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Abstract—Blockchain-based smart contracts enable the creation of decentralized applications, which often handle assets of
considerable value. While the underlying platforms guarantee the correctness of smart-contract execution, they cannot ensure that the
code of a contract is correct. Today, as evidenced by a number of recent security breaches, developers still have a hard time making
contracts that work properly.Even though these incidents often exploit contract interaction, prior work on smart-contract verification,
vulnerability discovery, and secure development typically considers only individual contracts in isolation. To address this gap, we
introduce the VERISOLID framework for the formal verification of contracts that are specified using a abstract state machine based
model with rigorous operational semantics. Our model-based approach allows developers to reason about and verify the behavior of a
set of interacting contracts at a high level of abstraction. VERISOLID allows the generation of Solidity code that is functionally and
behaviorally equivalent to verified models, which enables the creation of correct-by-design smart contracts. We additionally introduce a
graphical notation (called deployment diagrams) for specifying possible interactions between contract types. Based on this notation, we
present a framework for the automated verification, generation, and deployment of contracts that conform to a deployment diagram. To
demonstrate the applicability of VERISOLID, we translate existing Ethereum Improvement Proposal (EIP) specifications to temporal
properties for two of the most popular contract interfaces: ERC20 and ERC721. We also show you how to write code for the ERC20
and ERC721 interfaces in a way that is safe, and we do this by using VERISOLID. We evaluate our framework on 726 contracts that are
currently deployed on the Ethereum blockchain, which include 267 ERC20 and 459 ERC721 contracts. Our experiments indicate that
18% of ERC20 contracts and 4% of ERC721 contracts fail to satisfy the EIP specifications.

Index Terms—Smart contracts, Verification, Solidity, EIP, ERC20, ERC721, Ethereum
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1 INTRODUCTION

B LOCKCHAIN technology has received significant atten-
tion in recent years from academia and industry due to

its ability to provide open, decentralized, and trustworthy
platforms of computation. While the most widely used
application of blockchains today is undoubtedly the remit-
tance of cryptocurrencies (e.g., BTC on Bitcoin network),
blockchains can also be used as trustworthy decentralized
mediums for general-purpose computation in the form of
smart contracts.

As with any software implementation, smart contracts
may suffer from subtle and surprising bugs introduced
by developers. These bugs present potential threats to the
security of smart contracts by allowing attackers to mali-
ciously extract currency from contracts or to even destroy
the contracts in certain cases. The most notable security in-
cidents include the “DAO attack” [1] from 2016, the “Parity
Wallet hack” [2] from 2017, and a vulnerability in random-
number generation in Fomo3d and LastWinner [3]. The
recent surge in Decentralized Finance (DeFi) applications,
which stand at a total market-cap of $24 billion as of 2021,
along with the rise in DeFi-specific attacks indicate the
need for smart-contract verification frameworks. Motivated
by such security issues and incidents, a number of tools
have been proposed for vulnerability discovery using varied
techniques to aid developers in creating secure contracts. A
common limitation of existing tools is that they typically
focus on the analysis or development of a single contract
in isolation from other contracts, with which it may have

to interact once it is deployed. However, in practice, most
decentralized applications are built on multiple interacting
smart contracts, and exploits often involve more than one
of them. For example, in the so-called “DAO attack,” the
perpetrator exploited a re-entrancy vulnerability in the DAO
contract that involved function calls to other contracts [1].

In this paper, we propose an end-to-end framework for
the correct-by-design development and deployment of Solidity
smart contracts on the Ethereum blockchain network [4].
Our work builds upon the VERISOLID open-source frame-
work [5], which supports the correct-by-design develop-
ment of stand-alone contracts. In particular, VERISOLID al-
lows developers to graphically design a smart contract as an
Abstract State Machine(ASM), perform model checking [6],
and generate functionally equivalent Solidity code based on
formally defined operational semantics.

In detail, the contributions of this paper are as follows:
• We propose a graphical notation, called Solidity De-

ployment Diagram, for specifying allowed interactions
between smart contracts.

• We extend the VERISOLID operational semantics to
formally capture interactions between smart contracts.

