of course there is no known method to determine which sus-
pects are spurious with perfect accuracy. This subsection in-
troduces particular simulation-based metrics that provide a
starting point for a statistical analysis of suspects towards the
goal of identifying features that distinguish spurious suspects
from the actual error source. Similar metrics have also been
proposed in [6] to enhance state-space search in verification.
As shown in [10], metrics computed from simulation during
regression runs can be used to rank suspect components. This
suggests that these metrics follow different distribution mod-
els for spurious suspects and the actual error source, and can
thus be used as a means of filtering out the former. The two
main metrics that are the focus of this paper are, namely, tem-
poral distance and excitation resistance.

Excitation resistance relates to the number of times signals
toggle in a circuit or a portion of the circuit (e.g., an RTL
block). Given an error trace with k clock cycles, a suspect
block si, and a clock cycle 0 < j < k, we define the toggle

rate fj(si) of si in cycle j with respect to an error trace as
follows:

fj(si) =
< # of inputs to si that toggled in cycle j >

< # of inputs to si >
(2)

That is, the toggle rate is the fraction of the inputs that toggled
in the relevant clock cycle. Then, the excitation resistance
r(si) of a suspect RTL block si is defined as the average of
the toggle rate for the cycles between the initial states and the
suspect’s excitation time ti:

r(si) =
1

ti

j=ti
∑

j=1

fj(si) (3)

Note that excitation resistance takes real values in the range
[0 . . . 1]. Intuitively, the smaller the excitation resistance is
the easier it is for an error in the relevant RTL block to be
excited by the test vectors and eventually propagate to the
observation point.

Temporal distance relates to the amount of time between the
excitation of the suspect and the observation of the failure.
Specifically, it refers to the number of cycles between the ex-
citation of the suspect and the observation of the failure di-
vided by the length of the error trace. As such, the temporal
distance d(si) of suspect si with excitation time ti in an error
trace of length k cycles is given as follows:

d(si) =
k − ti

k
(4)

Just like excitation resistance, temporal distance also takes
real values in the range [0 . . . 1]. Here, the smaller the dis-
tance is, the easier it is for the error excited at the relevant
RTL block to propagate at the observation point and justify
the mismatch.

The goal of this paper henceforth is to perform a probabilistic
analysis that will reveal to what extent spurious suspects and
actual error sources exhibit different behavior with respect to
the above metrics. If an apparent separability is justified prob-
abilistically, then these metrics can be used to rank suspects
by their likelihood of being the real error source, thereby re-
ducing debug time. They additionally could provide guidance
to automated failure triage tools and other approaches that use
the results of a debugging tool in a similar manner. All discus-
sions in prior art regarding these metrics are purely intuition-
driven. Particularly, the existence of underlying distribution
models for these metrics has not been explored, although it is
hinted to some extent by experimental results.

3. ERROR BEHAVIOR MODELS

From a probabilistic view, classical SAT-based debugging as-
signs zero probability of being a design error to those RTL
blocks that do not appear in some suspect set. This effectively
reduces the search space that the engineer needs to analyze in

order to come up with a rectification. However, for those RTL
blocks that appear as suspects, the debugger has no mechan-
ics available to filter them based on how likely they are to
be design errors or merely equivalent explanations of the er-
roneous circuit behavior. This task is manual and left as a
whole to the engineer.

As such, classical debugging treats all suspects in a suspect
set as equiprobable in being the culprit of a failure. One can
therefore say that for any suspect si ∈ S the probability of
being a design error is 1

|S| . This implied uniform distribution

may in fact be a sufficient assumption, if we would gener-
ally expect design errors to have a random nature (random
source code mutations, random stack-at-faults etc). In reality,
though, design errors are human-introduced. This intuitively
implies that there must exist some bias in the behavior of such
design errors that separates them from random ones. If that
is the case, then the uniform distribution assumed in classical
debugging fails.

Identifying whether such bias exists reduces to the task of
determining suspect features that can be expected to be seen
in a design error but not in spurious suspects or vice-versa.
Again, from a probabilistic standpoint, this means that these
features must follow significantly different distribution mod-
els over design errors and spurious suspects. This Section
describes our methodology of learning the underlying distri-
bution models of temporal distance and excitation resistance
for design errors and contrasting them with those of spurious
suspects.

3.1 Theoretical Models

In [11] the authors offer a probabilistic model for design error
behavior, an extended version of which is forms the basis of
failure triage methods in [10]. The model is built in a manner
that embeds the concepts of excitation probability and prop-
agation probability into a single expression for the probabil-
ity of a design location causing a failure at some observation
point. We restate it below.

