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Abstract— Automatic debugging of sequential circuits has been
considered a practically intractable task due to the excessive memory
and run-time requirements associated with tackling industrial-size
problems. This paper proposes a novel Quantified Boolean Formula
(QBF) based approach for fault diagnosis in sequential circuits.
A performance-driven succinct QBF encoding of the problem,
coupled with the tremendous present-day advances in QBF solvers
make this strategy a successful one. Extensive experiments on
industrial circuits confirm the memory advantage and demonstrate
the outstanding performance of the proposed framework.

I. INTRODUCTION

Fault diagnosis is an integral part of failure analysis pertaining
to the identification of the failing portions in a given faulty netlist.
This information is later used in defect analysis where the chip is
physically examined in order to determine the cause(s) of failure.
Because physical examination is inevitably slow and resource
intensive [1], the efficiency of failure analysis is conditioned on
the resolution of fault diagnosis.

Combinational fault diagnosis is a well examined problem
with a plethora of techniques to discover fault candidates [1]–
[6]. On the other hand, there has been significantly less work in
sequential fault diagnosis where not all the memory elements of
the design are scanned and directly observable [7]. Recently, a
Boolean satisfiability (SAT) based strategy [8] has been proven to
be particularly effective in tackling combinational and sequential
fault diagnosis, compared to traditional Binary Decision Diagram
(BDD) and simulation-based diagnosis approaches [8]. However,
all these methods require the time-frame expansion of the circuit
under diagnosis for the lengths of the failing test traces. Given
thousand-cycle long test traces, coupled with the ever-increasing
design sizes, this Iterative Logic Array (ILA) representation
inevitably strains memory resources and affects the diagnosis
efficiency.

The contribution of this paper is a performance-driven succinct
formulation of the multiple-fault diagnosis problem for sequential
circuits as an instance of Quantified Boolean Formula (QBF)
satisfiability. An appropriately constructed hardware construction,
along with a suitable quantification of the problem variables,
make it possible to replace the memory-intensive ILA circuit
replication by a single copy of the netlist under diagnosis. This
memory-efficient QBF encoding of the problem, coupled with
a state-of-the-art QBF solver that was tuned to accommodate
the intricacies and needs of diagnosis, culminate in a successful
sequential diagnosis framework.

Empirical results show a 93% average reduction in the memory
footprint, which confirms the expected memory advantage of the
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proposed approach. Furthermore, whereas previous QBF-based
ILA encodings in the Bounded Model Checking community [9],
[10] have invariably shown that memory compression comes at
the cost of tremendous performance cutbacks, our technique also
exhibits a run-time reduction of up to 5 times with respect to
SAT-based diagnosis. Both memory and run-time improvements
culminate in a remarkable 93% increase in the number of solved
problem instances compared to the best previous method.

The rest of the paper is organized as follows. Section II gives
background information on SAT and QBF and describes SAT-
based fault diagnosis. Section III illustrates our novel formulation
for QBF-based fault diagnosis. Section IV contains experiments
and Section V concludes the paper.

II. PRELIMINARIES

A. Boolean Satisfiability

A propositional logic formula Φ over a set of Boolean variables
V is said to be satisfiable or SAT if it has a satisfying assignment:
a truth assignment of V that makes it evaluate to 1 (true).
Otherwise, Φ always evaluates to 0 (false) and is said to be
unsatisfiable or UNSAT. The problem of Boolean satisfiability
consists of determining whether Φ is SAT, thus formally asking
whether ∃V | Φ. In modern SAT solvers, the logic formula Φ is
given in Conjunctive Normal Form (CNF) as a conjunction (AND)
of clauses where each clause is a disjunction (OR) of literals. A
literal is an instance of a variable or its negation. In order for
a formula to be SAT, at least one literal in each clause must
evaluate to 1. For example, the CNF formula given in (1) is SAT
because {a = 1, b = 0, c = 1} is a satisfying assignment.

Φ = (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (c) (1)

A logic circuit can be converted to a CNF formula in linear
time [11], such that there is a one-to-one correspondence between
the variables of the generated CNF formula and the gate outputs
of the corresponding circuit, and such that satisfying variable
assignments in the CNF formula correspond to valid gate output
values in the circuit. Hence, a circuit and its corresponding SAT
formulation are often referred to interchangeably in this paper.

