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Abstract—Recent advances in Boolean satisfiability have made
it an attractive engine for solving many digital very-large-scale-
integration design problems. Although useful in many stages
of the design cycle, fault diagnosis and logic debugging have
not been addressed within a satisfiability-based framework. This
work proposes a novel Boolean satisfiability-based method for
multiple-fault diagnosis and multiple-design-error diagnosis in
combinational and sequential circuits. A number of heuristics are
presented that keep the method memory and run-time efficient.
An extensive suite of experiments on large circuits corrupted with
different types of faults and errors confirm its robustness and
practicality. They also suggest that satisfiability captures signif-
icant characteristics of the problem of diagnosis and encourage
novel research in satisfiability-based diagnosis as a complementary
process to design verification.

Index Terms—Boolean satisfiability debugging, design errors,
diagnosis, faults, verification, VLSI.

I. INTRODUCTION

R ECENT years have seen an increased use of Boolean sat-
isfiability (SAT)-based tools in the design cycle for very-

large-scale-integration (VLSI) circuits. Design verification and
model checking [1]–[6], test generation [7], logic optimization
[8], and physical design [9], among other problems, have been
successfully tackled with SAT-based solutions. This trend is due
to recent advances in SAT solvers [2], [10], [11] that make
them efficient solution platforms for theoretically intractable
problems previously difficult to solve with other traditional
methods [4]. The use of SAT in the VLSI design cycle is
strengthened by the amount of ongoing research into SAT
solvers. Any improvement to the state-of-the-art in SAT solving
immediately benefits all SAT-based solutions.

Although SAT-based solutions have been used for many
circuit-design problems, no SAT-based solution for logic di-
agnosis has yet been proposed in existing literature. Given an
erroneous design, an implementation of its specification, and
a set of input test vectors, logic diagnosis examines correct
and erroneous test-vector responses to identify circuit locations
that are potential sources of failure. Depending on the stage of
the design cycle, shown in Fig. 1, and the type of malfunction
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Fig. 1. Digital VLSI design flow.

(“soft” or “hard”), logic diagnosis is used in design-error diag-
nosis or fault diagnosis.

Fault diagnosis occurs when a fabricated chip fails testing
due to the presence of one or more defects [12], [13]. Physical
defects are commonly modeled using fault models at the logic
level [13]. Given a faulty chip and a correct logic netlist, fault
diagnosis is performed in order to identify locations in the
netlist corresponding to chip lines that potentially carry defects.
This aids the test engineer who later probes these candidate
locations in order to identify the type of the defect. Design-error
diagnosis and correction (or logic debugging) occurs in the
early stages of the design cycle, when the specification is coded
in some hardware-description-language (HDL) (or register-
transfer-level [RTL]) description and the design is given in the
form of a logic netlist [14]. Design errors are usually caused
by specification changes, bugs in automated tools, and the
human factor [15], [16]. As VLSI designs increase in size and
complexity, errors become more frequent and harder to track.
Given an erroneous design, design-error diagnosis identifies
lines in the netlist that are potentially erroneous.

It is notable that the logic diagnosis of combinational circuits
is an inherently difficult problem. The solution space grows
exponentially with the number of circuit lines and the number
of injected faults [16]. This is because the implementation
of the specification (HDL or the failing chip) is treated as a
“black box,” controllable at the primary inputs and observable
at the primary outputs—a situation depicted in Fig. 2. This
complexity increases when diagnosing sequential finite-state
machines, in which state equivalence is lost due to reshuffling
of memory elements [15], [17]. For these reasons, development
of efficient diagnosis tools for combinational and sequential
circuits remains a challenging task.
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Fig. 2. Fault diagnosis and logic debugging.

This paper presents a novel SAT-based solution for logic di-
agnosis of multiple faults or design errors in combinational and
sequential circuits [18], [19]. This work does not build a new
SAT solver, but proposes an SAT-based formulation of diagno-
sis in which existing solvers [2], [10], [11] can be utilized to find
a solution. The types of faults and errors treated here are ones
that change the logic functionality of the design at the primary
output, irrespective of any timing considerations. The proposed
formulation presents a radically new framework for performing
diagnosis. It may be used as a stand-alone diagnosis tool, or it
may be used to complement traditional diagnosis approaches.

The proposed formulation is intuitive and easy to implement.
It can decouple diagnosis from fault modeling, if necessary, in
order to perform model-free diagnosis [12], [20]. Model-free
diagnosis does not make any assumption on the fault types
present in the circuit. This gives it the advantage that it can
capture faults with a nondeterministic (unmodeled) behavior
[12], [20]. Using the classic stuck-at-fault model as an example,
we also show that the proposed method can easily be extended
to perform model-based diagnosis. We tailor the model-based
version of the proposed algorithm around the stuck-at-fault
model because it can model other types of faults and design
errors [13], [14].

A number of implementation tradeoffs and heuristics are pre-
sented, which improve run-time performance, reduce memory
requirements, and take advantage of circuit structural infor-
mation. Experiments on large combinational and sequential
designs corrupted with multiple faults confirm the practicality
of the approach. They also confirm that the learning/conflict-
analysis procedures in modern SAT solvers allow them to
efficiently enumerate the solution space during diagnosis. The
theory and experiments in this paper suggest that SAT embraces
essential characteristics of logic diagnosis. Since SAT captures
a VLSI design at various degrees of abstraction [3], [4], [21]
and because of recent advancements in SAT solvers [2], [10],
[11] that tackle previously intractable problems efficiently, the
proposed research provides opportunities for the development
of new SAT-based diagnosis tools and novel diagnosis-specific
SAT algorithms.

Since both fault diagnosis and logic debugging have similar
goals, this paper is presented in terms of diagnosis for stuck-at
faults, unless otherwise stated. Section II contains background
information and the problem definition. Sections III and IV
give SAT-based formulations of model-free logic diagnosis for
combinational and sequential circuits, respectively. Section V
analyzes space requirements and performance heuristics.

Fig. 3. Space intersection in traditional diagnosis.

Section VI tailors the method for model-based diagnosis
using the stuck-at fault. Section VII contains experiments, and
Section VIII concludes the paper.

II. PRELIMINARIES

A. Background

Traditionally, diagnosis techniques are classified as cause–
effect or effect–cause techniques [13]. Cause-effect analysis
usually simulates all faults in order to compile fault dictionar-
ies. These dictionaries contain entries of faults and respective
failing primary-output values. Given a failing chip and a set of
k vectors from the tester, the chip responses are matched with
those in the dictionary to return a set of potential faults for each
vector. Effect–cause analyses do not use fault dictionaries. They
simulate the input vectors and apply structural circuit-traversal
techniques to identify candidate fault locations.

In both cases, sets of candidate faults E1, E2, . . . , Ek are
returned. When any member of each Ei is injected in the netlist,
it explains the (faulty or nonfaulty) behavior of the ith test
vector alone. These sets are later intersected (E = E1 ∩ E2 ∩
· · · ∩ Ek) to return the final set E of faults that explain the chip
behavior for all input vectors. This process is shown in Fig. 3
for three test vectors.

