
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002 1469

Design Rewiring Using ATPG
Andreas Veneris, Member, IEEEand Magdy S. Abadir, Senior Member, IEEE

Abstract—Logic optimization is the step of the very large scale
integration (VLSI) design cycle where the designer performs
modifications on a design to satisfy different constraints such as
area, power, or delay. Recently, automated test pattern generation
(ATPG)-based design rewiring techniques for technology-depen-
dent logic optimization have gained increasing popularity. In
this paper, the authors propose a new operational framework to
design rewiring that uses ATPG and diagnosis algorithms. They
also examine its complexity requirements and discuss different
implementation tradeoffs. To perform this study, the authors
reduce the problem of design rewiring to the process of injecting a
redundant set of multiple pattern faults. This formulation arrives
at a new set of results with theoretical and practical applications.
Experiments demonstrate the competitiveness of the approach
and motivate future work in the area.

Index Terms—CAD, diagnosis, synthesis, testing, VLSI.

I. INTRODUCTION

DURING logic optimization, the gate level implementation
(netlist) obtained by high-level synthesis tools is modi-

fied to achieve different constraints such as minimizing the area,
minimizing power consumption, satisfying timing constraints,
reducing switching noise, or improving the testability of the
final circuit. Traditionally, logic optimization is carried out in
two phases. First, technology-independent optimization returns
an optimum logic network in terms of some general criteria such
as gatecount, literal count, etc. In this phase, symbolic-based
(Boolean or algebraic) methods [2], [19] are particularly effi-
cient. Next, the netlist gates are mapped to a technology library
and the design is further optimized under a new set of tech-
nology dependent constraints.

Recently, automated test pattern generation (ATPG)-based
optimization techniques [3]–[7], [9], [10], [15], [22], [17] have
gained increasing popularity for technology-dependent logic
optimization. Their main strength lies in their performance
since they are memory efficient. They have good failure char-
acteristics, and, although theoretically they can be exponential
in time, in practice this is rarely the case. Due to these facts,
ATPG-driven techniques have successfully tackled problems
such as area minimization [5], [10], [15], power reduction [17],
performance optimization [16], [22], routing [4], and design
for testability [7] as well as aiding devise solutions to other
important problems such as logic verification [14], [15].

Manuscript received February 24, 2002; revised May 23, 2002. The work
of the first author was supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) under Contract 227044-00. This paper was
recommended by Associate Editor N. K. Jha.

A. Veneris is with the Department of Electrical and Computer Engineering
and Department of Computer Science, University of Toronto, Toronto, ON M5S
3G4 Canada (e-mail: veneris@eecg.toronto.edu).

M. S. Abadir is with the High Performance Tools and Methodology Group at
Motorola, Austin, TX 78729 USA (e-mail: m.abadir@motorola.com).

Digital Object Identifier 10.1109/TCAD.2002.804388

In general, existing techniques optimize a design through an
iterative sequence of simple structuraldesign rewiringopera-
tions. During each iteration, a singletarget wire is identified
for removal because it violates some optimization constraint(s).
Next, some simple redundant logic is added so that the target
wire itself becomes redundant and it can be removed. Finally,
the target wire is removed as well as other newly generated re-
dundancies. This process is repeated until the desired optimiza-
tion constraints are satisfied. Due to the nature of their oper-
ations, these techniques [3]–[7], [9], [10], [15], [22], [17] are
also known asredundancy addition/removal (RAR)techniques.

In this work, we present a new operational framework to
ATPG-based design rewiring that combines existingdesign
error diagnosis and correction (DEDC)techniques [1], [23]
with advances in ATPG [11], [13], [20], [14]. The proposed
ATPG/diagnosis-based design rewiring (ADDR) methodology
works in the opposite direction to existing procedures. It first
introduces a design error and then it corrects it with a simu-
lation-based DEDC algorithm and ATPG. We also describe
efficient implementations for this method, study its complexity
requirements, and present experiments that demonstrate its
robustness.

It should be noted that in this paper we do not propose an algo-
rithm that targets a specific optimization goal, but we introduce
a new methodology to design rewiring that adds and comple-
ments existing techniques [24]. It is among our research plans
to apply the presented results to specific optimization problems
[25]. Also, we do not examine algorithms that identify newly
generated redundancies after a series of logic transformations
but the work in [4]–[6], [9], [10] applies here as well.

ADDR has several unique features that make it attractive
when compared to existing approaches. First, it is not limited
in the amount and type of target logic it eliminates. Since
it formulates the elimination of the target logic through the
introduction of an error, it can perform a wide variety of
logic transformations. In general, the approach allows one to
arbitrarily modify part of the circuit to introduce an error and
correct it in a less crucial part of the design. This opens a new
range of opportunities and applications to ATPG-based design
rewiring.

The next novelty lies in the fact that the set oflogic (struc-
tural) transformationsit returns is always a superset of the one
returned by existing ATPG-based design rewiring techniques. In
fact, since there exist efficient DEDC approaches exhaustive on
the correction space [23], it returnsall permissible logic trans-
formations that correct a target error. In other words, it makes
better use of the internal don’t cares of the design during opti-
mization.

We also expect that this new view to design rewiring will aid
in obtaining efficient solutions for multiple (simultaneous) logic

0278-0070/02$17.00 © 2002 IEEE

1470 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

transformations. This has traditionally been computationally in-
tensive for existing techniques [6], [9]. Multiple logic transfor-
mations are important for target logic with no single alternatives
as they add to the solution space to help meet optimization goals
[4], [5]. They also take further advantage of the internal don’t
cares of a design since the number of pairs of corrections for a
circuit corrupted with two errors, for example, is usually larger
than the product of single corrections when the circuit is cor-
rupted by each error independently [23].