Assuming that an error exists in the design and that simula-
tion starts at cycle 1, let ex be the probability that the error is
excited at cycle i. Also, let pr be the probability of the error
propagating from cycle i to cycle i+1, and ob be the probabil-
ity of observing a failure at some observation point at cycle i
given that the error has propagated to that cycle. Also assume
that the input vector sequences are temporally independent
and stationary random sequences. Then, the probability pm|n

of observing the first failure at cycle m given that the error is
excited at cycle n is:

pm|n = (1−ex)n−1×ex×prm−n× (1−ob)m−n×ob (5)

From the above expression, one can make two important ob-
servations: (a) the absolute distance m−n from the excitation
cycle n to the observation cycle m has a decaying exponen-
tial effect on pm|n, and (b) for a fixed distance m − n, pm|n

decays towards 0 as the excitation probability ex tends to its

limits 0 and 1. Further for a varying distance m − n we are
interested in values for ex where pm|n obtains its maxima.

Since the absolute distance m − n is directly proportional
to temporal distance in Eq.(4) and the excitation probability
ex can characterize the excitation resistance in Eq.(3), we
can hypothesize that the distributions of these two metrics
will be similar to the probability density function of pr and
ex in Eq.(5). Therefore our hypothesis is that temporal dis-
tance distributes exponentially across design errors, while the
Weibull distribution arises as a continuous characterization of
excitation resistance. The latter is justified by extreme value
theory, as we are interested in maxima of pm|n and pm|n has
a finite lower limit [3]. Broadly speaking, our expectation is
that, compared to spurious suspects, human introduced de-
sign errors are easier to excite (a low mean excitation re-
sistance) and easier to propagate to observation points (low
mean temporal distance), with the latter also being the moti-
vating factor behind Bounded Model Debugging [11]. This is
not to say that all human-introduced errors are easy to excite
and propagate. Rather, in early regression verification stages
we expect that a significant fraction of human-introduced er-
rors are of such nature, due to fast prototyping. We discuss
the special case of deep bugs later in the empirical evaluation
Section.

Testing our hypothesis involves the following steps: (a) gen-
erate proper datasets, that is, sets of suspect locations, both
actual design errors and spurious suspects and measure the
relevant metrics presented in Section 2, (b) aggregate this in-
formation and measure the frequency in which design errors
and spurious suspects appear to have specific ranges of val-
ues for the aforementioned metrics, and finally (c) conduct a
model fitting (parameter learning) process across various can-
didate distributions to test whether the expected distributions
explain the data well.

3.2 Data Generation

In order to learn models that will be representative of ground
truth with confidence, we need relatively large datasets.
Our method is to manually inject multiple design errors
in a set of Verilog/VHDL designs, perform regression test-
ing/simulation that will expose multiple failures and then run
multiple SAT-based debugging sessions to generate enough
suspects for our empirical evaluation.

For each design, a set of different errors is manually injected
by modifying the RTL description. The injected errors re-
semble typical human-introduced errors that are observed in
the industry. Examples of such design errors include missing
pipeline stages, incorrect operators in expressions, bad stimu-
lus, complemented conditions in if-statements, incorrect state
transitions, etc.

For each simulation run that exposes one or more failures,
SAT-based debugging is performed at the RTL block level,
and suspect sets are collected. A suspect component can po-
tentially be returned by various debugging runs and belong to
suspect sets that justify various failures. Each occurrence of
a suspect is accompanied by potentially different values for
temporal distance and excitation resistance. As such, even if

a suspect’s occurrence corresponds to the same RTL block,
we treat it as a separate suspect-datapoint for our empirical
evaluation. This is also necessary because across different
design failures the same suspect RTL block can be the actual
design error or a spurious suspect.

3.3 Data Aggregation

Our goal is to create a histogram h
d
err that captures the

number of suspects-errors that have temporal distance falling
within specific intervals of length 0.1 from [0.0 . . . 0.1) to
[0.9 . . . 1.0]. Similarly, we create histogram h

d
spur for the

temporal distance of spurious suspects, hr
err for the excita-

tion resistance of suspects-errors, and h
r
spur for the excitation

resistance of spurious suspects. As a representative sample of
each interval we take the mean of the interval itself (i.e 0.05
represents interval [0.0 . . . 0.1)).

Measurement of the relevant simulation data can be done via
commercial simulators, and the computation of the metrics
per suspect component is polynomial in the length of the error
trace.

3.4 Model Fitting

As mentioned previously, our expectation is that Weibull ex-
plains well our empirical data when it comes to excitation
resistance. The pdf of Weibull is given below:

fWB(x;λ, κ) =
κ

λ
(
x

λ
)κ−1e−(x

λ
)κ (6)

where λ > 0 and κ > 0 are scale and shape parameters,
respectively.

However, for the sake of rigor it is important to further test
the applicability of alternative distributions that also offer at
least exponentially decreasing tails. Our other candidate dis-
tributions are the Log-normal and Gamma, whose pdfs are
respectively given below:

fLN (x;µ, σ) =
1

xσ
√
2π

e−
(log x−µ)2

2σ2 (7)

fG(x; θ, η) =
1

θη
1

Γ(η)
xη−1e

−x
θ (8)

where Γ(·) is the gamma function and θ > 0 and η > 0 are
scale and shape parameters, respectively.

When it comes to temporal distance we solely fit the expo-
nential distribution, as it naturally arises from Eq.(5).