The quality of diagnosis relates to its resolution, that is, its
ability to return in E the lines where defects reside. Due to
fault equivalence [13], [16], a solution is not always unique.
Therefore, the faults returned by a diagnosis algorithm are
classified as either actual or equivalent faults. In order to reduce
the work of the test engineer, E ideally should contain only
these two types of faults (Fig. 3). In theory, this is achievable if
the algorithm bases its results on the complete input test-vector
space and enumerates the solution space exhaustively [16]—a
computationally infeasible task. Fortunately, in practice, a small
set of input vectors with high stuck-at-fault coverage provides
good resolution (more than 90% on average) for fault diagnosis
and logic debugging [14], [16], [22].

Traditional effect–cause diagnosis methods are classified
as either symbolic or simulation based. Symbolic methods
[23], [24] operate by building an error equation that encodes
all corrections. Simulation-based algorithms [20], [25], [26]
typically use a backtrace procedure to identify potential fault
locations, and then perform simulation to verify that a candidate
location is capable of correcting the design or explaining the
fault. For some types of faults with high fanout, such as open
faults, the amount of simulation required can be excessive [20].
Symbolic methods can be used to help mitigate this problem
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[24]. Since the solution space increases exponentially with the
number of faults, incremental methods have been proposed
to explore this search space efficiently [20], [27], [28]. Such
methods examine one location at a time and rely on heuristics
to find the locations at which a fault may apply.

The SAT-based method we present here performs diagnosis
of multiple faults. It encodes the cardinality and the location
of candidate faults in the SAT formula and it lets the SAT
solver handle the computationally intensive task of exploring
the search space. Thus, we avoid the need to rank candidate lo-
cations or explicitly enumerate fault tuples. The solver performs
these operations implicitly using the learning and conflict-
analysis procedures built into modern SAT engines.

B. Problem Definition

The proposed algorithms work on circuits with the primitive
gate types AND, OR, NOT, NAND, NOR, XOR, and XNOR, and
with fault-free memory elements (D flip− flops). They also
assume that memory elements can reliably be initialized to their
reset states.

Our algorithm starts after testing (or verification) has failed.
The specification is given as a logic netlist, and the faulty be-
havior is given as a set of failing test-vector responses. The
goal of diagnosis is to identify faults in the netlist that ex-
plain the observed test-vector responses. Since the number of
faults present is not known ahead of time, the algorithm starts
by searching for single-fault solutions. If none exist, it then
searches for double-fault solutions, and so on. Each run of
diagnosis is performed by generating a conjunctive normal form
(CNF) formula Φ and solving it with an SAT solver. Sections III
and IV show how this is done for combinational and sequential
circuits, respectively.

The input to the problem is an implementation of a circuit
specification, given as a netlist C, and a set of input/output test-
vector responses. The outputs of these test-vector responses do
not match the expected behavior of the specification. When
dealing with combinational circuits, this set of vectors contains
k distinct elements VC = {v1, v2, . . . , vk}. In sequential diag-
nosis, the specification is given as a set of k test sequences VS =
V 1,m1 , V 2,m2 , . . . , V k,mk . Each test sequence V j,mj contains
input vectors v j,1, v j,2, . . . , v j,mj simulated in mj consecutive
cycles. We obtain sets VC and VS with random simulation. Test-
vector generation for faults and errors is not the topic of this
work [13], [17], [29], [30].

The output of the method is a set of lines at which some fault
model can be applied to rectify the design for the set of input
test vectors (VC or VS ). The method also returns information
useful for identifying the types of faults on these lines.

The algorithms for combinational and sequential diagnosis
are described on circuits with r primary inputs X = (x1,
x2, . . . , xr) and t primary outputs Y = (y1, y2, . . . , yt) =
f(X). If the circuit is sequential and some of its latches are
fully scannable, then these scannable latches are treated as
pseudoprimary inputs and outputs in the sets X and Y . In
sequential circuits, the initial state is QI = q1, q2, . . . , qu and
the primary outputs are defined as Y = f(X,QI). We use
L = {l1, l2, . . . , ln} to represent internal circuit lines including

stems and branches. The methods add new hardware to the
original circuit. This hardware requires two extra lines per
original circuit line. We use the notation S = {s1, s2, . . . , sn}
and W = {w1, w2, . . . , wn} to label these lines.

When diagnosing combinational circuits, variables for all
circuit lines xi, li, wi, and yi are duplicated to model cir-
cuit constraints under simulation of each vector vj . To avoid
confusion, we use the notation x j

i , l j
i , w j

i , and y j
i for these

variables and Xj , Lj , W j , and Y j for the respective sets
(vectors) of variables. Superscript j corresponds to the index
of the simulated test vector vj .

In the diagnosis of sequential circuits, variables for all circuit
lines are also needed for each vector v j,m, m = 1, . . . , mj in
every sequence V j,mj . We write x j,m

i , l j,m
i , w j,m

i , and y j,m
i

to represent these variables (circuit lines), and Xj,m, L j,m,
W j,m, and Y j,m to represent sets of variables. Superscripts j
and m match the indices of test vector v j,m in cycle m. In both
types of circuits, S = {s1, s2, . . . , sn} is used to indicate both
variable and line names. The variables for lines S are common
to all test vectors and sequences. The reason for this is given in
Section III-B.

The algorithms presented here turn a diagnosis problem into
an instance of a Boolean SAT problem. We do not present a
new SAT solving algorithm here. Instead, the SAT instance
we generate can be solved with any standard SAT solver [10],
[11]. SAT solvers normally operate on Boolean formulas in
CNF. This means that the formula is expressed as the product
of a set of clauses, where each clause is the sum of a set of
literals. A literal is a either variable or its negation. We use the
same procedure for expressing logic netlists in CNF form as
the one described in [7]. The functionality of each logic gate
is represented by a conjunction of clauses. For example, the
logic gate z = x AND y is represented by the clauses (z̄ + x) ·
(z̄ + y) · (z + x̄ + ȳ). A CNF formula representing the entire
circuit is formed by taking the product of the clauses for
all gates.

Sections III and IV present the SAT-based formulations for
combinational and sequential circuits, respectively. Because the
one for combinational circuits is simpler, we present it first. In
fact, combinational diagnosis using SAT under this formulation
is a special case of sequential diagnosis where m1 = m2 =
. . . = mk = 1 for the vectors in the test sequence VS ; that is,
each test sequence is exactly one cycle long.

III. SAT-BASED DIAGNOSIS OF COMBINATIONAL DESIGNS

Given a logic netlist and a set of vectors VC , the algorithm
introduces new hardware into the circuit and translates the
modified circuit into a CNF formula ΦC . This formula has
two components. Together, they enforce the constraints of the
test vectors on candidate fault sites (lines), and they require
that fault sets be returned with a specific cardinality. These
requirements are satisfied in ΦC if fault effects can be injected
at some lines in the netlist so that the netlist emulates the
specification for all test vectors VC .

