
240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

Incremental Fault Diagnosis
Jiang Brandon Liu, Member, IEEE, and Andreas Veneris, Member, IEEE

Abstract—Fault diagnosis is important in improving the circuit-
design process and the manufacturing yield. Diagnosis of today’s
complex defects is a challenging problem due to the explosion of the
underlying solution space with the increasing number of fault lo-
cations and fault models. To tackle this complexity, an incremental
diagnosis method is proposed. This method captures faulty lines
one at a time using the novel linear-time single-fault diagnosis algo-
rithms. To capture complex fault effects, a model-free incremental
diagnosis algorithm is outlined, which alleviates the need for an
explicit fault model. To demonstrate the applicability of the pro-
posed method, experiments on multiple stuck-at faults, open-in-
terconnects and bridging faults are performed. Extensive results
on combinational and full-scan sequential benchmark circuits con-
firm its resolution and performance.

Index Terms—Circuit simulation, fault diagnosis, open-intercon-
nect, very large scale integration (VLSI).

I. INTRODUCTION

TODAY’S world has been revolutionized by the rapid
advancement of very large scale integration (VLSI) inte-

grated circuit (IC) engineering. As the IC process technology
becomes more complex and minimum feature size approaches
nanometer range, manufacturing quality and yield are becoming
more sensitive to physical defects. These defects are usually
caused by mask contamination, process variation in fabrication,
and spurious material [7], [10]. Defects can be modeled on the
logic level by a fault that affects single or multiple circuit lines,
and produces failing output responses for one or more input
test vectors. Unraveling the location and cause of the defect,
a process known as failure analysis, helps improve the circuit
design and manufacturing process leading to a lower cost,
improved yield and shorter time-to-market.

Failure analysis usually consists of two tasks: fault diagnosis
and defect analysis. Fault diagnosis uses the observed failing re-
sponses and the structure of the circuit under diagnosis (CUD) to
search for locations that are potentially faulty. This information
is used in defect analysis, where the CUD is physically exam-
ined to determine and/or eliminate the mechanism of the failure
[7], [10]. Because physical examination is inevitably slow and
resource intensive, the efficiency of failure analysis depends on
the resolution (i.e., accuracy) of diagnosis.

Manuscript received April 28, 2003; revised September 20, 2003 and March
30, 2004. This research was supported by a grant from Communications and
Information Technology Ontario (CITO). This paper was recommended by As-
sociate Editor N. K. Jha.

J. B. Liu is with the High-Performance Tools and Methodology Group,
Freescale, Austin, TX 78729 USA (e-mail: brandon.liu@freescale.com).

A. Veneris is with the Department of Electrical and Computer Engineering
and the Department of Computer Science, University of Toronto, Toronto, ON
M5S 3G4, Canada (e-mail: veneris@eecg.toronto.edu).

Digital Object Identifier 10.1109/TCAD.2004.841070

Single-fault diagnosis is a well-studied problem with various
linear-time techniques [10]. Although helpful, single-fault di-
agnosis may not be adequate for defects in modern devices that
tend to cluster and affect multiple lines in the failing chip [2],
[3], [8], [12], [13], [20], [21]. This is also confirmed in recent ex-
periments from a real-life diagnosis environment, which show
that more than 41% of defects found in failing chips cannot be
diagnosed using the single stuck-at fault model [8]. Diagnosis
of such circuits is a difficult problem because, in theory, the so-
lution space grows exponentially with the number of defective
circuit lines [7], [20], [24]. Furthermore, a robust diagnosis al-
gorithm should be able to identify defects whose behavior may
not be modeled accurately by a fault model [2]–[4]. Clearly, a
brute-force approach that exhaustively enumerates all possible
locations will need to search a prohibitively large solution space.

To meet these challenges, a simulation-based effect-cause in-
cremental diagnosis approach for clustered defects that affect
multiple circuit lines is proposed [17], [25]. Incremental diag-
nosis is an iterative process where a single faulty location is
identified at each iteration. Fault effects are forced on this line
and its fanout cone. These effects can capture either that of a
specific fault model (fault-modeled diagnosis) or that of any
fault model (model-free diagnosis). Model-free diagnosis is per-
formed by simulating a logic unknown [4] on the candidate fault
line. This type of diagnosis is important when the defects’ be-
havior cannot be accurately described by existing fault models
[2], [4]. Incremental diagnosis is repeated until the netlist with
forced values emulates the behavior of the faulty chip. Com-
pared to previous incremental approaches [3], [8], [12], [13], the
proposed work differs in the novelty of its algorithms, heuristics,
and decision process when it searches the solution space.

To demonstrate the applicability of the proposed work, proto-
type computer-aided design (CAD) tools are developed for mul-
tiple stuck-at fault, open-interconnect fault, and bridging fault
diagnosis. We select stuck-at faults because in multiplicity, they
can model other types of faults [19] and various types of de-
sign errors [24]. Therefore, efficient model-based diagnosis al-
gorithms for multiple stuck-at faults may help find solutions for
other fault/error models as well [10].

Open-interconnect is caused by a break in interconnect
wiring due to material or processing defects, electromigration,
and thermal stress [5], [11]. It has been reported that it is the
dominant failure in field returns of process chips [22]. Further-
more, the total length of interconnect wires grows rapidly as
the International Technology Roadmap for Semiconductors [9]
in Fig. 1, predicts. This trend may increase the failure rates
attributed to opens in the near future. Open-interconnect is a
fault with a complex behavior [5], [11], [19], [26]. To tackle
this complexity model-free incremental diagnosis is used.

0278-0070/$20.00 © 2005 IEEE

LIU AND VENERIS: INCREMENTAL FAULT DIAGNOSIS 241

Fig. 1. ITRS on interconnect length.

An extensive suite of experiments using the incremental di-
agnosis method presented here confirm its efficiency in terms of
runtime and resolution. Therefore, it can act as a cost-effective
front-end tool to failure analysis to help reduce the number of
suspect lines the test engineer has to probe.

This work is organized as follows. The next section describes
the motivation and goals of incremental diagnosis. It also out-
lines the basic components of the algorithm as a sketch for
an operating incremental diagnosis framework. In Section III,
this framework is tailored to the diagnosis of multiple stuck-at
faults (model-based) and multiple open-interconnect (model-
free) faults. Experiments for a variety of faults are found in Sec-
tion IV and the conclusion follows in Section V.