It is of importance to notice that the unique features of this
new approach come at no additional complexity cost when
compared to traditional ATPG-based techniques. To prove this,
in Section V we reduce the problem of design rewiring to the
problem of multiple and simultaneous self-masking pattern
faults [21] injection. This formulation allows us to draw the
conclusion that the complexity of the method equals to this of
existing techniques. Moreover, the presented theory leads to
the more general conclusion that the complexity of redundancy
checking for a set of multiple pattern faults [21] is no harder
than that for a single pattern fault, an interesting result that
stands on its own. Therefore, recent advances in ATPG provide
computationally efficient implementations for the method.
Finally, experimental data confirm the effectiveness of simula-
tion-based DEDC as it helps design rewiring avoid unnecessary
redundancy checks. They also demonstrate the competitiveness
of the approach.

The paper is organized in seven sections. To effectively de-
scribe the proposed approach, we discuss existing ATPG-based
design rewiring techniques and the problem of DEDC in Sec-
tions II and III, respectively. In Section IV, we present the new
method and discuss its novelties. Complexity requirements are
examined in Section V and experiments in Section VI validate
the theory and motivate future work. Section VII contains the
conclusions.

II. PREVIOUS WORK

Existing ATPG-based design rewiring techniques optimize
a netlist through a sequence of simple logic transformations
[3]–[7], [9], [10], [15], [22], [17]. During each iteration, a target
wire that violates a specification constraint(s) is first identified
for removal. For example, the target wire may be on the critical
path or it may have excessively high switching activity. Next,
a logic transformation is performed to remove that wire. This
transformation entails addition of some simple redundant logic,
such as the introduction of a new gate with inputs existing lines
in the circuit or an additional fan-in to an existing gate. The ef-
fect of this extra redundant logic is to make the target wire re-
dundant so it can be removed.

In summary, RAR optimizes a design through an iterative se-
quence of the following operations.

• Operation 1: Identify target wire to be removed.
• Operation 2: Compute new logic that makes re-

dundant.
• Operation 3: Check if is redundant.
• Operation 4: If is redundant, delete and other

newly generated redundancies.
Example 1, taken from [10], outlines these steps for a single

wire removal.

Fig. 1. Optimization through rewiring.

Example 1: Consider the circuit in Fig. 1(a) where wire
, indicated by a dotted line, is not part of the original

netlist and assume that wire , named target wire
hereafter, needs to be removed (Operation 1). In Operation 2,
new redundant connection is computed, shown
as a dotted line in Fig. 1(a). Under the presense of, wire

becomes redundant and new redundancies are introduced
such as wire . During Operation 3, is added and
redundancies and are removed as well as logic
that no longer has an influence on the primary outputs such as
gates and , wire , etc. The new optimized circuit
is shown in Fig. 1(b) where wire has been removed and the
gate count has been reduced.

Although a few different types of target logic have been con-
sidered in the literature, the vast majority of existing techniques
are designed around the removal of a single wire (). RAR
techniques usually differ in the ATPG engine used to identify
the structure and the location of the corrections.

In [3]–[6], [9], and [10], the target logic and the added logic
are modeled as stuck-at faults and corrections are identified
using fault dominating conditions [13] and sets ofmandatory
assignments (MA)[14]. Given a fault, MAs are logic values on
lines respected byall input vectors that test this fault. For ex-
ample, every test vector for stuck-at 1 in Fig. 1(a)
necessitates a logic 0 on line and a logic 1 on lines

and . MAs can provide sufficient (but not necessary) condi-
tions for redundancy checking of a fault; if the MAs of are
inconsistent then is redundant [13]. The work by Kunzet al.
[15] useslogic implications[14] to add logic which is known
to bea priori redundant. References [22] and [17] represent the
circuit as a set of logic clauses and different theoretical results
allow perform redundancy identification, addition, and removal.

III. D ESIGN ERRORDIAGNOSIS AND CORRECTION

Logic design errorsoccur during the design cycle of a VLSI
chip due to the human factor or bugs in CAD tools [1]. These
errors are functional mismatches between the specification and

VENERIS AND ABADIR: DESIGN REWIRING USING ATPG 1471

Fig. 2. Common design error types.

the gate level description. Most literature in the field uses a de-
sign error (correction) model, i.e., a small predetermined set of
ten possible error types, proposed by Abadiret al. [1]. A list
of common design error types, taken from the model of [1], is
shown in Fig. 2. These errors are related to the work presented
here. The gate types in Fig. 2 are indicative. Similar errors can
occur on other gate types as well.

DEDC is the problem where given an erroneous design, a
specification, and a design error model, we need to identify
lines in the design that are potential sources of error (diagnosis)
and suggest appropriate modifications on these lines from the
design error model that rectify them (correction) [1]. DEDC
is a well-studied problem with a significant amount of pub-
lished work. In theory, test generation and design verification
for DEDC are inherently difficult problems since the solution
space grows exponentially with the number of injected errors
[23]

error space of circuit lines of errors (1)

This difficulty stems from the fact that the error location(s)
is not known. On the other hand, it has been theoretically
proven by Abadiret al. [1] and experimentally confirmed in
[23] that a complete test set for stuck-at faults for the erroneous
design detects the majority of design errors in Fig. 2 and it has
a good chance to detect the remaining ones. For this reason,
most DEDC techniques simulate test vectors for stuck-at faults
and random test vectors to diagnose and correct a design.
Provided vectors with erroneous responses, these methods
can be exhaustive on the solution space yet remain efficient
especially for single errors where the solution space grows
linearly to the number of circuit lines [see (1)].

Intuitively, simulation-based DEDC methods obtain a solu-
tion by intersectingthe solution space offered by each vector,
as shown in Fig. 3. This solution space consists of the actual
andequivalentcorrections, that is, alternate ways to synthesize a

Fig. 3. Resolution of simulation-based DEDC.

function and rectify the design. A compendium of different sim-
ulation-based and symbolic-based DEDC approaches is found
in [23].