The first component of ΦC is the conjunction of k CNF for-
mulas Cj (Lj ,W j ,Xj , Y j , S), 1 ≤ j ≤ k. Each Cj encodes
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constraints from test vector vj on the logic netlist. Potential
fault locations are indicated by adding additional hardware to
the circuit, as explained in Section III-A. We later show that
Cj (Lj ,W j ,Xj , Y j , S) is satisfied if and only if there is a set
of fault values that can be injected in the circuit so as to replicate
the behavior of the faulty chip at the primary outputs Y for all
vectors vj .

The second component EN (S), described in detail in
Section III-B, encodes constraints on the cardinality of injected
faults. These constraints are also coded into the circuit with new
hardware, which is later translated into CNF. The number of
faults for which diagnosis is to be performed is a user-specified
parameter N . The algorithm usually starts with N = 1 and it
increases its value if it fails to return with a solution.

The complete formula ΦC is written as

ΦC = EN (S) ·
k∏

j=1

Cj(Lj ,W j ,Xj , Y j , S).

Intuitively, the conjunction
∏k

j=1 Cj (Lj ,W j ,Xj , Y j , S) re-
quires that every candidate set of faults satisfies all Cj con-
straints for all vectors vj . In other words, fault sets for each
vector vj are intersected as in traditional diagnosis (Fig. 3).

By construction, a satisfying assignment for ΦC is one that
returns exact information about the locations of the lines the
test engineer needs to probe. If no such assignment exists, then
no set of N is sufficient to explain the observed behavior.
In the following sections, we describe how to compile both
components of ΦC to perform model-free diagnosis.

As presented below, solving Φ performs diagnosis for N
faults, where the value of N must be supplied by the user.
Since the value of N is not known before diagnosis begins,
the algorithm starts with N = 1 and increments its value if the
solver fails to return any locations.

A. Test Vector Constraints

This component of ΦC is comprised of k CNF formulas
Cj that model circuit and fault constraints for each vector vj ,
1 ≤ j ≤ k. To simplify the presentation, we first show how to
compile this component for a single fault location. At the end of
this section, we generalize the construction to cover all possible
fault locations.

To represent potential fault sites, extra hardware is added to
the circuit and later translated into CNF. To model the potential
presence of a fault on line l, a multiplexer is inserted on this
line with select line s. The original line l is attached to the
multiplexer’s 0-input and the multiplexer’s output is connected
to the former fanout of line l. A new input line w is added and
attached to the 1-input of the multiplexer. This multiplexer is
later translated into CNF with the rest of the circuit.

Consider the circuit in Fig. 4(a). The potential presence of a
fault on line l1 can be represented by a multiplexer as shown
in Fig. 4(b). The first input of the multiplexer is connected to
the output of gate l1 and the second input of the multiplexer
is connected to a new line w1. The output of the multiplexer
is connected to the original output of l1. Observe that the

Fig. 4. Modeling candidate fault locations. (a) Original circuit. (b) Modeling
a potentially faulty line. (c) CNF representation of a multiplexer. (d) Circuit
construction for two test vectors.

functionality of the original (modified) circuit is selected when
the value of the select line s is set to 0 (1) [22].

The CNF of the multiplexer logic is given in Fig. 4(c).
It can be seen that only four clauses are required to repre-
sent it. Hence, the CNF formula representing the new circuit
in Fig. 4(b) is C = (x1 + l1) · (x2 + l1) · x1 + x2 + l1) ·
(s + l1 + z1) · (s + l1 + z1) · (s + w1 + z1) · (s + w1 + z1) ·
(x3 + l2) · (z1 + l2) · (x3 + z1 + l2) · (l2 + y) · (x4 + y) · (l2 +
x4 + y).

To generate the final form of Cj , we need to insert additional
clauses that represent the input/output behavioral constraints of
test vector vj . This is done with a set of unit clauses for the
set of primary inputs X = {x1, x2, . . . , xr} and the primary
outputs Y = {y1, y2, . . . , yt}. The literals in these unit clauses
have the same phases as their respective logic values in test
vector vj ; if vj assigns the value 1 (0) to input xi, then x j

i (x j
i )

appears in the formula.
Example 1: Recall the circuit in Fig. 4(a) and assume that

there is a single stuck-at-1 fault on line l1. The input test vector
v = (x1 x2 x3 x4) = (1 0 1 0) detects the fault, as a logic 1
appears at the output of the good circuit while a logic 0 appears
at the output of the faulty one. The construction requires unit-
literal clauses x1, x2, x3, x4 and y to be added to C. Hence,
the final formula for vector v is Cv = C · x1 · x2 · x3 · x4 · y.
This CNF formula represents the circuit constraints and faulty
circuit response for test vector v.

This process is repeated for every test vector vj to generate
formulas Cj (Lj ,W j ,Xj , Y j , S) for j = 1 . . . k. Note that
each formula requires a new set of variables for the primary
inputs Xj , primary outputs Y j , internal circuit lines L j , and
fault sites W j . This is because each input test vector will result
in a different set of constraints on the circuit netlist. However,
only one set of select line variables S is used for all k instances
of the circuit.
Example 2: As an illustration of the above process,

Fig. 4(d) shows the diagnosis representation of the circuit
in Fig. 4(a) for one potentially faulty line l1 and two test
vectors. Two multiplexers are injected into two identical
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copies of the circuit with a common select line s. This
select line indicates the presence of a fault at the same
location in both circuits. Suppose the two input vectors are
v1 = (1, 0, 1, 0) and v2 = (0, 1, 1, 0), with corresponding
(faulty) output values y1 = 0 and y2 = 0. Then the unit clauses
x1

1 · x1
2 · x1

3 · x1
4 · y1 express the constraints of vector v1, and

clauses x2
1 · x2

2 · x2
3 · x2

4 · y2 represent vector v2. These ten
clauses are added to the CNF of the circuit in Fig. 4(d) to model
the faulty input and output test-vector constraints. Observe that,
since select line variable s is common to both copies of the
circuit, if a SAT solver sets s = 1, it effectively forces variables
w1

1 and w2
1 to assume values such that the new circuit emulates

the failing primary-output responses of the test vectors.
The preceding discussion shows how to compile Cj (L j ,

W j ,Xj , Y j , S) for only one potential-fault location. In the
final formulation, all internal circuit lines may be suspect
locations. Therefore, n multiplexers with distinct select lines
s1, s2, . . . , sn are inserted, one on each line and fanout branch
of the circuit. This completes the first component of ΦC .