Modern SAT solvers [12] are based on the search algorithm of
Davis, Putnam, Loveland and Logemann (DPLL) [13]. Although
SAT is an NP-complete problem, large SAT problems with
millions of variables and clauses are typically solvable thanks
to advancements in dynamic branching heuristics, conflict-based
learning and watched data structures.

B. Quantified Boolean Formulas

All variables of a SAT problem are existentially (∃) quantified.
QBF is a generalization of SAT in which some variables are
instead universally (∀) quantified. A QBF formula in prenex CNF
form is written as:



Q1V1, Q2V2, . . . , QrVr | Φ

where
• the prefix Q1V1, Q2V2, . . . , QrVr consists of quantifiers

Qi ∈ {∀, ∃}, such that Qi 6= Qi+1, and mutually disjoint
variable sets Vi (also called scopes).

• the matrix Φ is a CNF formula on the variables in the prefix.
Qr (Q1) is the innermost (outermost) quantifier. A variable

v ∈ Vi is called an existential (universal) variable if Qi = ∃
(Qi = ∀). A scope Vi is said to dominate a scope Vj if i < j.
If there exists a way to assign a truth value to each existential
variable as a function of its dominating universal variables such
that every combination of assignments to the universal variables
can be extended to satisfy the matrix, the QBF problem is said
to be SAT, otherwise it is UNSAT. For example,

∃a∀b∃c | (b ∨ c) ∧ (ā ∨ b̄ ∨ c̄) ∧ (a)

is SAT because there exists an assignment to a (a = 1) such that
for all b there exists an assignment to c (c = 1 if b = 0 and
c = 0 if b = 1) that satisfies the matrix. Note that in general, a
tree of satisfying assignments is needed for satisfiability, due to
the fact that both truth values of each universal variable need to
be extended to satisfying assignments.

QBF is a PSPACE-complete problem, which makes it a more
powerful encoding formalism than SAT since PSPACE ⊇ NP.
State-of-the-art QBF solvers [14]–[16] are much more diverse
than SAT solvers in terms of their underlying solving strategies.
Resolution and expansion [14], skolemization [15], as well as
BDD-based strategies are common and competitive, next to the
more standard search-based approaches [16]. Today, typically
solvable QBF problems contain tens to hundreds of thousands
of variables and clauses.

C. Notation and SAT-based Fault Diagnosis
In this section, we present notation and describe SAT-based

fault diagnosis which will serve as the reference for QBF-based
fault diagnosis both in Section III and in the experiments. The
following notation is used throughout the paper. x, y, l and s

(xi, yi, li and si) are the Boolean vectors (bits) respectively
denoting the (ith bit in the) primary inputs, primary outputs,
internal circuit lines and state elements of a sequential circuit.
The behavior of a sequential circuit can be formally described by
the predicate T (s, s′, x, y, l), which evaluates to 1 if and only if,
given the current-state s and primary input values x, the internal
circuit lines evaluate to l, the primary outputs evaluate to y and
the next-state evaluates to s′.

The fault diagnosis algorithm starts after testing has failed. The
specification is given as a logic netlist C, and the faulty behavior
of the circuit under test is given as a set of q failing test sequences
V = {V 1, V 2, . . . , V q}, also called counter-examples that do not
match the expected behavior of the specification. The objective of
diagnosis is to locate all possible faults in the netlist that could
explain the observed test-vector responses. Let mj denote the
number of cycles in test sequence V j , also referred to as the
length of V j . Each counter-example consists of an initial-state, a
sequence of input vectors and the corresponding faulty outputs:

V j = 〈vj,0
s , 〈vj,1

x , vj,2
x , . . . , v
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Fig. 1. Enhancing the original circuit with error models

where vj,0
s denotes the initial-state of the jth counter-example,

and vj,k
x (vj,k

y ) denotes the primary input (output) values of the
kth cycle, or time-frame, of the jth counter-example.