In Section IV, we use the DEDC algorithm for single design
errors from [23] which is based on fault simulation techniques.
The input to the algorithm is an erroneous netlist, its specifica-
tion, and a set of input test vectors. Some vectors have failing
output responses and some do not. The algorithmoutputs all
applicable corrections that rectify the design for the given test
vector set using a design error model which is a simple exten-
sion of the one presented in [1]. For example, with respect to
the example in Fig. 1(a), removing target wire
and running the DEDC algorithm described in [23], it returns
equivalent correction as well as the original error. The
existence of equivalent corrections is of paramount importance
for the potential of the design rewiring method presented next.

IV. DESIGN REWIRING USING ATPG

A closer view of the two problems described in Sections II
and III shows that the process of design rewiring can be viewed
from a DEDC perspective as follows. To eliminate we can
remove it and artificially introduce a “design error.” Since the
location of the error is known, ATPG [11], [13], [20], [14] can
derive input test-vectors that detect it. These vectors can feed a
simulation-based DEDC algorithm which is exhaustive on the
correction space to get all “corrections” that rectify the design.
Finally, an appropriate correction from the list ofequivalentcor-
rections is selected and ATPG-based verification of the final de-
sign is performed.

In the context of design optimization, an appropriate correc-
tion is one that satisfies the current optimization constraint(s).
Since the algorithm operates on a (structural) gate level rep-
resentation of the design, technology libraries are available to
compute optimization tradeoffs and tune the process flow to-
ward an optimum level of performance.

Here, simulation-based DEDC is used to efficiently compute
all possible corrections. However, since it bases its results on a
subset of the complete test vector space, these corrections rectify
the design only for this set of vectors and not necessarily for the
complete input test vector space [23]. To alleviate this problem,
in Section IV-A we propose an ATPG-based [14] technique to
guarantee the correctness of the final design. In Section V, we
examine its complexity and we show that it equals that of ex-
isting ATPG-based methods.

In a sense, the design rewiring procedure described above (re-
move/add logic) works in the opposite direction from existing
techniques (add/remove logic). However, as we discuss in Sec-
tion IV-C, when it operates in this new direction it can take full

1472 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

advantage of the internal don’t cares of the design and provide
a more systematic platform for ATPG-based logic resynthesis.

A. Method Overview

In the remaining section, for the sake of simplicity, we dis-
cuss the implementation of the method in terms of a simple
logic transformation where we remove a target wire (“design
error”) and attempt to rectify the design by adding some other
wire (“correction”). The method can be tailored to perform arbi-
trary amounts of logic resynthesis during error introduction and
during correction.

ADDR performs the following four steps.

• Step 1: introduce design error by removing target logic.
• Step 2:derive test vectors for this design error.
• Step 3:use a DEDC algorithm to search for corrections.
• Step 4:verify the correctness of the final design.

The first step artificially introduces a design error by re-
moving target wire . In this discussion, we assume that a
nonredundant target wire is an input to gate and
is that gate when is removed. We also assume that is
a gate where we can add an input wire , resulting in gate

. Next, a two-input multiplexer is added in the circuit with
gates and connected at its inputs and select line. To
derive vectors that detect the design error for the second step
we run ATPG for stuck-at 1.1 Since, by hypothesis, is
nonredundant, the ATPG process is guaranteed to return with
a set of vectors. Each of these vectors will also distinguish
between the old (correct) and new (erroneous) circuit since,
by construction, the output of the multiplexer implements the
function at when and the function at when

(or 1).
In the third step, simulation-based DEDC returns all equiva-

lent corrections. The input to DEDC is the correct and erroneous
circuit along with the test vectors from ATPG (Step 2) and a
small number of random test vectors. The output of DEDC is a
list of all (actual and equivalent) corrections that rectify the de-
sign for the test vectors used. Let wire which is a missing
input wire to gate be an equivalent correction proposed by
the algorithm.

Finally, we need to verify the correctness of the final design
when is added in the circuit. To perform this verification
process in Step 4, we attach a second two-input multiplexer to
the fan-outs of and with the same select line so that
when we select the old circuit and when we select
the new circuit. As a special case, if both the error and correction
are on the same gate, that is, , we simply let and

be the two inputs of the original multiplexer. It is clear that
if ATPG for stuck-at 1 returns with a nonempty test-vector set
it also indicates that the new circuit (removed, added) is
incorrect. However, if the test set is empty (i.e.,stuck-at 1 is
redundant) then it guarantees the correctness of the new design.

B. Example

We give an example to illustrate the algorithm described in
Section IV-A. With respect to the circuit in Fig. 4 assume that

1An alternative approach that returns the same results runs ATPG forS

stuck-at 0.

Fig. 4. Original circuit.

Fig. 5. (a) Test generation. (b) Circuit verification.

line , an input to gate , is the target wire, i.e.,
needs to be removed.

During the first two steps of the algorithm, shown in Fig. 5(a),
gate is introduced, that is, a gate similar to with

not present in its inputs. A multiplexerMUX with inputs
the outputs of and and select line is also introduced.
For simplicity, in Fig. 5(a) we use to represent the circuitry
that implements the respective Boolean function in Fig. 4. As
explained in Section IV-A, an input test vector setthat detects
the fault stuck-at 1 is also a set of vectors with erroneous
primary output responses when is removed from the circuit
in Fig. 4.

In the third step, DEDC is performed. The input to the
DEDC algorithm is the original circuit (Fig. 4), the erroneous
one (Fig. 4 with removed), and vector set. The DEDC
algorithm returns with the actual error (missing input wire
to) and a set of equivalent corrections that includes missing
input wire .

To verify the final design, gate is introduced with input
lines , , and , that is, the equivalent to gate in Fig. 4

VENERIS AND ABADIR: DESIGN REWIRING USING ATPG 1473

Fig. 6. (a) Final design. (b) An erroneous design.

with added as an input. A second multiplexer with the same
select line as the first one and inputs and , as shown in
Fig. 5(b), is also attached in the circuit. An ATPG procedure for
fault stuck-at 1 indicates that the fault is redundant. Therefore,
the circuits in Figs. 4 and 6(a) have the same logic functionality.