II. INCREMENTAL DIAGNOSIS

Incremental diagnosis is an iterative process that identifies
one faulty location in each pass. Upon completion, it returns a
set of circuit lines, where fault effects can be forced to em-
ulate the observed faulty CUD behavior for all input test vec-
tors used. Fault effects are specified either by a set of predeter-
mined fault model(s) or by using the logic unknown value(s). A
logic unknown conservatively captures any faulty behavior on
the line and it may diagnose defects whose behavior cannot be
accurately fault modeled [2], [4].

Section II-A gives the motivation behind incremental diag-
nosis. An operational framework for the overall procedure is
described in Sections II-B, –II-E. We use this framework to de-
velop a model-based diagnosis tool for multiple stuck-at faults
and a model-free one for multiple open-interconnect faults in
Section III. Experiments demonstrate the applicability of the ap-
proach for these fault types and for cases where the circuit under
test is corrupted with different defect types.

A. Motivation

As transistor density increases and feature size reduces,
single-fault diagnosis may not be adequate for modern designs,
where compound defects can affect more than one line in the
circuit. Recent empirical data from a real-life design environ-
ment for 453 failing devices show that 41% of the defects found
cannot be modeled with a single fault [8]. Additionally, 22%
of the remaining 59% defect cases cannot be modeled using
the single stuck-at fault model. Therefore, in more than 60% of
the cases where a chip is returned for defect analysis, multiple

fault diagnosis is required and the classical single stuck-at fault
model may be inadequate.

Efficient multiple-fault diagnosis algorithms are useful in
other areas of the VLSI design cycle as well. In design-error
diagnosis and correction [1], [25], [28], the designer uses
diagnosis techniques to debug a netlist that fails verification
due to the presence of a few bug(s). These bugs can have a
low cardinality if they occur during logic synthesis or they
may have large multiplicity as in the extraction of error de-
bugging for test-model generation [28]. Logic debugging is
a task that is strongly related to the more general problem of
engineering change [16], where one is required to modify a
netlist to meet a new specification. Common ways to carry
out engineering changes use a traditional diagnosis/correction
debugging approach [16]. In all cases, diagnosis for logic
debugging and engineering change is a procedure symmetric to
the one examined here [20]. Furthermore, diagnosis tools are
utilized in design rewiring for design optimization [23]. The
optimization gain of these methods depends on the ability of
the underlying tool to perform multiple fault diagnosis [23].
Therefore, advances in multiple-fault diagnosis may aid logic
debugging, engineering change and design rewiring.

Multiple-fault diagnosis is a challenging problem because, in
theory, the search space grows exponentially with an increasing
number of faulty lines [7], [24]. Additionally, straightforward
implementations of a single stuck-at fault algorithm may not
capture defects on multiple locations with effects that converge
and/or mask each other [7], [3], [8], [17], [25].

To illustrate the last point, an experiment is performed to
show multiple-fault interaction in combinational ISCAS’85 and
ITC’99 benchmarks and full-scan versions of ISCAS’89 cir-
cuits. Open faults are randomly selected and injected one by
one, and the number of erroneous primary outputs is recorded
after each fault. To model open interconnects, we use the fault
model presented in [26] which is also described in Section III-B
of this paper.

In almost one third of the runs, the number of erroneous pri-
mary outputs does not increase monotonically as new faults are
injected in the circuit. We present these cases in Table I. For each
run, its fault injection sequence and the number of erroneous
primary outputs is shown in the table. This phenomenon indi-
cates the presence of fault convergence and fault masking that
may misguide algorithms designed exclusively for single faults.
A similar experiment from [18] using design errors also con-
firms the presence of error effect interaction with an increasing
number of errors. Design errors are relevant to this work because
they can be modeled using multiple stuck-at faults [1].

To meet these challenges, the incremental diagnosis method
described in this paper uses linear-time algorithms to identify
one faulty location one at a time and various heuristics and data
structures that guide the search in the solution space. The ra-
tionale behind the approach comes from the fact that often, the
majority of the failing input vectors can be attributed to a single
faulty location [3], [8], [17], [25]. The following computation
describes a desired runtime behavior for incremental diagnosis.

Consider a circuit with lines and distinct faulty lines,
where . Further, let be the maximum number of
fault manifestations on a single line. For example, in stuck-at

242 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

TABLE I
NONMONOTONIC BEHAVIOR OF FAILING PRIMARY OUTPUTS

diagnosis, is 2 because we can have stuck-at 0 or stuck-at
1 on the line. If the faults are identified incrementally and the
computation at each iteration remains proportional to the circuit
size, the total solution space probed equals .
If a cycle-based simulator is used that needs time units for
a single vector simulation then the total time for diagnosis is

time units.
In the above expressions, is the average cost incurred by a

wrong decision during each stage of the incremental diagnosis.
Ideally, is 1 and a fault is identified at each iteration. In such
a case, the complexity reduces to a linear factor in terms of the
number of faulty lines. In the worst theoretical case, is poly-
nomial to and the complexity of the solution increases expo-
nentially. Experiments show that is upper-bounded by a small
constant for the approach developed here.

B. Definitions and Algorithm Overview

Incremental diagnosis takes as inputs a CUD, its structural
specification netlist, a set of test vectors , including some with
failing responses, and an integer , which indicates the max-
imum cardinality of faulty locations to search. The netlists con-
sidered are combinational ones consisting of logic primitives
AND, OR, NOT, NAND, and NOR, and full-scan sequential cir-
cuits with a fault-free scan-chain. It returns sets of circuit lines,
each of cardinality or less, that some fault effects on them
can explain the faulty behavior for the failing device. Due to
fault equivalences, the solution to diagnosis may not be unique.
Since the number of faults is unknown prior to the diagnosis,
is specified by the user as a conservative guess. If the algorithm
fails to return a solution (i.e., the number of faulty lines exceeds
the initial guess), it automatically increases the value of and
restarts until a solution is found.

Definition 1: A diagnostic configuration is a partially diag-
nosed circuit during diagnosis. It is represented by the struc-

tural circuit netlist, injected faults, and the current logic simu-
lation values stored in an indexed bit-list (see below). If at least
one of its primary outputs has different simulation value(s) than
the CUD, the configuration is said to be active. Otherwise, it is
called inactive and the design behaves identically to the speci-
fication for all the input test vector stimuli.

For an input test vector , a line whose value changes in the
presence of a fault is said to be sensitized to the fault by
vector . A path consisting of sensitized lines is called a sensi-
tized path. In a diagnostic configuration, if a primary output does
not have the same logic value as the CUD, it is called an erro-
neous primary output (EPO). Otherwise, it is a correct primary
output (CPO). Logic simulation values of all input test vectors
are kept in two indexed bit-lists for every line in the circuit as
in [24]. One bit-list corresponds to nonfailing vectors and the
other to failing vectors. Both assist diagnosis and they are prop-
erly updated at each diagnostic configuration.