• We introduce an approach for the formal verification of
a system of interacting smart contracts using our global
coordinator component.

• Previous versions of VERISOLID supported only gener-
ation of individual smart contract code. We extend the
tool to support the generation of multiple interacting
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contracts.
• We provide a deployment framework for the generated

smart contracts on the Ethereum blockchain. This will
allow for automated deployment after the contracts are
verified to be valid according to the specifications.

• We extend the framework to facilitate automated veri-
fication of contracts that are already deployed on the
Ethereum blockchain. Thanks to this feature, we are
able to process existing smart contracts as well in
VERISOLID.

• We demonstrate the utility of the framework by trans-
lating existing Ethereum Improvement Proposal (EIP)
specifications to temporal properties that are automat-
ically applied during the verification of contracts that
implement EIP interfaces.

• We classify the implementation paradigms of two EIP
interfaces, ERC20 and ERC721, thereby providing a
reference of safety guidelines when developing and
deploying contracts that implement these interfaces.

• We provide experimental results for our framework
through the verification of 726 contracts (267 ERC20
and 459 ERC721 contacts) that are currently deployed
on the Ethereum blockchain and in use by various
applications. Additionally, we study verification times
using VERISOLID to relate reachable states in the con-
tract with the time required to verify it.

The remainder of this paper is organized as follows.
Section 2 describes our novel method for dealing with multi-
ple interacting contracts. Section 3 we introduce VERISOLID
framework and discuss concepts extended in this work
for modeling interactions in smart contracts. Section 4 we
define the formal semantics for all of the modelling con-
cepts discussed in the previous section. In Section 5 we
present our verification methodology for both standalone
and interacting smart contracts. Section 6 we shift the focus
on specific applications of smart contracts, i.e.,tokens. We
introduce the topic of EIPs and define all the temporal
properties that have been identified from EIP specifications
of ERC20 and ERC721 interfaces. Section 7 describes various
methodologies and safety guidelines that can be used while
implementing ERC20 and ERC721 contracts. In Section 8
we briefly give an overview of the transition system gen-
eration and deployment diagram from an existing Solidity
contract using ProxyERC20 contract as an example. Sec-
tion 9 presents the evaluation of VeriSolid framework by
conducting experiments on currently deployed contracts in
Ethereum blockchain. Section 10 discusses related work and
Section 11 provides the conclusion and future directions for
our work.

2 AUTOMATED VERIFICATION WORKFLOW

We extend VERISOLID with a novel approach for the
correct-by-design development and deployment of mul-
tiple interacting smart contracts. We provide an open-
source, web-based implementation (https://github.com/
smartcontractsfc/verifier) which allows the collaborative
development of Ethereum contracts with built-in version
control, which enables branching, merging, and history
viewing. This repository is a fork of the initial VERISOLID

implementation and has been modified to support the fea-
tures added in this extension. We also extend it to support
Solidity v0.5.

Fig. 1. Design, verification, and deployment workflow

Figure 1 shows the steps (numbered arrows) of the
design, verification, and deployment workflow of our ap-
proach that extends the original VERISOLID framework.
Squared numbers represent the one-click automated veri-
fication workflow which is an addition over the previous
version of VERISOLID. Circled numbers represent steps that
exist in the previous version of VERISOLID. Solid arrows
represent steps that are mandatory, while dashed arrows
represent optional steps. In Step 1, the developer provides
input, which consists of:

• Contract specifications containing: 1) a graphically
specified ASM and 2) variable declarations, actions, and
guards specified in Solidity. Alternatively, a developer
may import the code of an existing Solidity contract
and the system automatically creates the corresponding
ASM, as detailed in Section 8.

• A list of properties to be verified. These properties
can be expressed in predefined natural-language like
templates. Properties are extended to enable specifying
requirements on multiple interacting smart contracts
(Section 6).

• A graphically specified Solidity Deployment Diagram
that contains contract types and their associations. The
associations specify which contracts have references to
which other contracts (Section 3.2).