B. Fault Cardinality Constraints

The second component of ΦC encodes the constraint that
solutions must have exactly N excited fault sites. It is gen-
erated by attaching additional hardware to the circuit and
then converting this hardware to CNF as part of ΦC . We first
show a straightforward means of generating these constraints
for the single (E1(S)) and double (E2(S)) fault cases. This
initial method does not yield a practical implementation, but
it illustrates the intended effect of EN (S). We then describe a
practical construction of EN (S).
Example 3: Consider the formula Cv from Example 1. This

formula models the circuit in Fig. 4(b) under test vector v =
(1, 0, 1, 0). Assume that s is introduced as an additional unit-
literal clause, so that the formula becomes Cv = C · x1 · x2 ·
x3 · x4 · y · s. The addition of this clause in Cv forces the select
line to be set to a constant 1. This has the effect of always
selecting line w1 instead of the original circuit line l1 in Fig. 4.
Given this new Cv , a SAT solver will attempt to find a satisfying
variable assignment for the circuit lines and the variable w1 so
that the circuit emulates the faulty-chip behavior for vector v.
The SAT solver will be forced to set w1 = 1, which correctly
indicates a stuck-at-1 fault on line l1.

The role of EN (S) in ΦC is an extension of the above exam-
ple. Formula ΦC can be updated with constraints that enumerate
exhaustively all possible sets of N fault sites. These constraints
will enumerate subsets of N select lines si1 , si2 , . . . , siN

that
may simultaneously be activated. Each set of active select lines
indicates N active fault locations.

One way to achieve this behavior is to explicitly express the
fault locations of interest. For instance, E1(S) can be written in
CNF form as follows:

E1(S) = (s1 + s2 + · · · + sn) ·
∏

i=1...n−1
j=i+1...n

(si + sj).

The first clause requires that at least one select line be set
to 1, and that the remaining clauses cause E1(S) to become

Fig. 5. Counter for multiple faults.

unsatisfied if more than one select line is set to 1. Clearly, the set
of new clauses introduced by E1(S) is O(n2). This idea can be
extended to multiple errors. For example, it can be shown that

E2(S) = (s1 + s2 + · · · + sn) ·
∏

i=1...n−2
j=i+1...n−1

p=j+1...n

(si + sj + sp)

causes the SAT solver to search for solutions with one or two
active faults, and requires O(n3) clauses.

Although this representation for EN (S) is intuitive, in prac-
tice it requires an exponential number of clauses O(nN+1) to
be added to the formula. Clearly, memory requirements for this
representation become prohibitive quickly.

To overcome a memory explosion with increasing values of
N , we follow a different approach. We encode constraints that
enumerate the same solutions space, but we do so implicitly by
using the hardware construction shown in Fig. 5(a), which is
converted into CNF and appended to ΦC . This hardware acts as
a counter forcing the SAT solver to enumerate sets of N fault
sites. It performs a bitwise addition of the multiplexer select
lines S = {s1, s2, . . . , sn} and compares the result to the user-
defined number of faults N . The output of the comparator is
forced to logic 1 with a unit-literal clause so that the bitwise
addition of the members of S (that is, the set of fault sites enu-
merated) is always equal to N .

One may decide to build the comparator in such a way as
to enforce a “less than or equal to N” condition rather than
“strictly equal to N .” Although theoretically sound, this scheme
may in practice degrade the performance of the algorithm.
This would happen with user-specified values of N that are
larger than the minimum number of fault locations required to
replicate the faulty behavior. In these cases, the solver would
output many solutions by enumerating fault-redundant sets of
locations.
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As with the select lines themselves, the variables introduced
with the hardware in Fig. 5(a) are common to all test vectors in
VC . Intuitively, this implicit hardware representation for EN (S)
provides a tradeoff between time and space. Experiments show
that modern SAT solvers take advantage of this tradeoff; they
avoid an exponential explosion in the time domain while their
memory requirements remain low. In the remainder of this
section, we show how to construct the counter hardware in CNF
with O(n) clauses.

As seen in Fig. 5(a), the counter contains an adder for the
select lines and a comparator. Assume that the binary represen-
tation of the integer passed from the adder to the comparator is
blog n . . . b1b0. A comparator for SAT-based debugging of two
faults is formed by adding CNF blog n · blog n−1 · . . . · b2 · b1 · b0

to EN (S). This ensures that exactly two select lines are always
1 and all others are forced to 0. Otherwise ΦC would not be
satisfied. In a similar manner, we can form a comparator in CNF
for any value of N with log n + 1 unit-literal clauses.

An implementation for the adder with O(n) clauses is shown
in Fig. 5(c). The 1-bit values of the select lines are added pro-
gressively in a binary-tree fashion to compute the (log n + 1)-
bit sum. The binary tree has log n + 1 levels, with the select
lines at level 0. At each level i = 1 . . . log n, 2log n−i integer
sums are produced by adding the integers from the previous
level pairwise. Each sum is i + 1 bits long, and these bits are
produced with a sequence of full-adders as shown in Fig. 5(b).

A full-adder can be encoded in CNF using 14 clauses (or six
clauses if the carry-in is omitted). Thus, the size of the adder
in CNF is proportional to the number of CNF variables (bits)
used to hold the values of the select lines and all intermediate
results of the adder tree. Hence, the total number of these CNF
variables is

# CNF variables ≤
log n∑
i=0

2log n−i(i + 1)

= 2log n

[
log n∑
i=0

i

(
1
2

)i

+
log n∑
i=0

(
1
2

)i
]

≤ 2log n

[ ∞∑
i=0

i

(
1
2

)i

+
∞∑

i=0

(
1
2

)i
]

= 4 · 2log n

=O(n).

This calculation uses the fact that
∑∞

i=0 xi = (1/(1 − x)) and∑∞
i=0 ixi = (x/(1 − x)2) when |x| < 1. Since creating the

CNF clauses contributes a constant multiplicative factor of 14,
the size of the CNF formula for the counter is O(n).

For multiple-fault diagnosis, the search space is exponen-
tial in the number of circuit lines. For example, for double-
fault diagnosis, there are initially n2 pairs of candidate lines
to be examined. In the worst case, simulation-based approaches
such as [25] and [20] must enumerate and simulate O(n2)
pairs of lines explicitly. With the proposed algorithm, this
exploration of the search space is done implicitly by the SAT
solver. The space requirements of the SAT formula do not

Fig. 6. Complete construction for Φ.

change with the value of N . Instead, we rely on learning
and backtracking techniques in the SAT solver to explore this
space efficiently.
Example 4: Fig. 6 shows the complete construction for both

the test-vector and fault-cardinality constraints of ΦC for the
example circuit from Fig. 4(a) for three test vectors v1, v2, and
v3 with failing primary outputs. A multiplexer has been inserted
on each circuit line. For the sake of clarity, multiplexers have
been omitted from inputs and outputs in this figure. In other
words, in this example, we assume that the primary input/output
of the circuit are fault free; otherwise, multiplexers should be
added in a similar manner. The select lines at the top of the
circuit have been added together bitwise using the hardware
from Fig. 5(a). The input and output values of the three failing
test vectors have been shown. For this example, the SAT solver
looks for single solutions since N is required to be 1 in the
counter circuitry.

IV. SAT-BASED DIAGNOSIS OF SEQUENTIAL DESIGNS

This section describes the SAT-based diagnosis method for
sequential designs. This method reduces to the one for combi-
national circuits when every input test sequence contains only
one vector.