Definition 2: A circuit line under consideration by diagnosis
is referred to as a suspect line. The combination of a suspect
line and a fault model on this line is called a candidate. A set of
candidates is called a candidate tuple (pair, triples, etc.) and the
candidate tuple(s) returned by the algorithm is called a solution
tuple(s).

Fig. 2 illustrates the overall flow of the approach. The algo-
rithm proceeds by iteratively identifying suspect locations one at
a time. First, path-trace routine is performed to quickly prune the
diagnosis space (Section II-C). Suspects are ranked according to
theorems and heuristics found in Section II-D and the top one
is selected. A fault effect is injected on the line (i.e., the logic
values that reflect the fault effect are forced on the line) in the
netlist and it is resimulated to yield a new diagnostic configura-
tion. This completes one iteration of the algorithm. Subsequent
iterations are conducted on the diagnostic configuration until it
becomes inactive. All candidate lines selected in this process
make up a solution tuple.

LIU AND VENERIS: INCREMENTAL FAULT DIAGNOSIS 243

Fig. 2. Incremental diagnosis flow.

The flow above is ideal in the sense that it assumes after each
iteration an original (or equivalent) faulty line is successfully
found. In practice, a number of suspects are discovered. Due
to fault convergence and fault masking, ranking does not guar-
antee that the original fault(s) is placed atop the list. To accom-
modate this, the algorithm bases its decision flow on a search
tree, which is described in Section II-E. This tree allows the al-
gorithm to search the solution space efficiently and capture the
actual and/or equivalent fault locations.

C. Path-Trace

Path-trace is a linear-time routine in the effect-cause direction
[27], which is similar to critical path tracing [10] It starts from
an EPO and pessimistically marks lines that may belong to a
sensitized path. If the output of a gate has been marked and the
gate has one or more fanin(s) with controlling values, then one
of the controlling fanins is marked. If a gate has all fanins with
noncontrolling inputs, then all fanins are marked. Finally, if a
branch is marked, then the stem of the branch is marked. An
example of path-trace is illustrated in Fig. 3, where it starts from
EPO and it marks lines with an asterisk “*.”

Path-trace is important in diagnosis due to the following the-
orem [24] that stipulates that each run of path-trace marks at
least one line from each solution tuple.

Theorem 1: Let be a CUD with faulty locations and
be any solution tuple. The set of lines marked

by path-trace for some failing vector contains at least one line
from .

Path-trace is conducted over multiple failing vectors and the
number of times it visits each line is recorded. All lines marked
at least once are in the list of current suspects. Path-trace is
generalized in Section III-B2 to accommodate model-free di-
agnosis.

D. Suspect Ranking

Each iteration of incremental diagnosis needs to discover only
one candidate line. Even though the suspect list returned by
path-trace is much smaller than the number of circuit lines, it

is still inefficient to examine each of its members exhaustively.
To shorten this list, the following corollary stipulates a lower
bound for how frequently a line needs to be marked so it quali-
fies. The corollary is an immediate consequence of Theorem 2
that follows.

Corollary 1: In a circuit with defective lines, if path-trace
is conducted for failing input vectors, then one or more
line(s) from each solution tuple will be marked at least

times.
The number of suspect lines that pass this simple screening

test is usually small. These lines are visited in descending order
of path-trace counts and a faulty effect is injected for simulation.
If a fault model is used, depending on its cardinality, a wrong se-
lection may still impede the performance with the costly search
of nonsolution space. Therefore, in model-based diagnosis The-
orem 2 gives a necessary condition a fault model must obey.

Theorem 2: Let circuit with defective lines and let
be a set of failing input vectors for this circuit. Any valid
fault model for suspect line needs to complement at least

entries in the bit-list for failing vectors of .
Proof: Let be a minimal set of lines such

that some fault effects on these lines can explain completely the
faulty chip behavior for the vectors in . Define to be
the maximum subset of vectors from that produce a faulty
logic value on and propagates this difference to some primary
output(s) via one or more sensitized paths. By definition, each
vector in sensitizes one or more such paths. In other words,
each vector in is attributed to at least one subset for
some . Using the pigeonhole principle, the min-
imum size of the set with the maximum cardinality among
all such sets cannot be less than . In other words,
there is at least one line in that has
or more incorrect logic values in its bit-list. Therefore, any valid
fault model for needs to complement or more
logic values in ’s faulty vector bit-list.

Despite its simplicity, experiments show that the theorem pro-
vides a reliable guide to fault-model selection in model-based
diagnosis. This theorem is not used in model-free diagnosis,
where faulty effects are captured via logic unknowns.

After an appropriate fault effect is selected for a line, its
fanout cone is simulated to obtain the updated diagnostic
configuration. In this new configuration, the sensitized paths of
the diagnosed fault are captured (i.e., emulated) and reflected
at the primary outputs. However, as experimentally confirmed
in Section II-A, the number of EPOs may not monotonically
reduce as we identify new faulty lines due to fault convergence
and/or fault masking. To alleviate this problem, some leniency
is allowed by the algorithm and a qualifying candidate may
sensitize a small number of new paths to previously correct pri-
mary outputs. The rationale behind this heuristic is illustrated
with an example.

Example 1: Fig. 3 depicts the situation where two faults on
lines and sensitize two paths that converge in gate

with faulty values 0 and 1, respectively. All simulated pairs
of values in this paper are fault-free/faulty circuit values.
masks such that the primary output remains correct.
If the algorithm corrects the faulty value on , it allows

to be sensitized to and it introduces an additional

244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

Fig. 3. Diagnosis in the presence of fault masking.

Fig. 4. Search tree and its traversal.

EPO. Notice, now that the fault on is observed, it can be
diagnosed in subsequent iterations of the algorithm.

The number of increased EPOs depends on the defect type/lo-
cation and the circuit structure. An empirical limit of 5%–15%
additional EPOs is used in implementation unless the netlist
contains many XOR gates. For these circuits, experiments show
that we may need to allow for a larger number (15%–20%) of
new erroneous primary outputs to ensure success.

E. Search Tree

Because numerous suspect lines may exist for each active
diagnostic configuration, a tree is maintained to facilitate the
search of the solution space. In the example of Fig. 4(a), each
node (represented by an ellipse) of the tree represents a diag-
nostic configuration. For each active diagnostic configuration
(active node), a ranked list of suspect lines is compiled. Suspect
lines are named by a single letter in this figure. The root node
of the tree has three candidates: and . Node is
inactive and has no suspect lines.