Observe that the solution returned by ADDR cannot be found
by a conventional single wire RAR procedure. This is demon-
strated in Fig. 6(b) where both and are present in the cir-
cuit. However, this circuit does not implement the same Boolean
function at the primary outputs with the original one (Fig. 4)
as input test vector , for example,
causes a failing response at. Therefore, is not redundant
in the presense of the target wire .

C. Discussion

At this point, it is of interest to discuss the characteristics of
the method and compare it with existing techniques.

A significant advantage of the proposed method is found in
its ease and flexibility in handling different types of target logic
and corrections (Fig. 2) because it uses DEDC. For example, if
a wire removal does not have a single correction, the target wire
may be replaced with some other wire to introduce an error. As a
result, the Boolean function at the primary outputs of the circuit
may be altered differently and equivalent corrections may exist.

In general, the method allows one to arbitrarily resynthesize
the function of a line(s) and correct this discrepancy somewhere
else. It also makes the process of multiple logic transforma-
tions a straightforward extension of the four step process in Sec-
tion IV-A, provided the use of an efficient multiple DEDC al-
gorithm. Theoretical and experimental results, presented later in
this paper, emphasize the importance and motivate the develop-
ment of such algorithms.

Existing techniques identify corrections using mandatory as-
signments (MA) [14]. The more MAs available, the more cor-
rections they return, but computing MAs is NP-hard and no
method performs such an exhaustive computation. Instead, a

subset of them is identified efficiently using structural, ATPG,
and problem-specific observations [3]–[6], [9], [10]. By con-
struction, these techniques perform a redundancy checking for
everycandidate correction. Since redundancy checking domi-
nates the run-time, the work in [3]–[5], [9] aims to reduce the
total number of unnecessary redundancy checks.

ADDR uses ATPG to return a few test vectors with erroneous
output responses in Step 2 of the algorithm. ATPG is NP-com-
plete and there exist tools that derive such test vectors efficiently.
DEDC in Step 3 uses these vectors, as well as precomputed vec-
tors for stuck at faults and random vectors, to returnall possible
corrections inlinear time, according to (1). Finally, Step 4 ver-
ifies each correction in terms of a single redundancy checking
on the common select line.

In Section V, we show that, in theory, the complexity of Step
4 equals that of existing techniques. This complexity seems to
be inherent to the problem of design rewiring. Experiments in
Section VI suggest that, in practice, simulation-based DEDC
screens most invalid candidates to help avoid unnecessary re-
dundancy checks and improve performance.

V. COMPLEXITY ANALYSIS

In this section we discuss complexity requirements and effi-
cient implementations of the method presented in Section IV-A
using ATPG. This study concludes with a new set of interesting
results. During this presentation, we assume that any test pattern
may occur at the primary inputs of the design, i.e., there are no
external don’t care constraints. In Section V-D, we relax this
assumption and discuss its implications.

In this complexity analysis, we model the process of error and
correction introduction with the injection of multiple (simulta-
neous) self-masking pattern faults. Letbe a circuit and let
be the circuit after a number of logic (structural) transforma-
tions on a gate of . We define apattern fault in to be a
combination of logic values on a set of circuit lines such that, if
these logic values can be consistently justified, the logic value
at the fan-out of in and are complementary. We also
allow a pattern fault to be any set of pattern faults on possibly
different gates in by recursive application of the definition.

Observe that a pattern fault associates a set ofunique logic
value conditionson lines of the circuit such that the output of the
resynthesized gate becomes incorrect in . These conditions
may be satisfied by a possibly nonempty set of input test vectors
thatexcitethe fault. Some of these vectors may also propagate
the discrepancy at to some primary output, that is, theydetect
the fault.

Let be a design and be the design after the introduction
of pattern faults on different gates (lines)
of . We say that pattern fault is self-
maskedif and only if and are functionally equivalent. For
brevity, in the remaining discussion, we use the termfault to
refer to a pattern fault, unless otherwise stated. We also use the
terms self-masking fault(s) and redundant fault(s) interchange-
ably.

Different logic transformation types can be modeled by a set
of faults. Recall the various error (correction) types introduced
in Fig. 2. A missing input wire error can be modeled by a fault

1474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

Fig. 7. Fault modeling of gate replacement error.

with set of excitation conditions .
These logic values give a logic 1 at the output of the gate in the
original circuit and a logic 0 in the new one . The reverse
situation occurs for extra input wire error where the same set of
conditions give a logic 0 in and a logic 1 in .

Notice that this pattern fault formulation implies the stuck-at
fault formulation for logic transformations adopted by RAR.
Therefore, it comes as no surprise that similar conditions are
presented for these two error types in [3]–[7], [9], [10]. More-
over, the presented formulation can map any piece of arbitrary
logic resynthesis to a set of pattern fault(s) by enumerating all
necessary excitation conditions on the error injected lines in.
In fact, ATPG at Steps 2 and 4 of the design rewiring algorithm
performs such an enumeration.

Unlike the above error types which can be modeled by a
single fault, there are error types that require multiple faults
(conditions) to completely justify all error effects. Consider the
NOR to AND gate replacement error from Fig. 2, for instance. As
the truth table for two-input gates in Fig. 7 reveals, there are two
instances that this error is excited, each of which is modeled in
terms of a distinct fault, and . Other (nonnegated) gate type
replacements are modeled similarly. An incorrect input wire
also requires two faults. With respect to Fig. 2, these faults are

and .
With this formulation in mind, the problem of design rewiring

can be stated as follows.
Definition 1: Design rewiring is the problem where

given an (artificially introduced) error(s) modeled by fault
at lines of we seek a cor-

rection(s) modeled by fault
at lines of the erroneous () so that fault

in the new circuit is
redundant.

As a side note, Definition 1 gives rise to a similar definition
for brute-force DEDC with the exception that and the set of

lines are not known, thus its inherent complexity during test
generation and verification. Additionally, the introduction of
fault in the circuit may make more faults
redundant [8], [21], that is, remains
redundant. Algorithms to identify such new redundancies, in
favor of design optimization, have been developed in [4]–[6],
[9], and [10] and apply to the presented work as well.