SAT-based fault diagnosis [8] encodes the problem as a SAT
instance whose satisfying assignments correspond to the potential
error locations in the circuit. This is done by: i) enhancing the
specification netlist C by introducing appropriate error modeling
hardware in the original circuitry, ii) appropriately replicating this
enhanced netlist for all counter-examples and all time-frames, iii)
applying the initial-state, input and output constraints according
to the counter-examples in V, and iv) constraining the number of
simultaneous error locations to N , which is initialized to 1 and
iteratively increased until a SAT solution is found. These steps
are detailed in what follows.

i) For each internal circuit line li, a multiplexer with select line
ei is introduced. This is shown in Fig. 1(b) for lines l1, l2 and l3.
An inactive multiplexer select line (ei = 0) does not modify the
circuit, whereas an active select line (ei = 1) disconnects li from
its fanouts and replaces it with a new unconstrained input wi,
which can freely “fix” any potential fault on line li. The predicate
of this enhanced circuit is denoted by Ten(s, s′, {x, w, e}, y, l),
where w and e respectively denote the unconstrained inputs and
select lines of the multiplexers.

ii) For each counter-example V j , the enhanced circuit is repli-
cated as an Iterative Logic Array (ILA) [17] of mj cycles. This
is also called time-frame expansion, which consists of unfolding
the combinational component of a sequential circuit such that the
next-state of each time-frame is connected to the current-state of
the next time-frame. Building an ILA for each of the q counter-
examples in V will result in a 2-dimensional grid of replicated
circuits, as shown in Fig. 2. Counter-examples are replicated
along the vertical dimension, whereas the horizontal dimension is
associated with time-frame expansion. Note that throughout the
grid, introduced multiplexers corresponding to the same original
circuit line share the same select line because if a certain line is
erroneous, it could potentially need a fix at any time-frame and
for any counter-example.

For each z ∈ {s, x, w, y, l} in Ten, let zcj ,tk denote the
corresponding variable in the kth time-frame of the jth counter-
example ILA in the grid; let Zcj (Ztk ) denote the set of
corresponding variables in all time-frames of the jth counter-
example ILA (in the kth time-frame of all counter-examples); and
let Z denote the set corresponding variables in the whole grid.
Moreover, let scj ,t0 denote the initial-state of the jth counter-
example. Using this notation, the grid shown in Fig. 2 can be



formally encoded as:

Φgrid ≡

q
∧

j=1

Φ
cj

ILA ≡ (2)

q
∧
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mj
∧

k=1

Ten(scj ,tk−1 , scj ,tk , {xcj ,tk , wcj ,tk , e}, ycj,tk , lcj ,tk)
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ILA represents the CNF encoding of a single ILA
corresponding to the jth counter-example and e denotes the
vector of common multiplexer select lines.
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Fig. 2. The 2-dimensional grid Φgrid

Note that this formulation allows for model-free fault di-
agnosis. Model-free diagnosis can “catch” any type of faulty
behavior including non-determinism, which is potentially use-
ful in identifying transient electrical faults. For a stuck-at-fault
model, multiplexers corresponding to the same original circuit
line should also share the same w’s throughout the grid (i.e.,
∧q

j=1

∧mj

k=1(w
cj ,tk ↔ w) is added to Φgrid) in order to emulate

a constant stuck-at value.
iii) Each counter-examples in V should constrain the initial-

state, inputs and outputs of its corresponding ILA in order to
ensure that the enhanced circuit’s sequential response matches
the counter-examples. We let ΦV j denote the input/output/initial-
state constraints on the ILA corresponding to the jth counter-
example, and ΦV =

∧q

j=1 ΦV j denote all input/output/initial-
state constraints applied to the grid.

iv) The number of activated select lines must be constrained,
otherwise activating all the select lines would always satisfy the
problem by replacing all circuit lines with unconstrained values.
Hence, a final constraint ΦN , forcing exactly N select lines in e

to 1 is added to the problem.
The SAT problem corresponding to the jth counter-example

can now be given as:

∃e, Scj , Xcj , W cj , Y cj , Lcj | Φ
cj

ILA ∧ ΦV j ∧ ΦN (3)

Finally, the full SAT problem is given as:

∃e,S,X,W,Y,L | Φgrid ∧ ΦV ∧ ΦN (4)

This problem essentially asks whether there exists a set of
N erroneous lines that could be fixed (by activating the cor-
responding N bits in e) in order to match the response of the
specification with the set of counter-examples. If Eq. 4 is UNSAT
with N = 1, then N = 2 is tried and so on, until Eq. 4
becomes SAT. Furthermore, an all-solution SAT solver is used,
which, provided that the problem is SAT, returns all possible fault
locations (assignments to e) unlike a regular SAT solver which
would return only one solution.