To go from a node to one of its branches, a suspect line is
chosen, represented by a labeled arrow. A suitable fault effect is
selected for this line and its fanout cone is simulated to produce
the new diagnostic configuration. Whenever an inactive node is
reached, a solution is found (e.g.,). A depth bound is set
for the tree so it is not allowed to grow beyond it. An active
node is automatically labeled as a “leaf” when the depth bound
is reached. In effect, indicates that there are at most faults
in the CUD. The suspect lines identified along the path between
the root and an inactive leaf form a solution set, such as
in Fig. 4(a).

Considering the large amount of suspect lines that can poten-
tially model the fault effects at each iteration, a traversal order

that is a tradeoff between DFS and BFS is devised. The tree is
traversed in breadth and depth simultaneously in rounds. During
each round, all active nodes are extended by one child. Fig. 4(b)
shows a search tree after four traversal rounds. Numbers in tree
nodes indicate the round in which it is instantiated. This type of
traversal is similar to the one described in [15] and it is guaran-
teed to reach a solution, provided sufficient time to enumerate
the actual and all equivalent faulty locations.

A tree without a depth bound grows exponentially because the
number of nodes doubles in each round. When a depth bound is
asserted, the number of nodes at tree level after round
is described by

(1)

for (2)

(3)

(4)

Let be the maximum number of nodes visited at round
in a search tree with depth bound . can be computed

if we sum the nodes at each level of the tree

(5)

(6)

Fig. 5 illustrates the growth of the search tree for different
values of . It grows exponentially at the very beginning, but
curbs linearly soon after. This theoretical upper bound is not

LIU AND VENERIS: INCREMENTAL FAULT DIAGNOSIS 245

Fig. 5. Growth of search tree.

Fig. 6. Fault modeling in stuck-at diagnosis.

reached in practice and branches terminate as soon as solutions
are found.

III. FAULT-DIAGNOSIS ALGORITHMS

The previous section outlines an incremental framework for
multiple fault diagnosis. In this section, this general formula-
tion is tailored to model-based and model-free diagnosis. We de-
scribe the model-based approach using stuck-at faults because
they have a deterministic and simple behavior. The model-free
algorithm is presented for open-interconnect faults because they
have a rather complex behavior which is hard to model. Exper-
iments are presented for these fault types as well as for the situ-
ation where both opens and bridges are simultaneously present
in the circuit.

A. Stuck-At Fault Diagnosis

Since manifestation of a stuck-at fault consists of only two
possible cases, the model-based algorithm does not follow the
tree traversal from Section II-E, but it visits the tree with depth
bound in a depth-first manner. To improve performance, it
considers lines with candidate stuck-at faults that are struc-
turally fault collapsed [10].

As in Fig. 2, each iteration starts with a path-trace that marks
suspect lines. For each one of them, it decides on the stuck-at
fault model(s) to inject and simulate using Theorem 2. When
the behavior of the CUD is completely emulated for the set of
test vector stimuli, a solution tuple is found.

Example 2: In Fig. 6, the logic values on two different sus-
pect lines are compared against the two stuck-at values. Sup-
pose it is suspected that there are three faults in the circuit. By
Theorem 2, a valid fault model inverts local logic values for at
least 6/3 = 2 vectors. In the table, inverted values for each fault
case are underlined. In case I, stuck-at 0 fault inverts net value
for one vector and stuck-at 1 fault for five vectors. Stuck-at 1
model is chosen for this suspect line and stuck-at 0 does not
qualify. For case II, it can be shown, both faults qualify.

Fig. 7. Open fault on a stem.

B. Open-Interconnect Fault Diagnosis

Open-interconnect is a fault of great interest today. Its be-
havior depends on many physical circuit parameters-a fact that
may prevent an accurate deterministic logic fault model. A phys-
ical open defect on an interconnect can cause different logic-
level behaviors. 1) It may cause some lines to float. 2) It may
slow down signal propagation. 3) It may amplify the effect of
crosstalk [19]. The focus here is on opens that cause floating
behavior.

A major difficulty in diagnosing open-interconnects is the ab-
sence of a simple deterministic logic fault model. As illustrated
in Fig. 7, a stem with an open can have its value interpreted dif-
ferently by its branches even for the same vector [5], [11]. This
behavior can be seen as having all fanout branches of a stem
behave at random and independent from each other. For a stem
with fanouts, different combination of values may occur
[17], [19], [26]. Although this net diagnostic model, originally
proposed by [26], covers all possibly faulty behavior, its size
is often large for traditional diagnosis methods. To handle such
complexity, we tailor the incremental approach to a model-free
environment in which fault effects are captured with a logic un-
known(s).

1) Algorithm Overview: Unlike diagnosis algorithms that
explicitly model fault effects [3], [13], [21], [25], model-free
diagnosis [2], [4], [17] simulates a logic unknown on candi-
date lines to capture any faulty behavior as well as interaction
between different fault effects. The proposed algorithm differs
from model-free approaches such as [4] as it works incre-
mentally. It does not also assume a region-based fault locality
model. Instead, faults can be (structurally) located anywhere
in the circuit. The following example illustrates the basic idea
behind model-free incremental diagnosis.

Example 3: Fig. 8(a) displays a circuit with two open faults
located on lines and . Both primary outputs are erroneous
for this input vector. Suppose incremental diagnosis locates fault
on first. The diagnostic configuration after placing an on

and simulating its fanout cone is shown in (b). It is seen
that propagates to , which is originally an EPO. In the
second iteration of diagnosis, all the lines with in Fig. 8(b)
are ignored and is identified as a potential fault location.
In the configuration obtained after simulation of on line
[Fig. 8(c)], every EPO has an on it. Consequently,
is identified as a candidate tuple.

Diagnosis proceeds in two phases. At first, model-free incre-
mental diagnosis (MFID) identifies a set of candidate tuples. If

246 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

Fig. 8. Model-free diagnosis for two open faults.

an is forced on all member lines of each tuple simultaneously,
it propagates to all the EPOs. Its flow is similar to that in Fig. 2
with few modifications. Path-trace is extended to a 3-valued
path-trace routine described in the next section. A novel suspect
list compaction scheme collapses lines with similar (logic un-
known) behavior into a single class to speed up the method (Sec-
tion III-B3). The top ranking class is selected and is forced on
a representative member of the class to complete one iteration
of MFID. Multiple iterations are conducted until propagates
to all the EPOs. The conservative nature of logic unknown may
lead to large solution sets. The second phase, presented in Sec-
tion III-B4, prunes this list of candidates with generalized fault
simulation (GFS).