Under the presense of faults that model the error and
the correction, the simulation of a test vector in and

may give different logic values at corresponding
lines. To aid our presentation, we use Roth’s nine-valued
alphabet [18] with logic values taken from the set

Fig. 8. Implication-based RAR.

{ } to rep-
resent the logic value of a line in theoriginal/newcircuit ,
respectively. Using Roth’s alphabet, the redundancy require-
ment in Definition 1 implies that no 0/1 or 1/0 propagates to a
primary output under the presense of.

The following examples illustrate the above concepts.
Example 2: The work by Kunzet al. [15] presents an RAR

method which optimizes a circuit usingBoolean divisionop-
erations. In this example, borrowed from [15], we review the
method and formulate it within the framework presented here.

With recursive learning [14], one finds that logic 0 onim-
plies a logic 0 on , that is, in Fig. 8(a). This
logic implicationis equivalent to by contra-
position which allows [15] for to be replaced by
(ATPG-based Boolean division). This redundant transformation
(correction), shown in Fig. 8(b), makes connections
and redundant (errors). Removing these connections in
Fig. 8(b) leads to an optimized design with three gates.

We now translate this sequence of operations into the present
operational framework. The addition of is equivalent to the
injection of fault () with excitation conditions {

} that cannot be simultaneously met in Fig. 8(a), thus,
it is redundant. The two errors are represented with faults

and (),
respectively.

Observe that fault is redundant since no
test vector propagates a 0/1 and/or a 1/0 value at a primary
output(s) for any combinations of faults from [21]. To see
this, in Fig. 8(b) we attach the logic values on lines of
when is excited and . The case when is similar.
To simplify the presentation, the dotted wires are pseudo-inputs
with stable noncontrolling logic value 1. Notice that whenis
excited, faults and are excited. The reader can verify that
the excitation of excites and the excitation of excites

. In all cases, the multiple faults are redundant.
Example 3: We re-examine the example in Section IV-B, re-

drawn in Fig. 9 for convenience. In that circuit, there are two
faults involved, the error

and the correction
.

Fig. 9(a) contains the situation where both the error and the
correction are present in the final circuit. Similar reasoning to

VENERIS AND ABADIR: DESIGN REWIRING USING ATPG 1475

Fig. 9. Example of Section IV-B, revisited.

the one in Example 2 shows that fault is re-
dundant. Observe that meeting the excitation conditions of one
fault excites the other. Section V-B shows that this is not a coin-
cidence and it prompts toward design rewiring specific DEDC
algorithms. On the other hand, fault is not redun-
dant, as illustrated in Fig. 9(b).

A. ATPG and DEDC (Steps 2 and 3)

The focus is on the complexity requirements of ATPG (Step
2) and DEDC (Step 3) of the algorithm in Section IV-A. We
perform this study in terms of the set of test vectors that detect
faults and in Definition 1.

Consider a single execution of the proposed design rewiring
algorithm. Design is first corrupted with some error(s)
modeled by fault . Let denote theintermediate circuit
after this error introduction operation, that is, is functionally
equivalent to under thepresenseof fault effects from .
Next, a correction(s) is applied on some lines of to give
circuit such that . This correction(s) is modeled by
fault .

Observe that can be similarly defined as prior to the
correction(s), that is, is functionally equivalent to under
the absenceof fault effects from . This dual definition for

is due to the symmetric nature of DEDC: Any error/correc-
tion solution in is a correction/error solution in . The lo-
cations and excitation conditions of the pattern faults
associated with this correction/error in are in one-to-one cor-
respondence to the ones in with complementary logic
values at the respective gates.

Motivated by these observations, Theorem 1 classifies test
vectors that detect and . The proof of this theorem is
a straightforward extension of the discussion above.

Theorem 1: Let faults and from Definition 1 and
and as defined above. Test vectordetects some faults from

on a set of lines in if and only if detects some faults
from on a set of lines in .

Example 4: In Fig. 8, gate is added (correction) and wires
and are removed (errors). In Example 2,

these logic transformations are modeled by faults, and ,
respectively. Assume that faults and are injected in the
circuit of Fig. 8(a). Depending on the value of, every vector
with erroneous responses detects either: 1)and or 2) .
Theorem 1 suggests that these are also all the vectors that detect
correction “replace by ” in Fig. 8(b), which is the case
indeed.

Example 5: Consider the circuit under
verification in Fig. 5(b) where consists of
faults missing input wire to and

extra input wire to . According to [21], the
redundancy of stuck-at 1 fault is equivalent to the redundancy
of: 1) ; 2) ; and 3) . Theorem 1 implies that any
ATPG tool that attempts to prove redundancy of 1) will excite
2) to cancel the error effects of 1) and vice versa. The reader
can verify this effect. Due to the containment property, the tool
will not attempt 3). In other words, proving the redundancy of
pattern fault equals proving the redundancy of two single
single stuck-at faults and independently.

Theorem 1 establishes a relation between the test vector(s)
that detect the error(s) and the ones that detect the correction(s)
via the sets of pattern faults and their associated locations
and . We view the merits of this theorem first for DEDC and
then for ATPG.

In brute-force DEDC, the error location is not known and
no such test vector classification is possible, as discussed pre-
viously. DEDC for single errors remains efficient because all
error effects originate from a single line and linear-time fault
simulation algorithms are applicable [23]. On the other hand,
if errors/corrections are present in multiple locations, the solu-
tion space explodes exponentially with the number of distinct
error locations according to (1). When DEDC is used in de-
sign rewiring the case is different. Since the error location(s)
is known, for every test vectorthe set can be computed and
DEDC is presented with the additional information of Theorem
1. Although there is little to gain for the single error case, in light
of this information, we believe that efficientdesign rewiring
specific DEDCalgorithms can be designed to tackle the mul-
tiple error/correction case.