In order to fit the above continuous distributions, we ap-
ply multinomial maximum likelihood [8] on the produced
histograms. To evaluate the quality of fit we use the
Kullback-Leibler (KL) divergence, as opposed to the χ2 test
which underestimates goodness of fit when it comes to his-
tograms of non-categorial data. The KL divergence be-
tween empirical data h ∈ {hr

err,h
d
err} and fitted model

f ∈ {fWB , fLN , fG, fexp} is given below:

Table 1: Dataset Statistics

Ckt. # # # # #

gates vectors failures errors spurious

vga 72292 25206 361 42 561

fpu 83303 20094 312 37 477

spi 1724 5019 103 21 231

mem ctrl 46767 13370 248 34 360

DKL(h|f) =
∑

d

hd log
hd

fd
(9)

where fexp is the exponential distribution, and d refers to
sampling points used for evaluating the goodness of fit. KL
divergence measures information loss when h is represented
by f . Thus, the lower the KL divergence is, the better the
model explains the data.

Finally, once we find which distribution offers the lowest KL
divergence for suspects-errors we use that same model to fit
our empirical data for spurious suspects. From that fitting
process we obtain the KL divergence as well. Our goal is
to show that the model that explains well the metrics for
suspects-errors does not offer a good fit for spurious suspects.
One can also view this process as having suspect-errors form-
ing the training set, spurious suspects forming the validation
set, and demonstrating that the characterization of the train-
ing set is unfit for the validation set. This, in turn, exposes
a separability between these two entities, which renders the
metrics at hand useful for filtering suspects in debugging and
failure triage.

4. EMPIRICAL EVALUATION

This Section presents our experimental results. The SAT-
based automated debugger used for data generation is imple-
mented in C++ based on [12]. A platform coded in Python
is developed to parse simulation logs, collect and aggregate
all relevant data, and perform model fitting as described in
Section 3. Four OpenCores [9] designs are used for the eval-
uation (vga, fpu, spi and mem ctrl).

For each design, we use a pre-generated set of test sequences
from the test bench that accompanies each design. Each re-
gression run involves hundreds to thousands of diagnose in-
put vectors. For the purpose of capturing failures we use end-
to-end “golden model” checkers that compare the expected
value for various operations, exception checkers and various
existing and newly written assertions throughout the designs.

Table 1 summarizes dataset information and statistics for all
simulation and debugging sessions per design. From left to
right, columns show the circuit name and number of gates,
the number of diagnose vectors, the number of injected RTL
errors (which are also returned as suspects by SAT-based de-
bugging), the number of observed failures, which is also the
number of failing diagnose vectors, and the number of dis-
tinct spurious suspects generated by SAT-based debugging.

will also verify the applicability of the proposed metrics on a
broader level.

Finally, additional metrics should also be explored in the fu-
ture, especially for larger designs (i.e in microprocessor and
System-on-Chip verification). At a larger design scale the un-
derlying models may differ and may need to be learned using
a similar method to the one we propose in this work.

REFERENCES

1. Chang, K.-H., Markov, I., and Bertacco, V. Automating
post-silicon debugging and repair. In Computer-Aided
Design, 2007. ICCAD 2007. IEEE/ACM International
Conference on (Nov 2007), 91–98.

2. Fey, G., Staber, S., Bloem, R., and Drechsler, R.
Automatic fault localization for property checking.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on 27, 6 (June 2008),
1138–1149.

3. Fisher, R. A., and Tippett, L. H. C. Limiting forms of the
frequency distribution of the largest or smallest member
of a sample. Mathematical Proceedings of the
Cambridge Philosophical Society 24 (4 1928), 180–190.

4. Foster, H. Assertion-based verification: Industry myths
to realities (invited tutorial). In Intl Conference on
Computer-Aided Verification (CAV) (2008), 5–10.

5. Foster, H. From volume to velocity: The transforming
landscape in function verification. In Design Verification
Conference (2011).

6. Ganai, M. K., and Aziz, A. Rarity based guided state
space search. In Proceedings of the 11th Great Lakes
Symposium on VLSI, GLSVLSI ’01, ACM (New York,
NY, USA, 2001), 97–102.

7. Huang, S.-Y., and Cheng, K.-T. Formal Equivalence
Checking and Design DeBugging. Kluwer Academic
Publishers, Norwell, MA, USA, 1998.

8. Jennrich, R., and Moore, R. Maximum likelihood
estimation by means of nonlinear least squares. ETS
Research Bulletin Series i, 36 (1975).

9. OpenCores.org. http://www.opencores.org, 2007.

10. Poulos, Z., and Veneris, A. Clustering-based failure
triage for rtl regression debugging. In Proc. IEEE
International Test Conference (2014), 1–10.

11. Safarpour, S., Veneris, A., and Najm, F. Managing
verification error traces with bounded model debugging.
In ASP Design Automation Conf. (2010), 601—606.

12. Smith, A., Veneris, A., Ali, M. F., and Viglas, A. Fault
diagnosis and logic debugging using boolean
satisfiability. IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst 24, 10 (Oct. 2005), 1606–1621.