Given a sequential netlist and a set of vectors VS as defined
in Section II-B, the algorithm builds a CNF formula ΦS

ΦS = EN (S) ·
k∏

j=1

mj∏
m=1

Cj,m(Lj,m,W j,m,Xj,m, QI, Y
j,m, S).

We observe that ΦS is quite similar to ΦC . It also has two
components: The first component EN (S) enumerates fault-
cardinality constraints. Its implementation is identical to the
one found in Section III-B. The second component is
the conjunction of CNF formulas Cj,m (Lj,m,W j,m,Xj,m,
QI , Y

j,m, S) for all input test vector sequences j = 1, . . . , k
and all simulation cycles m = 1, . . . , mj . Intuitively, each
group of CNF formulas Cj,m, m = 1 . . . mj enforces the
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Fig. 7. Example circuit.

constraints of test sequence V j,mj on the logic netlist by
applying values to the inputs (Xj,m) and the outputs (Y j,m)
at all time frames. This component of ΦS is slightly different
from the corresponding one in ΦC . The remainder of this section
explains how to generate it.

In order to simplify the presentation, we develop the theo-
retical problem formulation around an example that assumes a
single-input sequence V 1,m1 with two cycles; that is, k = 1 and
m1 = 2. At the end of this section, the results are generalized
for multiple input sequences (k > 1) with an arbitrary number
of simulation cycles.

When k = 1, this component contains m1 copies of the CNF
formula Cj,m (L j,m,W j,m,Xj,m, QI , Y

j,m, S). Each copy
enforces different constraints on potential fault locations by
specifying the input/output behavior of the (single) test vector
for both cycles. This representation resembles the iterative logic
array (ILA) modeling of a sequential netlist [13], [17].

In the ILA representation, a sequential circuit is “unrolled”
in time. This is performed using identical copies of its com-
binational circuitry at different simulation cycles, where the
inputs of the memory elements from cycle i are connected
to the appropriate gates in cycle i + 1. For example, the ILA
representation of the sequential circuit in Fig. 7(a) is shown
in Fig. 7(c) for an input test sequence that is two cycles long.
The equivalence between these two representations becomes
evident if we redraw the circuit of Fig. 7(a) as shown in
Fig. 7(b), with inputs and outputs of the memory elements
depicted as pseudooutputs and pseudoinputs of the design.

The circuit is first transformed to its ILA representation.
Error locations are then modeled by attaching extra hardware
in a manner similar to the one described in Section III. This
hardware reflects the potential presence of some fault on a line
of the circuit in all m1 simulation cycles, but it does not require
that the fault be excited in all cycles. It merely indicates that
the fault exists, and that it may or may not be excited in every
cycle. Once again, to model the presence of a fault on line l1,m

i ,
a multiplexer with select line s is attached to every instance
m = 1, . . . , m1 of this line for all m1 cycles. All of these m1

multiplexers are later translated into CNF as part of ΦS . The

Fig. 8. Diagnosis in two cycles.

first input of each multiplexer is attached on the line l1,m
i and

the second input is attached to a new line w1,m
i . The output of

each multiplexer is connected to the former fanout of gate l1,m
i .

All m1 multiplexer copies at different cycles share the same
select line s.

Consider again the circuit in Fig. 7(a) and assume the true
defect to be a stuck-at-0 fault on line l3. Since the gate is an
input only to a memory element, any input test sequence needs
at least two cycles to detect it at the primary output [13]. Test
vector sequence V 1,2 = {v1,1, v1,2} = {x1,1

1 x1,1
2 , x1,2

1 x1,2
2 } =

{10, 11} produces the erroneous primary output value 0. The
presence of a fault on line l3 can be represented by two
multiplexers with common select line s on lines l1,1

3 and l1,2
3

of the ILA representation of this circuit, as shown in Fig. 8.
Observe that when s = 1, a new circuit with free inputs w1,1

3

and w1,2
3 is selected.

Using the four clauses from Fig. 4(c) to encode each mul-
tiplexer, the SAT formula for the ILA circuit implementation
for cycle i is F i = (q1,i + l1,i

3 ) · (x1,i
1 + l1,i

3 ) · (x1,i
2 + l1,i

3 ) ·
(q1,i + x1,i

1 + x1,i
2 + l

1,i
3 ) · (x1,i

1 + l
1,i
4 ) · (x1,i

2 + l
1,i
4 ) · (x1,i

1 +
x1,i

2 + l1,i
4 ) · (s + l

1,i
3 + q1,i+1) · (s + l1,i

3 + q1,i+1) · (s +
w1,i

3 + q1,i+1) · (s + w1,i
3 + q1,i+1) · (q1,i + y1,i)· (l1,i

4 + y1,i) ·
(q1,i + l

1,i
4 + y1,i). Hence, the CNF for the circuit in Fig. 8 is

F = F1 · F2.
Once multiplexers are introduced, the updated ILA circuit

representation is translated into CNF. To get the final Cj,m,
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Fig. 9. Sequential SAT-based diagnosis.

we need to insert clauses to represent the input and output
constraints for the erroneous circuit and all m1 cycles of test
sequence V 1,m1 . This is easily done with a set of unit-literal
clauses for primary input variables x1,m

1 , x1,m
2 , . . . , x1,m

r , erro-
neous primary output variable y1,m, and initial state variables
QI for every cycle.
Example 5: Recall the circuit from Fig. 8. The stuck-at-0

fault on l3 is detected in the second cycle with test sequence
V 1,2 = {10, 11} because y1,2

err = 0 and y1,2
corr = 1. To enforce

the correct input/output-vector constraints from V 1,2 on the
ILA representation, we add unit-literal clauses q1,1, x1,1

1 , x1,1
2 ,

y1,1x1,2
1 , x1,2

2 , and y1,2. Unit-literal clause q1,1 is added be-
cause we assume that the memory elements of the circuit
can be correctly initialized to their reset states. Therefore, the
final CNF formula for V 1,2 is F′ = F · q1,1 · x1,1

1 · x1,1
2 · y1,1 ·

x1,2
1 · x1,2

2 · y1,2. Observe that if F′ is passed to an SAT solver,
the engine will necessarily assign s = 1. The assignment s =
0 will cause the solver to backtrack with a conflict, as the
erroneous circuit would then produce a correct primary-output
behavior, which does not match the test sequence.

This is repeated for every test sequence V j,mj , j = 1 . . . k
to get formulas Cj,m(L j,m,W j,m,Xj,m, QI , Y

j,m, S), the
product of which forms the second component of ΦS . Finally,
as in ΦC , multiplexers are inserted at every line of the netlist, but

only one set of select line variables S = s1, s2, . . . , sn is used.
This is because the error locations of a solution must satisfy all
vector constraints simultaneously.

V. IMPLEMENTATION

In this section, we discuss implementation details, memory
requirements, and performance heuristics for the combina-
tional and sequential SAT-based diagnosis algorithms presented
earlier.