2) 3-Valued Path-Trace: Routine 3-valued path-trace marks
lines using ternary logic simulation. The path-trace routine de-
scribed earlier is augmented with the following rule.
Rule: Never mark a line with on it.

Path-trace may deduce information by following a trail of
possibly erroneous values in the circuit. Due to the conserva-
tiveness of the unknown value, lines with unknown values can
never increase the number of EPOs. Therefore, a line with an
can provide no information to path-trace and Theorem 1 holds
for this routine as well.

Example 4: The operation of 3-valued path-trace is demon-
strated in Fig. 9. Two faults converge on a NAND gate. In the
initial diagnostic configuration, the trace marks the first fault
[Fig. 9(a)] but the output of the gate remains unchanged, due to
the remaining faulty controlling value as shown in Fig. 9(b). In-
voking 3-valued path-trace again marks the second fault and
propagates past the gate, as shown in the last two figures. Hence,
the gate will not be marked again.

3) Suspect Compaction: Like path-trace, the set of candi-
date lines marked by 3-valued path-trace needs to be pruned due
to the pessimistic nature of the procedure. A suspect class-com-

LIU AND VENERIS: INCREMENTAL FAULT DIAGNOSIS 247

Fig. 9. Three-valued path-trace example.

Fig. 10. Suspect compaction example.

paction method is devised to reduce the number of these can-
didates. Suspect compaction collapses lines with “similar” fault
effects when an is simulated at their fanout cone into the same
class. It also ranks these classes with their potential to propagate

to EPOs. Suspect compaction reduces the size of the decision
tree and fewer rounds are needed to capture faulty locations. The
example that follows illustrates the idea.

Example 5: Let a triangle in Fig. 10 represent some fanout-
free circuitry. Assume a logic unknown is forced on one of the
lines inside that propagates to its headline (i.e., the first stem
that dominates circuitry [10]. Also assume that this prop-
agates to the headline of but not to the headline of . It
is observed, an on , or on , or on both lines have the
same effect at the primary outputs. Additionally, the effect of
simulating at “dominates” simulating at because it
introduces more logic unknown values in the circuit. The algo-
rithm compacts all lines of ’s and together by placing an

in the original faulty line and simulating the effect in its
fanout cone.

Pseudocode for the compaction algorithm is found in Fig. 11.
Lines 9–12 of the algorithm give the compaction criterion: line

is in ’s class if logic unknowns can always propagate from
to for all test vectors turning into ’s for any line inside

the class. Clearly, is in the fanout cone of . The representa-
tive of the class has the useful property that when simulating
the unknown value on its fanout cone, it propagates the most
number of s to EPOs.

Fig. 11. Class-compaction algorithm.

4) Generalized Fault Simulation (GFS): The list of candi-
date class tuples returned by the model-free incremental diag-
nosis are converted to candidate tuples by computing the Carte-
sian product of all members of a class. The resulting list may be
large and is pruned with GFS. This procedure generalizes the
error simulation algorithm from [24].

For each candidate tuple, fault simulation emulates the effect
of an arbitrarily complex fault on a line tuple. It accomplishes
this by enumerating all possible combinations of logic values 0
and 1 on the lines of the members of the tuple for each vector.
For candidate lines, where stems of the tuple are replaced by
their branches, fault simulation requires simulations for
each vector. A candidate tuple qualifies as location for an open
fault(s) if for every failing test vector, it reproduces the observed
behavior with at least one value combination.

Example 6: Recall in Example 3, tuple is returned
by diagnosis expanded to . This al-

248 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

Fig. 12. Fault-simulation example.

Fig. 13. Generalized fault-simulation example.

lows branches to float independently. There are possible sim-
ulations, two of which are shown in Fig. 12. The values in the
upper square boxes are simulation values when we inject values

on the lines of and the lower boxes when we inject
values . These values are potential fault manifestations
on these lines. Both combinations produce the faulty behavior
on , but only the lower one does for . As long as some man-
ifestation produces the observed EPO behavior for each vector,
GFS qualifies the tuple. In this case, qualifies GFS.

When the number of branches is large, it may be computation-
ally expensive to simulate all applicable combinations of logic
values for all candidate tuples [17]. To reduce this complexity,
GFS places a logic unknown value on a subset of the lines
and it enumerates only fault manifestations. It qualifies
the tuple if for each vector some fault manifestation corrects all
EPOs or it covers them with an . The value of depends on
the number of branches for the stem under consideration. In im-
plementation, we limit the number of simulations per fault site
to 32 simulations (i.e.,).

We omit the code for GFS, which is a direct extension of the
one found in [24]. It is of interest to note that a similar technique
is developed independently by [19], and implemented in a test
generator for open faults in circuits with large fanouts. There-
fore, this computational tradeoff seems to be inevitable when
open faults are present on stems with many branches.

Example 7: In the circuit of Fig. 13, an unknown is placed on
and GFS is performed on and . Again, the re-

sults of simulating only two fault excitation scenarios are shown
in that figure. To qualify tuple , the output is ig-

TABLE II
RANKING OF ORIGINALLY INJECTED FAULTS

nored because it has a logic unknown on it. is the only output
that needs to be considered since it produces the faulty response.

IV. EXPERIMENTS

Experiments are conducted using ISCAS’85 and ITC’99
combinational circuits as well as full-scan versions of
ISCAS’89 sequential circuits. The netlists are first opti-
mized for area to mimic a faulty chip in an industrial testing
environment. The number of circuit lines (including primary
inputs/outputs and fully-scanned memory elements) is found in
the second column of Table III.

Faulty chip behavior is emulated by injecting fault models
into a gate-level implementation of the circuit specification. We
perform three different types of experiments: 1) single and mul-
tiple stuck-at faults; 2) single and multiple open interconnects;
and 3) simultaneous bridge and open faults.

In each experiment, the location of the fault is selected in
the circuit at random, except for open-interconnects. More than
75% of the open faults are introduced at randomly selected
stems with a large fanout count, since this presents a challenge
for model-based diagnosis algorithms [17], [26]. Test vectors

LIU AND VENERIS: INCREMENTAL FAULT DIAGNOSIS 249

TABLE III
RESULTS FOR STUCK-AT FAULTS

used in diagnosis are ATOM vectors [6] with 100% single
stuck-at fault coverage and 1000–2000 random vectors. Ten
experiments for each circuit and each fault case are performed.
Experiments are conducted on a Sun Ultra 10 machine with
256 MB of physical memory.