III. FAULT DIAGNOSIS USING QBF

The bulk of the size of a SAT-based fault diagnosis problem
comprises of the 2-dimensional circuit replication in Φgrid, as
shown in Fig. 2. Often, a large circuit must be replicated for
several counter-examples, each containing thousands of cycles,
which renders the memory requirements to build Φgrid unreason-
ably excessive. In this section, we propose a succinct QBF-based
formulation for fault diagnosis which “collapses” the replicated
2-dimensional grid into a single copy of the circuit, by taking
advantage of universal quantification.

The sub-problem of first collapsing all q counter-examples into
a 1-dimensional ILA by adding control circuitry and using uni-
versal quantification is simpler because the ILAs corresponding
to the different counter-examples are decoupled, in the sense
that one does not feed into the other. This has been solved for
combinational circuits in [18] and is (implicitly) trivially extended
to sequential circuits here. On the other hand, the remaining sub-
problem of collapsing the time-frames of an ILA into a single
copy of the circuit is more intricate because of the inherent state
interdependence across ILA time-frames. In what follows, we
first describe how to solve this harder sub-problem, namely how
to simulate the behavior of an ILA using a single copy of the
circuit. Later, we show how to integrate this with the approach
given in [18] in order to collapse the whole grid into a single
copy of the predicate.

Let us consider a single counter-example V of length m, which
naturally corresponds to a single ILA, formally defined as ΦILA

in Eq. 2. In what follows, all j and cj superscripts are dropped
because there is only one counter-example. We will demonstrate
how to encode Eq. 3 as a QBF problem where the constraint
equivalent to ΦILA includes only a single copy of the circuit, as
opposed to a chain of m connected circuits as shown for each
counter-example in Fig. 2. A hardware construction coupled with
a meaningful QBF prefix help achieve this task efficiently by
enabling the single predicate Ten to be used by the QBF solver
to simulate every time-frame in the original ILA. In what follows,
we present both an intuition and a formalization of our approach.

Intuitively, the same circuit predicate Ten must be satisfied
under different primary inputs, primary outputs, current-states
and next-states for all time-frames in the ILA. We first create
a set of universal time-frame select variables dominating the
replicated variables in Ten(s, s′, {x, w, e}, y, l) which will allow
us to refer to all the time-frames in the ILA. The aim is to modify
the inputs/outputs/states around the single circuit predicate Ten

according to the time-frame select variables, such that as we
go through all the assignments to the time-frame select vector,
Ten’s environment goes through all the inputs/outputs/states in
the original ILA.

Fig. 3 shows the hardware construction, denoted as ΦQBF
ILA

since it is logically equivalent to an ILA for a QBF formulation,
consisting of four appropriately constrained multiplexers labeled
MUX , respectively connected to the primary inputs, primary
outputs, current-state and next-state of the circuit predicate Ten.
The time-frame select variables are the common select lines of
the MUXs. For a given assignment, they (conceptually) select a
certain time-frame k in the original ILA, such that the MUXs



M
U

X

MUX

MUX

M
U

X

t1, . . . , tdlg me

st0

y

x

s′

stm̂

st2
st1

xtm̂

ytm̂yt2yt1

xt2xt1

s

stm̂−1

st1

Ten

Fig. 3. The hardware construction Φ
QBF
ILA

connect the primary inputs {x, w, e} (outputs y) of Ten to the
primary inputs {xtk , wtk , e} (outputs ytk ) of the original ILA, the
current state s of Ten to the (k − 1)st state stk−1 of the original
ILA, and its next state s′ to the kth state stk . This essentially
serves to make Ten behave exactly like the predicate of the kth

time-frame in the ILA. Depending on the assignment given to the
time-frame select vector, the single copy of Ten will simulate a
different time-frame in the original ILA.

The next step is to state the SAT problem given in Eq. 3 as a
QBF instance using the described construction. This amounts to
deciding the order of the variables in the QBF prefix. In order to
insure state contiguity (i.e., that as Ten simulates different time-
frames, the next-state of time-frame k and the current-state of
time-frame k + 1 are the same for all k), it is necessary that the
set of ILA states st0 , st1 , . . . , stm dominate the time-frame select
variables. Informally, the QBF problem is then stated as follows:

Does there exist assignments to e and the states
st0 , st1 , . . . , stm , such that for all time-frame select
variables, ΦQBF

ILA ∧ ΦV ∧ ΦN is satisfied?