• Ethereum contract addresses for a contract. Providing
the deployed contract address triggers the automated
verification which will download the contract using an
API provided by Etherscan – a blockchain explorer [7].
Depending on the contract type if they are implement-
ing either ERC20 or ERC721 interface, the contract
will be verified using the respective CTL (Computation
Tree Logic) [8] properties that are pre-defined in our
framework. We have provided background for CTL in
our appendix for further reference [9]. Further to these

https://github.com/smartcontractsfc/verifier
https://github.com/smartcontractsfc/verifier
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properties, user can provide additional specifications
customized to their Decentralized Application (Dapp)
using our existing workflow.

The verification loop (Steps 2 to 6) starts at the next step.
Step 2 is automatically executed to generate the augmented
contract models based on the ASMs and the deployment
diagram information. An augmented model of the contract
is the extension of the initial ASM, where each original
transition is replaced by a series of transitions, which have
only simple Solidity statements as actions, and intermediate
states that model the control flow of the Solidity-code action
of the original transition. Next, in Step 3, the Behavior-
Interaction-Priority (BIP) model of the interacting smart
contracts is automatically generated. Similarly, in Step 4, the
specified properties that may involve multiple interacting
contracts are automatically translated to CTL properties.
The model can then be verified for deadlock freeness or
other properties using tools from the BIP tool-chain [10]
or nuXmv [11] (Step 5). If the required properties are not
satisfied by the model (depending on the output of the
verification tools) the input can be fixed by the developer
(Step 6) and analyzed anew. Finally, when the developer
is satisfied with the design, i.e., all specified properties
are satisfied, the equivalent Solidity code of the interact-
ing contracts is automatically generated in Step 7. At this
point (Step 8), the user may use our deployment plugin
to correctly deploy the verified contracts onto a blockchain
network. We discuss the representation of smart contracts
as ASMs and SDDs with an example in Section 8. The scope
of supported operations are listed in the appendix [9].

3 MODELLING SMART CONTRACTS

3.1 VeriSolid Framework

VERISOLID enables developers to (i) specify smart contracts
as Abstract State Machines (ASM), (ii) verify these sys-
tems individually, and (iii) generate functionally equivalent
Solidity code from them [5]. To represent complex, dy-
namic systems, abstract state machines, previously known
as Evolving Algebras, combine the declarative principles of
first-order logic with the operational perspective of tran-
sitions [12]. As a result of the machine model’s semantic
definition, it is possible to deal with concurrent and reactive
behavior in a direct and intuitive way; the fact that ASM-
based system models naturally enable operational interpre-
tations is often considered an advantage when dealing with
complex technical systems. In our case, the states of an
ASM model the various states of a contract (e.g., different
stages of a secret ballot vote or of a blind auction), while the
transitions between these states model functions that may
be externally called to change the state of the contract. For
the sake of completeness, we provide a brief overview of the
formal syntax and verification approach of VERISOLID [5].

VERISOLID allows developers to specify the actions that
are performed by transitions (i.e., function bodies) using a
Turing-complete subset of Solidity statements denoted by
S. Further, let T denote the set of Solidity data types, I
denote the set of valid Solidity identifiers, D denote the set of
Solidity events and custom data type definitions, E denote
the set of Solidity expressions, and C (⊆ E) denote the set of

Solidity expressions that do not have any side effects (apart
from consuming gas or raising an exception).

Definition 1. An ASM for modeling a smart contract is a tuple
(D,S, SF , s0, a0, aF , V, T ):

• D ⊂ D is a set of custom event and type definitions;
• S ⊂ I is a finite set of states;
• SF ⊂ S is a set of final states;
• s0 ∈ S, a0 ∈ S are the initial state and action;
• aF ∈ S is the fallback action;
• V ⊂ I×T contract variables (i.e., variable names and types);
• T ⊂ I× S × 2I×T × C× (T ∪ ∅)× S× S is a transition

relation, where each transition t ∈ T includes: transition
name tname ∈ I; source state tfrom ∈ S; parameter variables
(i.e., arguments) tinput ⊆ I× T; transition guard gt ∈ C;
return type toutput ∈ (T ∪ ∅); action at ∈ S; destination
state tto ∈ S.