Pseudocode for the sequential-diagnosis algorithm is found
in Fig. 9. Since, as noted earlier, combinational SAT-based
diagnosis is a special case of sequential diagnosis, the same
pseudocode works for both. For this reason, all heuristics are
described in terms of sequential diagnosis, unless otherwise
stated. As shown in that figure, the input to the diagnosis
procedure is the complete set of circuit lines L, the current set
of suspect faulty lines G, and the set of test-vector sequences
VS . With the current description of the algorithm, we have G =
L. When we present the performance-improving heuristics,
we run the algorithm in multiple passes and rounds in which
G ⊆ L.

The algorithm first attaches a multiplexer to each line in
G to model the potential presence of a fault on that line
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(Fig. 9, lines 4–5). The circuit is then duplicated for each cycle
mx in sequence V j,mj , where x = 1, . . . , mj , j = 1, . . . , k,
and k = |VS| (lines 7–9). If cycle mx is not the first in the
sequence, then the state inputs of cycle mx−1 are connected
to the state outputs of cycle mx (lines 10–11). Note that if
the circuit is combinational, mj = 1 and lines 10–11 are never
executed. This process is repeated for every sequence in VS .
Next, the select line-addition hardware is generated (line 12),
the test-sequence constraints are enforced (lines 20–21), and
the constraint on the number N of activated faults is encoded
(lines 22–24).

The solving process for the formula begins in line 28. If
a satisfying assignment is found, the algorithm identifies the
active select lines for this solution, adds them to the solution
set T , and removes them from future consideration (lines
29–34). This also forces the solver to backtrack and continue
exploring the remaining part of the solution space, as explained
in Heuristic 2 later in this section. When no more solutions
exist, the complete set of solutions found is returned.

We see that one multiplexer is introduced for every circuit
line. The resulting netlist can be turned into a CNF formula
with O(n) clauses [7], since each multiplexer can be translated
to CNF using four clauses. Since the countercircuitry adds an
additional O(n) clauses, the space requirements for ΦS are
equal to O(n) +

∑k
i=1

∑mi

j=1 O(n) ≤ O(n) + kmmaxO(n) =
O(nkmmax), where mmax is the maximum number of cycles
in any test sequence in VS . This shows that space requirements
are linear in the number of circuit lines n, the number of
test sequences k, and the length of each test sequence in VS .
These requirements reduce to O(nk) for ΦC for combinational
circuits, since mmax = 1.

A. Implementation Heuristics

In this section, we present a set of heuristics that reduce
memory requirements and improve performance. These heu-
ristics can be used independently or together by enriching
the CNF and the SAT-solving process. Performance is im-
proved by taking advantage of backtracking and clause-learning
[2], [10], [11] techniques in modern SAT solvers. These heuris-
tics also show that structural properties of the circuit can
provide useful information to SAT-based diagnosis algorithms.
Heuristic 1—Reducing Space Requirements: Although lin-

ear in the number of circuit lines, the CNF formula may grow
quickly with the number of test vectors. To reduce space re-
quirements while preserving efficiency, ΦS may be broken into
a set of formulas Φ1

S ,Φ2
S , . . . ,Φ�k/p�

S . Each formula encodes
constraints for only p of the k test sequences, reducing the space
requirements for each accordingly.

The original formula is equivalent to the conjunction∏�k/p�
i=1 Φi

S . The set of solutions to ΦS is equal to the intersec-
tion of the sets of solutions to each Φi

S , as shown in Fig. 3. In
other words, instead of running the SAT solver on the original
formula ΦS , we can run it in consecutive passes on formulas
Φi

S , 1 ≤ i ≤ �k/p�. When creating Φi
S , it is only necessary to

place multiplexers on circuit lines that are activated in one or
more solutions to Φi−1

S .

Fig. 10. Implementation heuristics.

This heuristic is a time–space tradeoff. The rationale behind
it comes from the fact that, in diagnosis, a small number of vec-
tors usually screens out the majority of the invalid candidates
[13], [14], [16]. The experiments in Section VII confirm this
result and show that, with p = 5 sequences, the first couple of
passes are usually sufficient to eliminate more than 90% of the
candidates. This means that the remaining formulas are easier
to solve, and the later passes run much more quickly.

This idea can be further refined for sequential diagnosis as
follows. Since the CNF of the circuit presented to the SAT
solver is replicated for a number of cycles for each input/output-
vector sequence, the SAT instance may become large. To ease
the task of the SAT solver, test sequences can be sorted in
increasing order of size mi1 ≤ mi2 ≤ · · · ≤ mik

, and pre-
sented in this order to the SAT solver. This ensures that the
first few SAT instances—which tend to be the hardest—have a
relatively small size, and so present an easier task to the solver.
Larger sequences are solved later, when the process has already
reduced the set of candidate error locations.
Heuristic 2—All-Solution Logic Diagnosis: This heuristic

is useful when all solutions to an instance of the diagnosis
problem are desired. This is often the case in fault diagnosis and
logic rewiring [22]. In logic debugging, the designer is usually
interested in some solution that rectifies the design.

Suppose a solution is given as some set of fault sites
si1 , si2 , . . . , siN

. When it is found, the SAT solver is instructed
to search for additional solutions by adding the clause (si1 +
si2 + . . . + siN

) to the formula on-the-fly as a learned clause
(as is done in lines 30–33 of Fig. 9). This makes the current
solution invalid, forcing the SAT solver to backtrack and search
for additional solutions.

This process is illustrated in Fig. 10. Dashed lines indicate
previously-explored portions of the solution space. If the solver
were to be restarted from scratch once a solution was found,
it would reexplore much of the already-explored search space.
By disabling the current solution and forcing a backtrack, the
SAT solver will not reexamine search space it has already
discarded. It will also retain any learned clauses it has accu-
mulated up to this point, which can help speed up the search
for the remaining solutions. This heuristic is not specific to
diagnosis. It can be applied to any SAT problem for which
multiple solutions are to be found.
Heuristic 3—Disabling Unnecessary Branching: This heu-

ristic prevents the SAT solver from branching needlessly on
free input variables at inactive fault locations. Consider a fault
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Fig. 11. Two-pass diagnosis.

location at line li, represented by multiplexers with shared
select line si and free inputs w j,m

i . If si = 0, then it does
not matter what values are assigned to the w j,m

i lines. This is
obvious from the circuit structure, but this information is lost
when the circuit is translated into CNF. We can incorporate
this information into the formula by adding clauses of the
form (si + w j,m

i ) for each w j,m
i . This clause is equivalent to

the logic implication (si → w j,m
i ). As soon as si is set to 0

(disallowing a fault at this location), all of the w j,m
i lines will

be set to 0 immediately by Boolean constraint propagation [10],
effectively removing them from the SAT solver’s set of free
variables.
Heuristic 4—Using Structural Information: As a further

performance enhancement, the algorithm can be modified to
run in two rounds to take advantage of structural circuit infor-
mation as in traditional diagnosis [16], [25]. In the first round,
multiplexers are only inserted at structural dominators of the
circuit. Recall that a line l is a dominator of line l′ if all paths
from l′ to any primary output go through line l [13]. Therefore,
any fault effect at l′ that is observable at a primary output must
propagate through l.