In formal terms, let t = 〈t1, t2, . . . , tdlg me〉 denote the vector
of Boolean time-frame select variables. The binary description
inherent to a QBF formulation forces us to consider m̂ = 2dlg me

time-frames, where m̂ denotes the smallest power of 2 greater
or equal to m. This is harmless because ΦV only constrains
the first m time-frames to match the counter-example V , leaving
the remaining unconstrained and hence trivially satisfiable. Now,
ΦQBF

ILA given in Fig. 3 can be formally described as:

ΦQBF
ILA ≡ Ten(s, s′, {x, w, e}, y, l) (5)

∧ MUX({st0 , . . . , stm̂−1}, t, s) ∧ MUX({st1 , . . . , stm̂}, t, s′)

∧ MUX({xt1 , . . . , xtm̂}, t, x) ∧ MUX({yt1 , . . . , ytm̂}, t, y)

where MUX({xt1 , . . . , xtm̂}, t, x) sets x to xtk (x ↔ xtk ) if
and only if t = 〈t1, t2, . . . , tdlg me〉 is the binary encoding of
k− 1. The interpretation of the remaining MUXs is similar. For
example, if t = 〈t1, t2, t3〉 = 〈0, 1, 1〉, then x, y, s and s′ will
be respectively set to xt4 , yt4 , st3 and st4 in ΦQBF

ILA in order to
simulate the 4th time-frame in the original ILA.

The question stated in italic above can now be formally
expressed as the following QBF problem:

∃e, S ∀t ∃X, Y, s, s′, x, w, y, l | ΦQBF
ILA ∧ ΦV ∧ ΦN (6)

where S, X and Y respectively denote the set all states, original
primary inputs and outputs in the original ILA.
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and ΦV for the example

In the following example, the QBF fault diagnosis formulation
given by Eq. 6 is generated in bit-level detail for a specific netlist
and counter-example. This makes it easier for the reader to see
and verify the formulation for a concrete instance.

Example 1 Consider the specification netlist given in
Fig. 1(a). Testing of a corresponding design implementation
gives a counter-example consisting of 2 time-frames
V = 〈v0

s , 〈v1
x, v2

x〉, 〈v
1
y , v2

y〉〉, where

v
0

s = 〈v
0

s1
, v

0

s2
〉 = 〈0, 0〉

〈v1

x, v
2

x〉 = 〈v1

x1
, v

2

x1
〉 = 〈1, 1〉

〈v1

y , v
2

y〉 = 〈〈v1

y1
, v

1

y2
〉, 〈v2

y1
, v

2

y2
〉〉 = 〈〈1, 0〉, 〈0, 1〉〉

We have the following constraints in the QBF formulation of
the fault diagnosis problem:

ΦQBF
ILA ≡

Ten({s1, s2}, {s
′

1
, s

′

2
}, {x1, w1, w2, w3, e1, e2, e3}, {y1, y2}, {l1, l2, l3})
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ΦN ≡ (e1 + e2 + e3) ↔ N

where ΦQBF
ILA is generated according to Eq. 5, ΦV constrains

the inputs/outputs/initial-state, and ΦN constrains the number of
active select lines in e to N .

Therefore, the corresponding QBF fault diagnosis problem is:

∃e1, e2, e3, st0
1 , st0

2 , st1
1 , st1

2 , st2
1 , st2

2 ∀t1 (7)

∃xt1
1 , xt2

1 , yt1
1 , xt1

2 , yt2
1 , yt2

2 , s1, s2, s′1, s′2, x1, w1, w2, w3, y1, y2, l1, l2, l3

| Φ
QBF
ILA

∧ ΦV ∧ ΦN

Fig. 4 shows the hardware construction ΦQBF
ILA as well as

the counter-example constraints ΦV next to their corresponding
inputs, outputs and initial-state bits. Given the QBF problem in
Eq. 7 and starting with N = 1, a QBF solver will return the
assignment {e1 = 0, e2 = 1, e3 = 0} of multiplexer select lines,
which means that line l2 is faulty.