A contract can have at most one constructor represented
by the initial action a0. After the constructor returns, the
contract is in initial state s0. A contract can also have at
most one unnamed function, which is called the fallback
function and represented by the fallback action aF . Other
functions are represented by transitions T . A transition
t ∈ T expects a set of function arguments tinput, executes
its action at if the contract is in the source state tfrom and
the guard condition gt is met, and moves the contract into
destination tto upon successful execution (i.e., no exceptions
raised). In VERISOLID, formal verification is essential to
check the behavioral correctness of the system under design.
Other alternative approaches (such as simulation or testing)
rely on the selection of appropriate test input stimulus for
a predetermined coverage of the program’s control flow. In
our case, since we have finite models for contracts, formal
verification (e.g., by model checking) guarantees full cover-
age of execution paths for all possible inputs. We refer to our
approach as correct-by-design due to the fact that, we take an
ASM as an input and generate the NuSMV [11] transition
system from the BIP system [13]. Using the semantics for
Solidity we generate the functionally equivalent Solidity
code from the ASM.

To illustrate how to represent smart contracts as ASMs,
we use the Blind Auction example from prior work [14],
which is based on an example from the Solidity documen-
tation [15].

In a blind auction, each bidder first makes a deposit and
submits a blinded bid, which is a hash of its actual bid, and
then reveals its actual bid after all bidders have committed
to their bids. After revealing, each bid is considered valid
if it is higher than the accompanying deposit, and the
bidder with the highest valid bid is declared winner. A blind
auction contract has four main states:

1) AcceptingBlindedBids: bidders submit blinded
bids and make deposits;

2) RevealingBids: bidders reveal their actual bids by
submitting them to the contract, and the contract checks
for each bid that its hash is equal to the blinded bid and
that it is less than or equal to the deposit made earlier;

3) Finished: winning bidder (i.e., the bidder with the
highest valid bid) withdraws the difference between her
deposit and her bid; other bidders withdraw their entire
deposits;
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Fig. 2. Blind auction example as an ASM.

4) Canceled: all bidders withdraw their deposits (with-
out declaring a winner).

This example illustrates that smart contracts have states
(e.g., Finished). Further, contracts provide functions,
which allow other entities (e.g., users or contracts) to invoke
actions and change the states of the contracts. Hence, we can
represent a smart contract as an ASM [16], which comprises
a set of states and a set of transitions between those states.

Figure 2 shows the blind auction example in the
form of an ASM. For ease of presentation, we abbreviate
AcceptingBlindedBids, RevealingBids, Finished,
and Canceled to ABB, RB, F, and C, respectively. The initial
state of the ASM is ABB. To differentiate between transition
names and guards, we use square brackets for the latter.
Each transition (e.g., close, withdraw) corresponds to an
action that a user may perform during the auction. For
example, a bidding user may execute transition reveal in
state RB to reveal its blinded bid.

3.2 Solidity Deployment Diagram

Fig. 3. SDD of Parity Wallet.

To specify contract interaction rules for verification,
the developer must provide a Solidity Deployment Diagram
(SDD) in Step 1. In this section, we focus on the specification
of deployment information between contract types based on
the concept of association.

As an example, consider an earlier version of the Parity
multisignature wallet, which became famous as the victim
of one of the largest Ethereum security incidents to date [2].
A single instance of the Parity WalletLibrary contract
was deployed and used as a library by a number of Parity
Wallet contracts, which heavily relied on the code of the
library since they simply delegated most function calls to
the library. Figure 3 shows the SDD of Parity Wallet exam-
ple, which contains two contract types: WalletLibrary
and Wallet. Each of the contract types has an associated
natural number, namely cardinality, that defines the number
of instances that must be deployed for each contract type,
e.g., 3 for Wallet and 1 for WalletLibrary. Additionally,
the SDD contains an arrow associating each instance of
Wallet with the single instance of WalletLibrary. This

means that each Wallet instance must have a reference
to the WalletLibrary instance, which can be used for
delegating or calling functions.

Next, we present the necessary modeling concepts of the
BIP component framework [10].