Theorem 1 also suggests that ATPG should target every fault
from in the care set of the respective line(s) independently
to aid DEDC resolution. Traditionally, ATPG is carried in two
steps. The first step excites the fault and the second step propa-
gates the fault effects to some primary output. Since all faults in

have unique excitation conditions, one can easily modify an
ATPG engine to enumerate all required excitation conditions.
However, this is not necessary and tradeoffs can be considered.
We discuss some tradeoffs here and we conclude in Section VI.

Since the error effects of some faults from may origi-
nate from a single line, one may run ATPG only on a subset
of them to aid diagnosis. Next, a DEDC algorithm can return
all corrections. The net effect is that some corrections may not

1476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

verify during simulation-based verification by DEDC (Step 3)
or during Step 4 that perform such an exhaustive fault enumer-
ation. If more time is spent in ATPG at Step 2, less time is ex-
pected to be spent in DEDC/verification and vice versa. In both
cases, the set of corrections obtained is the same.

B. Multiple Fault Redundancy Checking (Step 4)

Step 4 of the algorithm verifies the correctness of the new
design in terms of a redundancy checking for the stuck-at 1
fault on the common select line of all multiplexers. According
to Definition 1, is structurally produced from through a set
of logic transformations represented by fault. As such, Step
4 checks the redundancy of underlying fault.

Proving the redundancy of multiple and simultaneous faults
has been a well-examined problem of prominent importance due
to its implications in logic testability [8], [21]. The following
theorem, a simple restatement of the result by Smith [21], gives
a necessary and sufficient condition for multiple fault unde-
tectability.

Theorem 2: A fault on lines,
, in a circuit is redundant if and only if for each nonempty set

there exists nonempty set such that is
redundant.

As Smith’s theorem [21] indicates, the complexity of redun-
dancy checking for a set of faults necessitates a computation
of exponential(in) size for modern ATPG tools as it requires
enumeration and redundancy checking for every fault combi-
nation. Nevertheless, the presented fault-based formulation and
the construction in Section IV-A allows us to capture nicely this
complexity in the redundancy checking of asinglefault.

Theorem 3 that follows formalizes this idea which, to the
best of our knowledge, is the first result to allow efficient mul-
tiple fault redundancy checking. Since ATPG [11], [13], [20],
[14] is very efficient when verifying single fault redundancies it
also makes it a robust platform to implement the proposed de-
sign rewiring approach. Theorem 3 can also provide a proof that
checking the redundancy offaults is NP-complete.

Theorem 3: A fault on lines,
, in a circuit is redundant if and only if the stuck-at 1 fault on

the common select line for the multiplexers of the construc-
tion in Section IV-A is redundant.

C. Design Rewiring With Constraints

Consider the assumption at the beginning of the section that
every test may occur at the primary inputs of the design. This
assumption can be relaxed in favor of design optimization as
follows.

Assume design with number of primary inputs and a
structurally identical design operating under a set of external
don’t care constraints. In other words, the complete input test
vector set for has strictly less than 2members. Given an
error, Fig. 3 implies that an input test vector may reduce the
solution (error location and/or correction) space for simulation-
based DEDC but it never increases it. Therefore, for a fixed
error, is expected to haveat leastas many corrections as

.
Sets of external constraints can be taken into account by

the presented design rewiring method if ATPG (Step 2 and

Fig. 10. Additional correction types.

4) avoids generating input test patterns that belong in these
sets or if DEDC ignores such test patterns when generating a
solution. The discussion in the previous paragraph implies that
ignoring test sets may increase the correction space in favor of
optimization.

VI. EXPERIMENTS

We implemented the algorithm in Section IV-A inand ran
it on an Ultra 10 SUN workstation for ISCAS’85 benchmark
circuits optimized for area using script.rugged in SIS [19]. The
details of the ATPG and DEDC algorithms we employed can be
found in [11], [14] and [23], respectively.

DEDC bases its results on a set of input test vectors com-
prised of the vectors returned by ATPG (Step 2), a small number
of random vectors, and vectors for stuck-at faults [12]. Prior to
execution, DEDC simulates 2000–3000 random test vectors to
create a bit-list on each line of the circuit as in [23]. Theth entry
of this list for line contains the logic value ofwhen the th
vector is simulated. Intuitively, the logic values maintained in
these bit-lists behave as an approximation of the Boolean func-
tion implemented at the respective line. We say that two lines
havesimilar logic values if most of their respective bit-list en-
tries are the same. Using this setup, we run two different exper-
iments and report the average values of the results obtained.

In the first experiment, for every wire in the circuit, we
inject one error to eliminate it and we count the number of equiv-
alent corrections. We consider three error types.

• Type A:remove .
• Type B:replace with an existing 75% similar wire.
• Type C:replace with an existing 50% similar wire.

With respect to Figs. 2 and 10, the correction types DEDC uses
are as follows:

• Type 1:gate replacement;
• Type 2:incorrect input wire;
• Type 3:extra input wire;
• Type 4:missing input wire;
• Type 5:missing input gate;
• Type 6:missing output gate and missing gate.

Corrections with two wires, such as missing input gate and
missing gate, require quadratic time for DEDC. Heuristics to

VENERIS AND ABADIR: DESIGN REWIRING USING ATPG 1477

TABLE I
PERFORMANCECHARACTERISTICS

TABLE II
COMPARISON OFRESULTS AND OTHER STATISTICS

speed the search process for such corrections are developed in
[4], [5], and [25]. For wire related corrections, wires that do
not create loops in the combinational circuitry are considered.
We allow adding an inverter if it increases the potential to find
a correction.

General information on the performance of the algorithm can
be found in Table I. The first two columns contain circuit char-
acteristics. The next three columns show the average number
of equivalent corrections returned for each error type indepen-
dently. These average values are a conservative estimate as we
set a user-defined limit on the maximum number of missing
input gate (Type 5) and missing gate (Type 6) corrections that
we consider.