A. Extension to Multiple Counter-Examples

In order to extend the QBF formulation given in Eq. 6 to deal
with multiple (q) counter-examples, another hardware structure
has to be built around that of Fig. 3, which allows us to go



through the different counter-examples in V. Since the ILAs
corresponding to different counter-examples are decoupled from
each other, as shown in Fig. 2, this simply consists of introducing
new MUXs that select the input/output/initial-state constraints
corresponding to a certain counter-example, as done in [18].
Fig. 5 shows this new construction, referred to as ΦQBF

grid because
it essentially replaces Φgrid of the SAT formulation given in
Eq. 2. Here c = 〈c1, c2, . . . , cdlg qe〉 denotes the vector of
Boolean counter-example select variables. Once again, The binary
description inherent to a QBF formulation forces us to consider
q̂ = 2dlg qe counter-examples, where q̂ denotes the smallest power
of 2 greater or equal to q. As explained for the time-frame select
vector, this is harmless.

Given q counter-examples, the QBF problem corresponding to
fault diagnosis can be stated as the following question:

Does there exist an assignment to e such that for
all counter-example select variables, there exist as-
signments to the states st0 , st1 , . . . , s

tmj , where mj is
the length of the jth counter-example, such that for
all time-frame select variables, ΦQBF

grid ∧ ΦV ∧ ΦN is
satisfied?

Formally, ΦQBF
grid given in Fig. 5 is described as:

ΦQBF
grid ≡ ΦQBF

ILA ∧ MUX({sc1,t0 , . . . , scq̂,t0}, c, st0) (8)

∧ MUX({Xc1, . . . , Xcq̂}, c, X)

∧ MUX({Y c1 , . . . , Y cq̂}, c, Y )

where the three new MUXs correspond to the three outer
MUXs in Fig. 5 which select the counter-example. Note that
the m used in ΦQBF

ILA (see Eq. 5) should now be equal to the
maximum counter-example length (i.e., m = maxj∈[1,q] mj) in
order to accommodate all the counter-examples.

The question stated in italic above can now be formally
expressed as the following QBF problem:

∃e ∀c ∃S ∀t ∃X,Y, St0 , X, Y, s, s′, x, w, y, l (9)

| ΦQBF
grid ∧ ΦV ∧ ΦN

where St0 = {sc1,t0 , . . . , scq̂ ,t0} denotes the set of initial-states
of all counter-examples.

The QBF formulation given in Eq. 9 contains 5 scopes
(∃∀∃∀∃). It is possible to represent the same problem with 3
scopes (∃∀∃) and still have a single copy of the circuit in the
problem matrix. Although this is also implemented, we will not
go into the formulation details due to the lack of space. The idea
is to put the ILAs corresponding to the counter-examples next
to each other, thus obtaining a long 1-dimensional chain of not
necessarily connected circuits, as opposed to the 2-dimensional
grid shown in Fig. 2. Collapsing this chain using Eq. 6, with
the exception that some current and next-states should not be
connected, generates a 3-scope QBF problem.

IV. EXPERIMENTS

We have implemented an encoding module in C++ which,
given the specification and a set of failing traces, produces
the described QBF formulations in either 3 or 5 scopes. The
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generated QBF problem is given to the state-of-the-art QBF solver
sKizzo [15], which has been purposely modified to return,
on SAT instances, not just one but all the valid assignments
to e that identify fault locations. Five industrial circuits from
OpenCores.org [19] are used to construct several fault-diagnosis
problems.

Counter-examples are created by manually changing the func-
tionality of certain gates in the circuits and running pseudo-
random simulations until a faulty response is exhibited. For
each circuit, 6 different instances, each consisting of 8 counter-
examples, are generated and the results are averaged out over
these 6 instances. The number of simultaneous fault locations N

is set to 1. The results of the proposed QBF-based formulations
are compared to the SAT-based approach [8] that uses replication
and zChaff [12] as the underlying SAT solver. Experiments
are conducted on a Pentium IV 2.8 GHz Linux platform with a
memory limit of 2 GB and a time-out of 2000 seconds.