3.3 Modeling Interactions with BIP

Systems are modeled in BIP [17], [18] by superposing the
Behavior, Interaction, and Priority layers. The Behavior layer
consists of a set of components represented by ASMs. Each
component transition is labeled by a port. Ports form the
interface of a component used for interaction with other
components. Additionally, each transition may be associated
with a set of guards and a set of actions. A guard is a predicate
on variables that must be true to allow the execution of the
associated transition. An action is a computation triggered
by the execution of the associated transition.

Component interaction is described in the Interaction
layer. A BIP interaction is a non-empty set of ports that
synchronize (i.e., their corresponding transitions are jointly
executed). We represent component interaction with con-
nectors between component ports. In the context of smart
contracts, we use BIP interactions to model: 1) function calls
between different contracts and 2) call delegations. We omit
the explanation of the Priority [17] layer since we do not use
it in our contract models.

Once a developer has provided the required input,
Step 1 in Figure 1, the verification loop begins. Steps 2
and 3 include the automatic generation of the augmented
ASMs and BIP model. To support the augmentation
process, we have extended the set of supported
statements S by including selfdestruct(@expression );
and our custom, high-level delegation invocation
@expression.delegate.@identifier(

(
@expression(,

@expression) ∗
)
?).

The syntax of our custom, high-level delegation state-
ment is:

contract.delegate.function(arg1, arg2, . . . );

where contract is a reference to another contract, function
is a function name, and arg1, arg2, . . . are arguments. The
semantics of evaluating this expression can be found in
Appendix [9].

Our code generator implements the expression as a
simple wrapper around delegatecall that rethrows ex-
ceptions:

if (!address(contract).delegatecall(
abi.encodePacked(bytes4(keccak256("

function(arg1type, arg2type, . . . )")),

arg1, arg2, . . . )))revert();

4 OPERATIONAL SEMANTICS

We now cover the operational semantics for interacting
smart contracts and formally define the aforementioned
concepts on deployment diagram.
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4.1 Operational Semantics of Interacting Smart Con-
tracts

To apply formal verification, we define the operational
semantics of smart contract interaction in the form of
Structural Operational Semantics (SOS) rules [19]. Next,
we present rules of the normal execution of a transaction
and a function. These two rules, transaction and function
call, are critical for the extended version of this work. The
rationale for this is that these rules, when combined with
SDD semantics, facilitate the implementation of interacting
smart contracts. As a matter of readability, we have included
all additional rules that capture both normal execution and
exceptions for call delegation and nested function calls in
Appendix [9]. We let Ψ denote the global state of the ledger,
which includes account balances, values of state variables
in all contracts, number and timestamp of the last block,
etc. We let s denote the current state of contracts of the
system. During the execution of a function, the execution
state σ = (Ψ,M, s, κ) also includes the memory and stack
state M , and the set of destroyed contracts κ. To handle
return statements and exceptions, we also introduce an
execution status, which is E when an exception has been
raised, R[v] when a return statement has been executed with
value v (i.e., return v), and N otherwise. Finally, we let
Eval(σ,Exp) → ⟨σ̂, R[v]⟩ signify that the evaluation of a So-
lidity expression Exp in execution state σ yields value v with
the new state σ̂. On the other hand, Eval(σ,Exp) → ⟨σ̂, E⟩
signifies that the evaluation has resulted in an exception.

In our model, an externally owned account initiates a
transaction by providing a contract instance i ∈ C where C
is a set of contract instances, with a function name name ∈ I
and a list of parameter values v1, v2, . . .. The transaction
invokes the function in the current ledger and contract states
Ψ and s, which results in changed ledger and contract
states Ψ′ and s′. This normal execution without exception
is captured by the TRANS rule:

⟨(Ψ, s, ∅), i.name (v1, v2, . . .)⟩ →
⟨(Ψ′, s′, κ), x⟩, x ∈ {N,R[v]}

∀j ∈ κ : s′′j = destroyed, ∀j ̸∈ κ : s′′j = s′j
s′′ = s′′1 , . . . , s

′′
|C|TRANS ⟨(Ψ, s), i.name (v1, v2, . . .)⟩ → ⟨(Ψ′, s′′), N⟩

According to this rule, a transaction is invoked by
sending contract instance i, a function name and argument
values (v1, v2, . . .). The call to the function is made on the
current global state Ψ and the current contract states s. If
more contracts are invoked during the function execution,
the state of those contracts represented by s′j is updated.
Any contracts that are destroyed during the function’s exe-
cution are placed in k with their state s′j set to destroyed. This
way, we can keep track of the self-destructed contract states.
If a return value v is specified at the end of the function,
it is stored in the variable x as R[v]. If no return value is
specified, the execution status N is returned instead. Finally,
in s′′, all update states for contract instances that were
invoked during the function execution are set to permanent.
Additionally, the ultimate global state Ψ′ is permanently
changed. (Ψ, s), i.name (v1, v2, . . .) denotes the initial state
when the transaction is initiated with the function call
to name. ⟨(Ψ′, s′′), N⟩ represents the updated global and

contract states after the execution of the transaction with
the execution status N .

Next, we specify the semantics of function calls, which
apply to both calls from external accounts (see first line of
TRANS rule) and calls from other contracts. A function call
is triggered by providing a contract instance i ∈ C with
a function name name ∈ I and a list of parameter values
v1, v2, . . .. When a function call is made, the first thing to do
is to check for the existence of the transition to the function
in the model from the current state.

This normal execution is captured by the FUNC rule:

s1, . . . , s|C| = s, t ∈ Ti, name = tname,
si = tfrom,M = Params(t, v1, v2, . . .),

σ = (Ψ,M, s, κ)
Eval(σ, gt) → ⟨σ,R[true]⟩
⟨(σ,N), ut⟩ → ⟨(σ′, N), ·⟩,

σ′ = (Ψ′,M ′, s′, κ′), s′1, . . . , s
′
|C| = s′,

s′′i = tto, s′1, . . . , s
′′
i , . . . , s

′
|C| = s′′

FUNC ⟨(Ψ, s, κ), i.name (v1, v2, . . .)⟩ → ⟨(Ψ′, s′′, κ′), N⟩
When there is a transition t ∈ Ti with the tname = name

and the source state tfrom is equal to the current state
si, rule FUNC is applied. M must be provided with the
parameter values v1, v2, . . . and the name of the transition t.
The initial execution state σ will contain all of the afore-
mentioned information, as well as the global state Ψ, all
contract instance states s, and a data structure k for storing
modifications to destroyed contract states made throughout
the function execution. If there is a guard condition gt, as
previously indicated, Eval(σ, gt) checks to see if gt evaluates
to true without throwing an exception, which is represented
by the return value R[true]. If gt is true, then the action
statement ut is executed, which updates the final state to σ′

(see statement rules in the appendix [9]). This will include all
contract states in s′ being updated. If gt evaluates to false, the
action model’s execution will be retracted using the revert
transition that is included by default as part of model (see
revert rules in appendix [9]). Finally, we set the current state
of the contract s′′i to the destination state tto of the transition,
and yield the new ledger, contract, and destroyed states Ψ′,
s′′, and κ′ when the execution status N is successful.

4.2 Semantics of Solidity Deployment Diagram
Definition 2. An SDD ⟨T , n, A⟩ consists of a set of contract
types T = {T1, . . . , TK} where K ∈ N; an associated cardinality
function n : T → N, where N is the set of natural numbers
(we will abbreviate n(Ti) to ni to simplify the notation); and
a set of deployment associations A = {A1, . . . , Al} of the form
A = (⟨as, at⟩, d), where as, at ∈ T and l ∈ N are respectively
the source and target of the deployment association, and d ∈ N>0

is the degree of the association.

A deployment diagram is composed of the following
components: A collection of contract types marked by T =
{T1, . . . , TK}. A contract’s cardinality (n(Ti)), which spec-
ifies the number of instances that will be deployed for
the contract. This can be any natural number. The degree
of an association constrains the number of associations
attached to each instance of the source contract type (as).
The number of associations attached to each instance of the
target contract type (at) is equal to the cardinality nas

of the
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source contract type multiplied by the degree d. Notice that
deployment associations are binary, i.e., they involve exactly
two contract types.