In the first round, the solver will look for faults only at
dominator lines. Once a set of dominator solutions has been
identified, a second round is run to search for solutions on the
lines that they dominate. The number of potential fault locations
in the first round is typically about one-fifth of the total number
of lines in benchmark circuits [16]. The search space that the
SAT solver must explore is reduced accordingly. Fig. 11 gives
the pseudocode for this implementation, which is applicable
to both single- and multiple-fault/error diagnosis. The code for
the procedure diagnose() is found in Fig. 9.

VI. MODEL-BASED DIAGNOSIS

The method, as described so far, performs model-free diag-
nosis. For a given potential fault site li, each of the k test vectors
has an independent free input w j

i . There are no restrictions
placed on the values of these inputs. When select line si is acti-
vated, the lines w j

i can be assigned whatever values are neces-
sary to justify the faulty output behavior for all test vectors.
Since the method does not impose any restriction on these
variables, it performs model-free diagnosis [12].

Fig. 12. Stuck-at fault model.

The ability to perform diagnosis with no assumptions on the
fault model is often desirable. For example, a fault with nonde-
terministic behavior may produce different results for each test
vector [12]. A model-free diagnosis method can capture such
faults by allowing a different value to be assigned to each free
input. The price of this flexibility is usually a larger number
of equivalent solutions, as a larger number of locations may be
able to cause the observed fault effects. Resolution is improved
with specific fault models [12], [13]. This tradeoff is not unique
to this method; it applies equally to any comparison between a
model-free and a model-based diagnosis method.

The proposed method can be extended to model-based diag-
nosis using the stuck-at-fault model. We have chosen this fault
model because of its simplicity and because it can be used to
model other faults and design errors [13], [14]. Experiments
with stuck-at-fault diagnosis in Section VII show that model-
based diagnosis for stuck-at faults often performs better than
model-free diagnosis.

A fault model constrains the behavior of candidate fault lines.
For example, a stuck-at-fault model imposes the restriction that
the faulty line must assume the same value (a constant 1 or 0)
under all vectors. A constant 1 represents a stuck-at-1 fault,
while a constant 0 represents a stuck-at-0 fault.

In the model-free formulation of SAT-based diagnosis, we
create k distinct copies of the circuit, with a separate free input
variable w j

i for each vector j. This is shown in Fig. 4(d) for
k = 2. For a stuck-at-v fault (v ∈ {0, 1}), w j

i must assume the
same logic value v for all k copies of the circuit. We can repli-
cate this effect in ΦC simply by generating a single wi input for
line li and sharing it among all multiplexed copies of the circuit.

This construction is illustrated in Fig. 12. The same value
is injected for each of the k test vectors. In other words, if a
satisfying assignment (for a failing input test vector) sets s1 = 1
and w1 = 0, then the faulty behavior of the circuit is explained
by a stuck-at-0 fault on line l1, etc.

VII. EXPERIMENTS

The automated diagnosis tool for faults and errors in com-
binational and sequential circuits described in the previous
sections was implemented in C++ using zChaff [10] as the
underlying SAT engine. Experiments are conducted on a
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TABLE I
COMBINATIONAL MODEL-FREE FAULT DIAGNOSIS

TABLE II
COMBINATIONAL MODEL-BASED FAULT DIAGNOSIS

Pentium IV 2.8 GHz Linux platform with 2 GB of memory
using combinational ISCAS’85, large sequential ISCAS’89,
and ITC’99 benchmark circuits optimized for area using SIS
(script.rugged) [31]. For each circuit, we report three types
of experiments:

1) model-free diagnosis for single and double stuck-at
faults;

2) model-based diagnosis for single and double stuck-at
faults;

3) model-free diagnosis for single and double-gate replace-
ment and missing/extra-wire design errors.

The types and locations of faults/errors injected in the circuits
are selected at random. In all experiments, the faults/errors
inserted are not redundant, and they change the functionality
of the design at the primary outputs. Each line in a table or point
on a graph is the result of averaging ten experiments. Average
values for these experiments and discussion on parameters
important to the performance of the algorithms are reported in
the following sections. All run-times are in seconds. Heuristic 2
(Section V-A) was built into the prototype diagnosis tool, and
is therefore used for all experiments.

A. Diagnosis of Combinational Circuits

In diagnosis of combinational circuits, we use a total of 20
erroneous input test vectors (|VC| = 20) and the algorithm runs
in four passes of five vectors each (Heuristic 1, Section V-A).
The two-pass heuristic (Heuristic 4) is also used. The branching

heuristic (Heuristic 3) is used for model-free diagnosis. It is not
applicable to model-free diagnosis.

Table I contains results for model-free diagnosis of single and
double stuck-at faults. In this case, Heuristic 3 is also applied on
top of the other heuristics. The first column contains the circuit
name, and the column that follows gives the number of gates
for each circuit. Results for single (double) faults are found in
columns 3. . .6 (7. . .10). Columns 3 and 4 (7 and 8) show the
number of fault sites returned after each round from Heuristic 4.
Column 3 (7) shows the number of fault sites at structural
dominators during the first round. Column 4 (8) shows the
number of equivalent fault sites returned at the end of the
second round. Columns 5 and 9 contain the central-processing-
unit (CPU) times per fault site for the first round. Columns 6
and 10 contain the overall average CPU time per fault site.
Thus, the total run-time for the first round can be determined by
multiplying the numbers in columns 3 and 5 (7 and 9), while the
total run-time for the entire diagnosis procedure can be found
by multiplying the numbers in columns 4 and 6 (8 and 10). All
in all, the data in Table I indicate that SAT is both run-time
efficient and accurate when used in diagnosis.

Table II contains results on model-based diagnosis for stuck-
at faults. Average values in this table are reported in a similar
manner to the one for Table I. The only difference is that the
second column shows the number of clauses in ΦC at the begin-
ning of the first round (Heuristic 4), before any learned clauses
are added. These values confirm that memory requirements
are indeed linear in circuit size and in the number of vectors.
For example, c3540 requires approximately half the number
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TABLE III
COMBINATIONAL MODEL-FREE LOGIC DEBUGGING

Fig. 13. Heuristic speed-up.

of clauses of c7552 because it has about half the number
of lines.

A closer look at the number of fault sites returned by
the model-free and model-based stuck-at fault algorithms
(Tables I and II) suggests that model-based diagnosis outper-
forms model-free diagnosis in terms of its resolution. This
result encourages further work in fault/error modeling using
Boolean SAT to improve performance and increase diagnostic
accuracy. It should be noted that, as with any diagnosis method,
when a fault model is used, some faults that do not conform
to the applied model may not be detected, resulting in reduced
fault coverage.

Table III shows results for a model-free diagnosis of gate-
replacement design errors [14]. In this experiment, we con-
sider erroneous replacements between gates of types AND, OR,
NAND, and NOR. Unlike stuck-at faults, these design errors
will not occur on fanout branches. Thus we have fewer lines
at which to insert multiplexers, which results in CNF formulas
with smaller numbers of clauses than those shown in Table II.
Once again, as shown by the values in this table, both the
resolution and run-time of the method confirm the effectiveness
of a SAT-based approach to logic debugging.