Table I compares QBF-based and SAT-based model-free fault
diagnosis results. The first three columns respectively show the
circuit name, its number of gates and number of flip-flops (DFFs).
The fourth and fifth columns respectively show the average and
maximum counter-example lengths. The sixth column gives the
average number of solutions (i.e., possible fault locations). For
each of the three approaches, namely SAT, 5-scope QBF and 3-
scope QBF, columns i) # solved, ii) abort reason, iii) time and iv)
mem respectively show i) the number of solved problem instances
(out of 6), where an instance is considered solved if and only if all
possible solutions are returned successfully and it is proved that
no other solutions exist, ii) the most common aborting reason,
where [TO] stands for time-out and [MO] stands for mem-out,
iii) the total run-time in seconds to find all solutions including
the time to prove completeness, and iv) the memory footprint of
the file containing the problem instance in MBs. When averaging
the run-times, an unsolved instance is counted as 2000 seconds,
which is the time-out.

Table II compares QBF-based and SAT-based stuck-at-fault
diagnosis results for the first three circuits. The counter-examples,



TABLE I
QBF-BASED VERSUS SAT-BASED MODEL-FREE FAULT DIAGNOSIS

Circuit and Diagnosis Info SAT 5-scope QBF 3-scope QBF

C
# # avg

j∈[1,q]
mj max

j∈[1,q]
mj

avg # # abort time mem # abort time mem # abort time mem
gates DFFs solutions solved reason (sec) (MB) solved reason (sec) (MB) solved reason (sec) (MB)

A1 5, 248 388 27.5 111 7.8 3/6 [MO] 1232.8 199 4/6 [TO] 791.7 7 6/6 − 210.0 12

A2 12, 041 521 2.5 8 11.5 6/6 − 30.7 27 6/6 − 17.1 1 6/6 − 12.3 2

A3 265 22 365.1 931 7.0 0/6 [MO] − 125 6/6 − 98.8 21 6/6 − 448.1 11

A4 2, 449 347 89.3 449 3.0 3/6 [MO] 1001.8 351 3/6 [TO] 1001.6 33 4/6 [TO] 771.1 32

A5 2, 012 90 21.5 56 3.2 6/6 − 41.2 56 6/6 − 17.0 2 6/6 − 9.1 2

TABLE II
QBF-BASED VERSUS SAT-BASED STUCK-AT-FAULT DIAGNOSIS

Diagnosis SAT 5-scope QBF 3-scope QBF

C
avg # # abort time # abort time # time
sols solv reason (sec) solv reason (sec) solv (sec)

A1 7.8 3/6 [MO] 1080.2 4/6 [TO] 907.7 6/6 311.5
A2 11.5 6/6 − 25.0 6/6 − 27.2 6/6 22.5
A3 4.0 0/6 [MO] − 6/6 − 193.7 6/6 214.7

and therefore the memory footprints of the problems, are un-
changed. The difference is that only stuck-at-faults are allowed
to match the response of the specification to that of the counter-
examples. This additional constraint on the problem upper-bounds
the number of stuck-at-fault solutions by the number of model-
free solutions. In fact, whereas A1 and A2 have the same average
number of solutions in Tables I and II, A3 has an average of 7.0
free solutions versus an average of 4.0 stuck-at-fault solutions.

As expected, the results demonstrate a clear memory advantage
for the QBF-based formulations. In fact, both 5-scope and 3-
scope QBF formulations are 93% more succinct than the SAT
formulation on average. In total, SAT-based fault diagnosis solves
27 out of 54 instances (50%), whereas 5-scope and 3-scope QBF
formulations respectively solve 47 (87%) and 52 (96%) out of
54 instances, respective improvements of 74% and 93% in the
number of solved instances. Even in cases that are solved com-
pletely by all three approaches such as all the problem instances
of circuits A2 and A5, QBF-based diagnosis is significantly faster
than SAT-based diagnosis.

Fig. 6, which plots the number of solved instances as a function
of run-time, clarifies the QBF versus SAT-based comparison.
Clearly, both QBF approaches have a sizable advantage over SAT,
with the 3-scope fault-diagnosis formulation virtually consistently
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Fig. 6. QBF versus SAT-based fault diagnosis results

dominating the 5-scope formulation.

V. CONCLUSION

This work presents a memory-efficient QBF-based formulation
for fault diagnosis in sequential circuits. Experiments confirm the
memory advantage of the approach and demonstrate significant
performance improvements for industrial problems. These posi-
tive results encourage further research in the application of QBF
solvers to diagnosis.
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