We observe that removal of returns more corrections, on
the average, compared to the other two error types. This may be
explained because the number of conditions involved with the
set of pattern faults for incorrect input wire is more than that for
missing input wire, as explained in Section V; thus, it is harder
to correct it. In the experiments, we also observed that there is
little overlap between the sets of corrections returned for dif-
ferent error types on the same . This confirms the flexibility
of ADDR since the designer is presented with more opportunity
to eliminate the target logicandcorrect it.

Columns 6–11 in Table I contain detailed information on the
correction types used. It can be seen that certain types of correc-
tions are more useful. The last column of the table contains the
average run-time, in seconds, to find one equivalent correction.
This number equals the CPU time for all four steps of the algo-
rithm in Section IV-A. On the average, the time spent in ATPG

and redundancy checking dominates the overall time which con-
firms the robustness of DEDC in design rewiring.

To demonstrate the potential of ADDR, it is of interest to
compare its performance with the one of RAR. Table II contains
information on the number of corrections returned by a recent
RAR procedure [3] and by our method for wire removal error
type (type A) and the same correction types (a subset of types

). Compared to previous approaches, the work in [3] usu-
ally returns more alternatives because it considers adding logic
not only at dominating gates but also at gates that have implied
mandatory assignments.

Columns 2 and 3 in Table II show the number of corrections
returned by ADDR and RAR [3] for the same set of error/cor-
rection type experiments. It is seen that the proposed method
outperforms RAR as it returns more corrections. In fact, it re-
turns all corrections since it uses a DEDC method exhaustive
on the correction space. Moreover, columns 4 and 5 contain the
percentage of target logic with alternative corrections (success
hit-ratio) for the complete set of wire removal experiments. We
observe that ADDR can find alternatives for target logic removal
cases that RAR cannot in favor of design optimization. Our ex-
periments also indicate that more than 99% of the corrections
found by ADDR are redundant in presense of the error.

Due to the flexibility of DEDC to handle a wide variety of
correction types, the total number of corrections returned by the
method for error type A and correction types is much
larger (Column 6). This competitiveness is additionally justi-
fied if we consider the locations of the proposed corrections.
Column 7 contains the percentage of corrections on the gate

1478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

Fig. 11. Simulation-based verification.

drives. For the remaining ones, column 8 shows the percentage
of corrections on a dominator of . These numbers suggest
that many corrections exist on nondominating gates.

To further demonstrate the effectiveness of simulation-based
DEDC in design rewiring, Fig. 11 depicts the set offalsecor-
rections returned by DEDC for two benchmarks. Since simula-
tion-based DEDC bases its results on a subset of the complete
input test vector space, it is of interest to know the quality of
these corrections for the complete input test vector space. This
is because the fewer false corrections returned, the less time de-
sign rewiring spends in ATPG-based redundancy checking (Step
4), as pointed out in Section IV-C.

In that figure, a bold line indicates the percentage of false cor-
rections returned when DEDC (Step 3) uses random vectors and
a dotted one when stuck-at vectors [12] are included. The plots
confirm results in [1] and [23] as a small number of vectors pro-
vides sufficient resolution to DEDC. As a result, most correc-
tions qualify Step 4 and ADDR performs 1.1 redundancy check-
ings per nonfalse correction it finds. To appreciate this result,
one needs compare it with the respective average for existing
techniques [3], shown in column 9 in Table II. We conclude,
that, in practice, ADDR performs far less redundancy check-
ings, an important computational saving. Fig. 11 also suggests
that Step 2 of design rewiring may be occasionally omitted since
vectors for stuck-at faults give sufficient resolution to DEDC.

In the second experiment, we randomly select and remove
a target wire to introduce an error and we try to correct it
with a single correction. If no single correction exists, we are
interested in having DEDC find two corrections that rectify it.
The average values of the results are found in Table II.

Column 4 of this table shows the percentage of errors that can
be corrected with a single correction, as explained earlier. For
those errors that no single correction exists, the last column in
Table II contains the ones that can be corrected with two cor-
rections. We observe that a significant amount of errors cannot
be corrected with a single correction but they can be corrected
with a pair of corrections. Similar experiments in [4] confirm
this result for a different suite of benchmark and industrial de-
signs where a significant percentage of single wire related errors
with no single alternatives have triple alternatives.

Since the success of design rewiring during optimization de-
pends on its ability to eliminate target logic, it is evident that
multiple corrections will increase the solution space and may re-
turn further gains. This suggests the development of efficient de-
sign rewiring specific multiple DEDC algorithms that will offer
more alternatives to meet optimization goals, as discussed in
Section V-B.

VII. CONCLUSION

We presented a new ATPG-based design rewiring method-
ology and discussed efficient implementation tradeoffs. This
method injects an error to eliminate the target logic and uses
a simulation-based design error diagnosis and correction algo-
rithm to correct it. ATPG performs test generation and design
verification. We also study the complexity requirements of this
approach by reducing the process of error/correction injection to
the process of injecting a set of multiple redundant pattern faults.
This study arrives at a new set of interesting results and shows
that ATPG-based design rewiring is efficient. Experiments con-
firm the theory and motivate future work in the field.

ACKNOWLEDGMENT

The authors would like to thank I. Ting, M. Amiri, and R.
Chang for contributions to portions of the work described here.

REFERENCES

[1] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic verification via test
generation,”IEEE Trans. Computer-Aided Design, vol. 7, pp. 138–148,
Jan. 1988.

[2] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, pp. 677–691, Aug. 1986.

[3] S. C. Chang and Z. Z. Wu, “Theory and extensions of single wire
replacement,” IEEE Trans. Computer-Aided Design, vol. 20, pp.
1159–1163, Sept. 2001.

[4] S. C. Chang, K. T. Cheng, N. S. Woo, and M. Marek-Sadowska, “Post-
layout logic restructuring using alternative wires,”IEEE Trans. Com-
puter-Aided Design, vol. 16, pp. 587–596, June 1997.

[5] S. C. Chang and M. Marek-Sadowska, “Perturb and simplify: Multi-
level Boolean network optimizer,” inProc. Int. Conf. Computer-Aided
Design, 1994, pp. 2–5.