To further examine the benefit of the SAT-based Heuristics
2 and 3 from Section V-A, Fig. 13 depicts the performance
of the algorithm for stuck-at fault-model-free diagnosis when
these heuristics are present and when they are not. Recall that

Heuristic 2 backtracks once a solution is found, in order to
reuse previous computation and return the remaining solutions.
Heuristic 3 requires variable w j

i on line li immediately to
assume a logic value of 0 once si is not selected for vector vj ,
preventing the SAT solver from branching on this variable.

The bars labeled “without heuristics” show the average run-
times with these two heuristics disabled. This figure confirms
that these heuristics improve performance in almost all cases.
Most notable are circuits c2670 and c7552 for which the
average speed-up is over 250%. In the future, we plan to
develop additional heuristics to improve performance of an SAT
solver when used as an underlying engine for logic diagnosis.

B. Diagnosis of Sequential Circuits

This section presents results for sequential diagnosis of cir-
cuits with no state-equivalence information between the imple-
mentation of the specification and the netlist. Again, we use 20
erroneous-input test sequences, and the algorithm runs in four
passes of five test sequences each ( p = 5).

Table IV reports average values for model-free stuck-at diag-
nosis of sequential designs. The format is similar to those in the
previous section. The main difference between this table and the
ones from Section VII-A is the addition of columns 3, 4, 9, and
10. These columns contain the minimum and maximum number
of cycles required to observe the errors. Strictly speaking, these
numbers represent the average range of the mj values in the set
of test sequences VS .

As with combinational-circuit diagnosis, the results reported
here show that the method exhibits excellent resolution. The
number of locations is small enough to aid the task of the VLSI
engineer who will physically probe the faulty chip. Moreover,
CPU times confirm that it offers good resolution with low com-
putational overhead. For example, it diagnoses single stuck-at
faults in a large circuit such as s38417 in less than 100 s on the
average.

As discussed in Section V, the space requirements of the
proposed method are O(npmmax), where n is the number of
circuit lines, p is the number of test sequences in Φi

S , and mmax

is the maximum length of these test sequences. To gain further
insight into its behavior, we examine the effect of changing one
of the parameters n, p, or mmax while the other two remain
the same.



1618 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

TABLE IV
SEQUENTIAL MODEL-FREE FAULT DIAGNOSIS

Fig. 14. Circuit size n versus run-time.

Fig. 15. Φi
S size p versus run-time.

Fig. 14 illustrates the relationship between the circuit size
n and the overall run-time per solution for single-error ex-
periments. This graph verifies that the method scales linearly
with the circuit size, which is in line with traditional diagnosis
results. This indicates that SAT can provide an efficient plat-
form for sequential-logic debugging of large real-life industrial
designs.

Fig. 15 illustrates the relationship between the parameter
p and the overall CPU time when mmax = 2. Three sample
circuits of different size suggest that the best value for p

Fig. 16. Number of cycles mmax versus run-time.

performance-wise is 5. This is because, when p grows, so
does the size of the CNF formula, which makes the SAT
instance harder to solve. Smaller values of p enforce less tight
constraints and increase the number of potential locations the
SAT solver returns. The efficiency achieved with p = 5 seems
to balance these two parameters.

The analysis for varying values of mmax with p = 5 is shown
in Fig. 16. As with the data in Fig. 14, the CPU time scales well
with an increasing number of cycles. This similarity between
the two behaviors is partly due to the fact that both mmax and n
are directly associated with the size of the CNF formula Φi

S . As
the CNF formula increases, so does the time required to solve
the overall problem.

More results on model-based diagnosis of stuck-at faults,
and model-free diagnosis of design errors for some of the
larger sequential circuits in the ISCAS’89 and ITC’99 family
of benchmarks are presented in Tables V and VI, respectively.
In both cases, the method returns with good resolution in an
efficient manner. Comparison of the resolution for both single
and double stuck-at faults between Tables IV and V reveals
a similar trend to the one observed in combinational SAT-
based fault diagnosis in that model-based diagnosis using SAT
outperforms model-free diagnosis.

Table VII provides insight into the behavior of the underlying
SAT solver during sequential SAT-based debugging. This table
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TABLE V
SEQUENTIAL MODEL-BASED FAULT DIAGNOSIS

TABLE VI
SEQUENTIAL MODEL-FREE LOGIC DEBUGGING

TABLE VII
CONFLICT CLAUSES ADDED DURING DIAGNOSIS

shows the number of added clauses (excluding those added in
Heuristic 2) for the first round of diagnosis. The parameters
used for these experiments are the same as those for single-fault
diagnosis in Tables I and IV.

It is interesting to note that the number of conflict clauses
added by the solver for each circuit is relatively small. This
number seems to relate to the number of structural levels of
the circuit [13]. Combinational circuits have deeper structures
and create more conflicts than sequential circuits, which have
their structure repeated in consecutive cycles in the ILA. In both
cases, this indicates that the SAT solver makes few “wrong”
decisions leading to conflicts and backtracks. We believe that
this is because the sequential-diagnosis SAT-based instances,
as formulated herein, are SAT problems in which solution
constraints are tightly specified in terms of the circuit structure
and input test sequences. Therefore, the majority of the circuit
lines acquire their “correct” values through Boolean constraint
propagation [10]. This leads to the conclusion that the solver
is given a relatively easy problem to solve irrespective of the
circuit size.

TABLE VIII
MEMORY USAGE FOR SEQUENTIAL MODEL-BASED

STUCK-AT-FAULT DIAGNOSIS

Finally, memory requirements for sequential stuck-at-fault
model-based diagnosis for some large circuits are shown in
Table VIII. These tests are run for 20 failing patterns and for
a band size of five vectors. The memory usage reported here
is the total amount of memory used by zChaff just before SAT
solving begins. No learned clauses have been accumulated at
this point, but learned clauses typically comprise less than 1%
of the total formula size (Table VII).

The numbers in this table confirm the analysis from
Section V. Memory requirements scale linearly with the num-
ber of gates, vectors, and test sequences. This makes it applica-
ble to large industrial circuits. For example, from Table VIII,
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one may project that a circuit with one million gates (typical
for an industrial circuit) would require approximately 97 mil-
lion clauses and 14.5 GB of memory for fault diagnosis and
test-vector sequences with an average length of five. This
amount of memory is common in an industrial setting.

VIII. CONCLUSION

A SAT-based formulation of multiple-fault diagnosis and
logic debugging for combinational and sequential-logic cir-
cuits was presented. The method is practical in an industrial
environment, and it automatically benefits from advances in
modern Boolean SAT solvers. Theoretical and experimental
results on large circuits with multiple faults and multiple-design
errors confirm that Boolean SAT provides an efficient and effec-
tive solution to design diagnosis. This offers new opportuni-
ties for SAT-based diagnosis tools and diagnosis-specific SAT
algorithms.
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