In this presentation, sites is used to indicate the distinct lo-
cations returned by the algorithm. As explained in the intro-
duction, this measure is useful because it narrows the task of
the test engineer who probes these sites to unveil the cause of
failure. Another important measure is hit percentage (h.p.) that
counts the percentage of the actual faults within the set of sites
returned. Since the value of is unknown, the algorithm starts
with small values and it restarts if it fails to return with a so-
lution. Run-times presented in this Section denote the accumu-
lated time (including restarts) for the algorithm and they are re-
ported in CPU seconds.

A. Determination of

To determine a suitable number of tree rounds, an upper
bound for is first determined empirically with some circuits.
Recall from Section II-A, is the number of wrong decisions
an incremental diagnosis algorithm is allowed to do at each
iteration. The size of the tree and the computational effort
of the method directly relate to the choice of this parameter.
Intuitively, the larger the , the more expensive the method
becomes, but it also increases its potential to identify all actual
faulty locations.

To determine , three stuck-at faults and three open faults are
injected independently and their rank according to the heuristics
presented in Section II-D is studied. The highest ranking fault
is then removed and the experiment is repeated for the other
two faults etc. The rank of each fault is tabulated in Table II.
Since all faults rank within the top five candidates, a reasonable
estimate for the value of is 5. So, in diagnosing 1–3 faults, the
algorithm is run for 5, 10, or 15 rounds respectively. This allows
the search tree to have up to 5, 25, and 125 nodes, as shown in
Fig. 5.

B. Stuck-At Fault

The results for multiple stuck-at fault diagnosis are presented
in Table III. The second column contains the number of lines

in each circuit, including primary inputs, outputs, and registers.
Column “tuple” is the average number of solution tuples re-
turned by the algorithm. Obviously, the number of tuples and
distinct locations coincide in the single fault case.

In all cases, the algorithm returns the tuple with the original
faults, unless the injected fault(s) are redundant or they mask
each other. Fault masking did not occur in our experiments on
the ISCAS’85 combinational circuits. This is not the case with
the ISCAS’89 sequential circuits where fault masking occurs in
more than 25% of the cases in the four fault case. In these cases,
the algorithm returns with triples or pairs that fully explain the
faulty circuit behavior.

On average, the number of sites is about twice the number
of faults injected. In other words, of every two sites, one is an
originally injected fault. This reflects the excellent resolution of
the algorithm. Note that the additional sites are caused by the
presence of equivalent fault tuples, which cannot be eliminated
by logic-level diagnosis methods alone.

C. Open-Interconnect Fault

Results for circuits with one open fault and the two distinct
phases (MFID and GFS) of model-free diagnosis are summa-
rized in Table IV. The final resolution and performance of the
method is found in columns 6 and 7 of that table, respectively.
Results on multiple opens are presented in Table V.

It is seen, all injected faults are found (100% hit percentage)
in almost all circuits within a short time. For example, in
Table IV, all circuits have 100 hit percentage except C6288.
The 16-bit multiplier C6288 contains many fanouts and re-
convergences, which create an unfavorable environment for
diagnosis. This is because the large number of fanouts prop-
agate the logic unknown to a large portion of the circuit.
Consequently, many tuples qualify at each round. It is observed
experimentally that it takes twice as many rounds as other
circuits to capture the injected faults in this circuit.

Table IV also demonstrates the effectiveness of GFS in re-
ducing the number of fault tuples. On average, it eliminates
about two thirds of the candidate tuples by model-free diagnosis.
By comparing the CPU time, it may appear that GFS can achieve
better resolution in much less time than incremental model-free
diagnosis. In fact, GFS only appears to be faster here because it

250 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

TABLE IV
RESULTS FOR SINGLE OPEN FAULTS

TABLE V
RESULTS FOR TWO AND THREE OPEN FAULTS

examines much fewer suspect tuples than the model-free incre-
mental diagnosis (MFID).

The effectiveness of the suspect list compaction heuristic to
improve the performance of model-free diagnosis is also in-
vestigated. Model-free diagnosis is performed without suspect
compaction and the ranking of the faults is reported in Table VI.
When compared to the respective rankings in the last three
columns of Table II, we observe that it improves the ranking of
the original faulty lines significantly. This reduces the size of
the tree and improves runtime performance with no sacrifice to
the final resolution.

The average number of sites is about eight times the number
of faults injected. Clearly, stuck-at fault diagnosis outperforms

TABLE VI
SUSPECT COMPACTION HEURISTIC

TABLE VII
RESULTS FOR OPENS AND BRIDGES

opens in resolution. This is because of the nondeterministic be-
havior of the fault and the way model-free diagnosis operates.
It does not impose any condition on the faulty behavior, unlike
stuck-at fault diagnosis that requires the same logic value to rep-
resent a stuck-at fault for all failing input vectors. Therefore, for
open interconnects, there exist many more fault equivalences re-
sulting in an increased number of sites.

D. Open and Bridging Faults

To evaluate the potential of model-free diagnosis further, we
perform a set of experiments where both an open and a bridging
fault are present and diagnosed in the circuit. We consider
wired-AND and wired-OR nonfeedback faults as described in
[10]. The location and type of the bridging faults are selected
at random. Open faults are always inserted at stems since they
are harder to diagnose. Results for this experiment are outlined
in Table VII.

The first column contains the circuit name. The next three
columns contain information in the case where the open and
one endpoint of the bridge are diagnosed. To achieve this, we
set the algorithm to look for two fault sites . The last
three columns contain data for the case when both endpoints of
the bridge and the location open location are diagnosed by the
algorithm .

It is seen that the resolution for the first case is much better
than the second one. This is because, in most experiments,
the faulty behavior at two endpoints of the bridge is excited
unevenly. This results in many equivalent candidates when
searching for both endpoints of the bridge including the one
which is not excited often. However, in a realistic diagnostic
scenario, finding one line can significantly reduce the suspects
for the other end of the bridge. This is usually performed by

LIU AND VENERIS: INCREMENTAL FAULT DIAGNOSIS 251

processing layout information as explained in [10] and [14].
Therefore, we may conclude, these results further confirm the
potential of the approach in an environment where multiple
faults of different types are present in the circuit.

V. CONCLUSION

Fault diagnosis is crucial to reduce the cost and time to de-
velop and manufacture IC chips. This work addresses the need
for efficient and scalable diagnoses in today’s complex VLSI
design environment. It proposes an incremental framework for
diagnosis that scales well with multiple faults. In this approach,
faults are diagnosed one at a time with algorithms that have
linear, to the circuit size, performance. Within this framework,
diagnosis of two types of faults is examined; stuck-at fault and
open interconnect fault. To capture the complex behavior of
multiple opens, the idea of model-free incremental diagnosis is
introduced. Experiments on circuits for these types of faults but
also for faults of different types that are simultaneously present
in the circuit confirm the scalability, performance, and resolu-
tion of the approach.