[6] S. C. Chang, J. C. Chuang, and Z. Z. Wu, “Synthesis for multiple input
wires replacement of a gate for wiring consideration,” inProc. Int. Conf.
Computer-Aided Design, 1999, pp. 115–118.

VENERIS AND ABADIR: DESIGN REWIRING USING ATPG 1479

[7] M. Chatterjee, D. Pradham, and W. Kunz, “LOT: Logic optimization
with testability – New transformations using recursive learning,” in
Proc. Int. Conf. Computer-Aided Design, 1995, pp. 115–118.

[8] R. Dandapani and S. M. Reddy, “On the design of logic networks with
redundancy and testability considerations,”IEEE Trans. Comput., vol.
C-23, Nov. 1974.

[9] J. A. Espejo, L. Entrena, E. San Millàn, and E. Olìas, “Functional exten-
sion of structural logic optimization techniques,” inProc. Asian-South-
Pacific Design Automation Conf., 2001, pp. 467–472.

[10] L. A. Entrena and K. T. Cheng, “Combinational and sequential logic
optimization by redundancy addition and removal,”IEEE Trans. Com-
puter-Aided Design, vol. 14, pp. 909–916, July 1995.

[11] H. Fujiwara and T. Shimono, “On the acceleration of test generation
algorithms,”IEEE Trans. Comput., vol. C-32, Dec. 1983.

[12] I. Hamzaoglu and J. H. Patel, “New techniques for deterministic test
pattern generation,” inProc. VLSI Test Symp., 1998, pp. 446–452.

[13] T. Kirkland and M. R. Mercer, “A topological search algorithm for
ATPG,” in IEEE Design Automation Conf., 1987, pp. 502–508.

[14] W. Kunz and D. K. Pradhan, “Recursive learning: A new implication
technique for efficient solutions to CAD problems-test, verification,
and optimization,”IEEE Trans. Computer-Aided Design, vol. 13, pp.
1143–1158, Sept. 1994.

[15] W. Kunz, D. Stoffel, and P. R. Menon, “Logic optimization and equiva-
lence checking by implication analysis,”IEEE Trans. Computer-Aided
Design, vol. 16, pp. 266–281, Mar. 1997.

[16] Y. M. Jiang, A. Krstic, K. T. Cheng, and M. Marek-Sadowska, “Post-
layout logic restructuring for performance optimization,” inIEEE De-
sign Automation Conf., 1997, pp. 662–665.

[17] B. Rohfleisch, A. Kolbl, and B. Wurth, “Reducing power dissipation
after technology mapping by structural transformations,” inProc. De-
sign Automation Conf., 1996, pp. 789–794.

[18] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,”
IBM J. Res. Development, vol. 10, pp. 278–291, June 1966.

[19] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and A. Sangio-
vanni-Vincentelli, “Sequential circuit design using synthesis and opti-
mization,” inProc. Int. Conf. Computer Design, 1992, pp. 328–333.

[20] M. H. Schulz and E. Auth, “Improved deterministic test pattern genera-
tion with applications to redundancy identification,”IEEE Trans. Com-
puter-Aided Design, vol. 8, pp. 811–816, July 1989.

[21] J. E. Smith, “On necessary and sufficient conditions for multiple fault
undetectability,”IEEE Trans. Comput., vol. c-28, pp. 801–802, Oct.
1979.

[22] G. Stenz, B. M. Riess, B. Rohfleisch, and F. M. Johannes, “Performance
optimization by interacting netlist transformations and placement,”
IEEE Trans. Computer-Aided Design, vol. 19, Mar. 2000.

[23] A. Veneris and I. N. Hajj, “Design error diagnosis and correction via
test vector simulation,”IEEE Trans. Computer-Aided Design, vol. 18,
pp. 1803–1816, Dec. 1999.

[24] A. Veneris, M. S. Abadir, and I. Ting, “Design rewiring based on di-
agnosis techniques,” inProc. Asian-South-Pacific Design Automation
Conf., 2001, pp. 479–484.

[25] A. Veneris, M. Amiri, and I. Ting, “Design rewiring for power minimiza-
tion,” in IEEE Int. Symp. Circuits Systems, 2002.

Andreas Veneris (S’96-M’99) was born in Athens, Greece. He received the
Diploma in computer engineering and informatics from the University of Patras,
in 1991, the M.S. degree in computer science from the University of Southern
California, Los Angeles, in 1992, and the Ph.D. degree in computer science from
the University of Illinois, Urbana-Champaign, in 1998.

He is currently an Assistant Professor at the University of Toronto, cross-ap-
pointed with the Department of Electrical and Computer Engineering and the
Department of Computer Science. His research interests include CAD for syn-
thesis, diagnosis, and verification of digital circuits and combinatorics. He is
coauthor of one book.

Dr. Veneris was a corecipient of a best paper award in ASP-DAC’01. He is a
member of the ACM, AAAS, Technical Chamber of Greece, and the Planetary
Society.

Magdy S. Abadir (SM’00) received the B.S.
degree with honors in computer science from the
University of Alexandria, Egypt, in 1978, the M.S.
degree in computer science from the University of
Saskatchewan, Saskatoon, Canada, in 1981, and
the Ph.D. degree in electrical engineering from the
University of Southern California, Los Angeles, in
1985.

Currently he is with Motorola working as the
Manager of the High Performance Tools and
Methodology Group at the Advanced Systems and

Platform Group in Austin, TX. Prior to that, he was the General Manager
of Best IC Labs in Austin Texas. From 1986 to 1994, he worked at the
Microelectronics and Computer Technology Corporation (MCC). He is also
an adjunct faculty member of the Computer Engineering Department at the
University of Texas, Austin. He has published over 100 technical journal and
conference papers in the areas of microprocessor test and verification, test
economics, expert systems, and design for test. He co-edited three books on
the subject of test economics.

Dr. Abadir founded and chaired three workshops on microprocessor test and
verification. He also co-chaired five workshops on the economics of design, test,
and manufacturing.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