ACKNOWLEDGMENT

The authors acknowledge important technical contributions
by H. Takahashi, M. S. Abadir, and M. Amiri in earlier versions
of this work. They also thankfully acknowledge the associate
editor and the anonymous reviewers of this paper for comments
that improved its presentation.

REFERENCES

[1] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic verification via
test generation,” IEEE Trans. Computer-Aided Design Integr. Circuits
Syst., vol. 7, no. 1, pp. 138–148, Jan. 1988.

[2] R. C. Aitken, “Modeling the unmodelable: Algorithmic fault diagnosis,”
IEEE Des. Test Comput., vol. 14, no. 3, pp. 98–103, Jul./Sep. 1997.

[3] T. Bartenstein, D. Heaberlin, L. Huisman, and D. Sliwinski, “Diagnosing
combinational logic design using the single location at-a-time (slat) par-
adigm,” in Proc. IEEE Int. Test Conf., 2001, pp. 287–296.

[4] V. Boppana and M. Fujita, “Modeling the unknown! Toward model-in-
dependent fault and error diagnosis,” in Proc. IEEE Int. Test Conf., 1998,
pp. 1094–1101.

[5] C. Di and J. A. G. Jess, “On accurate modeling and efficient simulation
of CMOS opens,” in Proc. IEEE Int. Test Conf., 1993, pp. 875–882.

[6] I. Hamzaoglu and J. H. Patel, “New techniques for deterministic test
pattern generation,” in Proc. IEEE VLSI Test Symp., 1998, pp. 138–148.

[7] S. Y. Huang, “Toward the logic defect diagnosis for partial-scan de-
signs,” in Proc. IEEE Asian-South Pacific Design Automation Conf.,
2001, pp. 313–318.

[8] L. M. Huisman, “Diagnosing arbitrary defects in logic designs using
single location at a time (slat),” IEEE Trans. Computer-Aided Design
Integr. Circuits Syst., vol. 23, no. 1, pp. 91–101, Jan. 2004.

[9] International Technology Roadmap for Semiconductors (1997). [On-
line]. Available: http://www.itrs.net

[10] N. Jha and S. Gupta, Testing of Digital Systems. Cambridge, U.K.:
Cambridge Univ. Press, 2003.

[11] H. Konuk, “Fault simulation of interconnect opens in digital CMOS
circuits,” in Proc. IEEE Int. Conf. Computer-Aided Design, 1997, pp.
548–554.

[12] D. B. Lavo, B. Chess, T. Larrabee, and I. Hartanto, “Probabilistic
mixed-model fault diagnosis,” in Proc. IEEE Int. Test Conf., 1998, pp.
1084–1093.

[13] D. B. Lavo, I. Hartanto, and T. Larrabee, “Multiplets, models, and the
search for meaning: Improving per-test fault diagnosis,” in Proc. IEEE
Int. Test Conf., 2002, pp. 250–259.

[14] D. B. Lavo, T. Larrabee, and B. Chess, “Beyond the byzantine generals:
Unexpected behavior and bridging fault diagnosis,” in Proc. IEEE Int.
Test Conf., 1996, pp. 611–619.

[15] R. H. Lewis and C. Papadimitriou, Elements of Theory of Computa-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1991, sec. 1.6.

[16] C.-C. Lin, K.-C. Chen, S.-C. Chang, and M. M. Sadowska, “Logic syn-
thesis for engineering change,” in Proc. ACM/IEEE Design Automation
Conf., 1995, pp. 647–652.

[17] J. B. Liu, A. Veneris, and H. Takahashi, “Incremental diagnosis of
multiple open-interconnects,” in Proc. IEEE Int. Test Conf., 2002, pp.
1085–1092.

[18] I. Pomeranz and S. M. Reddy, “On correction of multiple design errors,”
IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 14, no.
2, pp. 255–264, Feb. 1995.

[19] S. M. Reddy, I. Pomeranz, H. Tang, S. Kajihara, and K. Kinoshita, “On
testing of interconnect open defects in combinational logic circuits with
stems of large fanout,” in Proc. IEEE Int. Test Conf., 2002, pp. 83–89.

[20] A. Smith, A. Veneris, and A. Viglas, “Design diagnosis using boolean
satisfiability,” Proc. IEEE Asia South Pacific Design Automation Conf.,
pp. 218–223, 2004.

[21] H. Takahashi, K. O. Boateng, K. K. Saluja, and Y. Takamatsu, “On di-
agnosing multiple stuck-at faults using multiple and single fault simu-
lations in combinational circuits,” IEEE Trans. Computer-Aided Design
Integr. Circuits Syst., vol. 21, no. 4, pp. 362–368, Apr. 2002.

[22] M. Tripp, “Open microphone-wanted: New test directions and practical
bottle necks,” presented at the Proc. IEEE Int. Test Conf., 2001.

[23] A. Veneris and M. S. Abadir, “Design rewiring using ATPG,” IEEE
Trans. Computer-Aided Design Integr. Circuits Syst., vol. 21, no. 12, pp.
1469–1479, Dec. 2002.

[24] A. Veneris and I. N. Hajj, “Design error diagnosis and correction via test
vector simulation,” IEEE Trans. Computer-Aided Design Integr. Circuits
Syst., vol. 18, no. 12, pp. 1803–1816, Dec. 1999.

[25] A. Veneris, J. B. Liu, M. Amiri, and M. S. Abadir, “Incremental diag-
nosis and debugging of multiple faults and errors,” in Proc. IEEE Design
Test Eur., 2002, pp. 71–721.

[26] S. Venkataraman and S. B. Drummonds, “A technique for logic fault
diagnosis of interconnect open defects,” in Proc. IEEE VLSI Test Symp.,
2000, pp. 313–318.

[27] S. Venkataraman and W. K. Fuchs, “A deductive technique for diagnosis
of bridging faults,” in Proc. IEEE Int. Conf. Computer-Aided Design,
1997, pp. 562–567.

[28] Y. S Yang, J. B. Liu, P. Thadikaran, and A. Veneris, “Extraction error
diagnosis and correction in high-performance designs,” in Proc. IEEE
Int. Test Conf., 2003, pp. 423–430.

Jiang Brandon Liu (S’99–M’04) received the
B.A.Sc. degree in engineering science and the
M.A.Sc. degree in computer engineering from the
University of Toronto, Toronto, ON, Canada, in 2000
and 2003, respectively.

He is currently with the High-Performance Tools
and Methodology Group, Freescale, Austin, TX. His
research interests include fault diagnosis, logic de-
bugging, and performance optimization.

Andreas Veneris (S’96–M’99) was born in Athens,
Greece. He received the Diploma in computer engi-
neering and informatics from the University of Pa-
tras, Patras, Greece, in 1991, the M.S. degree in com-
puter science from the University of Southern Cali-
fornia, Los Angeles, in 1992, and the Ph.D. degree in
computer science from the University of Illinois, Ur-
bana–Champaign, in 1998.

He is currently a cross-appointed Associate Pro-
fessor in the Department of Electrical and Computer
Engineering and the Department of Computer Sci-

ence, University of Toronto, Toronto, ON, Canada. He has coauthored one book.
His research interests include computer-aided design for synthesis, diagnosis,
and verification of digital circuits and combinatorics.

Prof. Veneris is a Member of the ACM, the AAAS, the Technical Chamber of
Greece, and the Planetary Society. He was a co-recipient of a Best Paper Award
at the 2001 Asia South Pacific Design Automation Conference.

	toc
	Incremental Fault Diagnosis
	Jiang Brandon Liu, Member, IEEE, and Andreas Veneris, Member, IE
	I. I NTRODUCTION

	Fig.€1. ITRS on interconnect length.
	II. I NCREMENTAL D IAGNOSIS
	A. Motivation

	TABLE I N ONMONOTONIC B EHAVIOR OF F AILING P RIMARY O UTPUTS
	B. Definitions and Algorithm Overview
	Definition 1: A diagnostic configuration is a partially diagnose
	Definition 2: A circuit line under consideration by diagnosis is

	Fig.€2. Incremental diagnosis flow.
	C. Path-Trace
	Theorem 1: Let G be a CUD with N faulty locations and $L={l_

	D. Suspect Ranking
	Corollary 1: In a circuit with N defective lines, if path-trac
	Theorem 2: Let circuit with N defective lines and let $V^{\rm
	Proof: Let l_1, l_2, \ldots, l_N be a minimal set of lines suc

	Example 1: Fig.€3 depicts the situation where two faults on line

	Fig.€3. Diagnosis in the presence of fault masking.
	Fig.€4. Search tree and its traversal.
	E. Search Tree

	Fig.€5. Growth of search tree.
	Fig.€6. Fault modeling in stuck-at diagnosis.
	III. F AULT -D IAGNOSIS A LGORITHMS
	A. Stuck-At Fault Diagnosis
	Example 2: In Fig.€6, the logic values on two different suspect

	Fig.€7. Open fault on a stem.
	B. Open-Interconnect Fault Diagnosis
	1) Algorithm Overview: Unlike diagnosis algorithms that explicit
	Example 3: Fig.€8(a) displays a circuit with two open faults loc

	Fig.€8. Model-free diagnosis for two open faults.
	2) 3-Valued Path-Trace: Routine 3-valued path-trace marks lines
	Example 4: The operation of 3-valued path-trace is demonstrated
	3) Suspect Compaction: Like path-trace, the set of candidate lin

	Fig.€9. Three-valued path-trace example.
	Fig.€10. Suspect compaction example.
	Example 5: Let a triangle in Fig.€10 represent some fanout-free

	Fig.€11. Class-compaction algorithm.
	4) Generalized Fault Simulation (GFS): The list of candidate cla
	Example 6: Recall in Example 3, tuple $\{G_8, G_9 \}$ is returne

	Fig.€12. Fault-simulation example.
	Fig.€13. Generalized fault-simulation example.
	Example 7: In the circuit of Fig.€13, an unknown is placed on $G

	TABLE II R ANKING OF O RIGINALLY I NJECTED F AULTS
	IV. E XPERIMENTS

	TABLE III R ESULTS FOR S TUCK -A T F AULTS
	A. Determination of α
	B. Stuck-At Fault
	C. Open-Interconnect Fault

	TABLE IV R ESULTS FOR S INGLE O PEN F AULTS
	TABLE V R ESULTS FOR T WO AND T HREE O PEN F AULTS
	TABLE VI S USPECT C OMPACTION H EURISTIC
	TABLE VII R ESULTS FOR O PENS AND B RIDGES
	D. Open and Bridging Faults
	V. C ONCLUSION
	M. S. Abadir, J. Ferguson, and T. E. Kirkland, Logic verificatio
	R. C. Aitken, Modeling the unmodelable: Algorithmic fault diagno
	T. Bartenstein, D. Heaberlin, L. Huisman, and D. Sliwinski, Diag
	V. Boppana and M. Fujita, Modeling the unknown! Toward model-ind
	C. Di and J. A. G. Jess, On accurate modeling and efficient simu
	I. Hamzaoglu and J. H. Patel, New techniques for deterministic t
	S. Y. Huang, Toward the logic defect diagnosis for partial-scan
	L. M. Huisman, Diagnosing arbitrary defects in logic designs usi

	International Technology Roadmap for Semiconductors (1997). [Onl
	N. Jha and S. Gupta, Testing of Digital Systems . Cambridge, U.K
	H. Konuk, Fault simulation of interconnect opens in digital CMOS
	D. B. Lavo, B. Chess, T. Larrabee, and I. Hartanto, Probabilisti
	D. B. Lavo, I. Hartanto, and T. Larrabee, Multiplets, models, an
	D. B. Lavo, T. Larrabee, and B. Chess, Beyond the byzantine gene
	R. H. Lewis and C. Papadimitriou, Elements of Theory of Computat
	C.-C. Lin, K.-C. Chen, S.-C. Chang, and M. M. Sadowska, Logic sy
	J. B. Liu, A. Veneris, and H. Takahashi, Incremental diagnosis o
	I. Pomeranz and S. M. Reddy, On correction of multiple design er
	S. M. Reddy, I. Pomeranz, H. Tang, S. Kajihara, and K. Kinoshita
	A. Smith, A. Veneris, and A. Viglas, Design diagnosis using bool
	H. Takahashi, K. O. Boateng, K. K. Saluja, and Y. Takamatsu, On
	M. Tripp, Open microphone-wanted: New test directions and practi
	A. Veneris and M. S. Abadir, Design rewiring using ATPG, IEEE Tr
	A. Veneris and I. N. Hajj, Design error diagnosis and correction
	A. Veneris, J. B. Liu, M. Amiri, and M. S. Abadir, Incremental d
	S. Venkataraman and S. B. Drummonds, A technique for logic fault
	S. Venkataraman and W. K. Fuchs, A deductive technique for diagn
	Y. S Yang, J. B. Liu, P. Thadikaran, and A. Veneris, Extraction