The degree of an association must be equal to or less
than the cardinality of at, otherwise the SDD is invalid.
Our framework checks and notifies the developer of invalid
SDDs. In the Parity Wallet, we have only two contract types
with a single association between them but in other cases a
single contract may be referencing several other contracts.
Manually adding this information may be an error prone
task. Our framework provides a high-level, diagrammatic
view of the architecture of the system, which gives the
developer a clear idea of the involved contracts and how
they interact. Based on this information, our framework
automatically generates in Solidity the references between
smart contracts during the Solidity code generation (Step 7
in Figure 1).

Fig. 4. Example deployment of Parity Wallet.

Next, we formally define a deployment instance (Def-
inition 3) and the Deployment Semantics, which describe
conditions that a deployment instance must satisfy in order
to conform to a given SDD. For instance, the deployment
shown in Figure 4 conforms to the SDD of Figure 3.

Definition 3. A deployment is a pair ⟨C, γ⟩, where C is a set
of contract instances and γ is a deployment configuration, i.e.,
a set of binary associations among the contract instances in C.
Each contract instance C ∈ C is specified as a pair ⟨T,v⟩ of
contract type T ∈ T and constructor parameter values v, i.e., C
is instantiated from type T with parameters v.

When we deploy a contract on Ethereum, we must also
give any constructor arguments necessary to establish the
initial contract state. This is accomplished by Definition 3.
Specifically, we evaluate all contract types, namely C, and
associate each contract type with its parameter values in γ.
The developer supplies the values as part of the deploy-
ment diagram. The concept of deployment configuration
is a crucial factor in order to deploy valid contracts. In
particular when the constructor is expecting arguments but
none are provided, Ethereum’s deploy transaction raises an
exception.

Definition 4. [Deployment Semantics] A deployment ⟨C, γ⟩
conforms to an SDD ⟨T , n, A⟩ if 1) for each i ∈ [1,K]
where K identifies the contract type in T , the number of contract
instances of type Ci in C is equal to ni and 2) for each association
A = (⟨as, at⟩, d) ∈ A and instance Ci ∈ C such that Ci is of
type as, there exist exactly d instances Cj ∈ C of type at such
that (Ci, Cj) ∈ γ.

Fig. 5. WalletLibrary: global coordinator and augmented component
part.

The second condition can be written formally as follows:

∀(⟨as, at⟩, d) ∈ A, Ci ∈ C : Ci is of type as ⇒
d = |{Cj |Cj ∈ C ∧ Cj is of type at ∧ (Ci, Cj) ∈ γ}|

Once the deployment diagram is created, and the de-
ployment process is performed in VERISOLID, deployment
semantics assist in ensuring that the diagram conforms to
the permissible structure for the deploy transaction. Two
checks are made in particular:

• We determine whether or not each contract is associated
to the correct number of instances, i.e., cardinality, to be
deployed;

• For each association, we validate its legitimacy and
that the related contract has already been added to the
deployment configuration;

5 VERIFYING INTERACTING SMART CONTRACTS

5.1 Global Coordinator Component
To enforce the execution of a single transaction at a time [20],
we include in our generated BIP models a component
that represents a global coordinator. This component co-
ordinates the system execution so that only one transac-
tion can be executed at a time. The BIP model of the
coordinator is shown in Figure 5. It comprises three tran-
sitions: beginTransaction, finishTransaction, and
rmKilledContracts, which are exported as ports in the
interface of the component. At the end of each transaction,
the Coordinator checks the state of the contracts in the
system and removes any contracts that were self-destructed
during the transaction through the synchronized execution
of the rmKilledContracts transition.

In Figure 5, we present part of the augmented ASM of
the WalletLibrary contract. In particular, Figure 5 shows
the augmented ASM of the kill function (the correspond-
ing Solidity code is shown in Figure 6). We transform it to
a functionally equivalent model that can be input into our
verification tools. We perform three transformations: First,
we replace the initial action a0 and the fallback action aF
with transitions. Second, we replace transitions that have
complex statements as actions with a series of transitions
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1 function kill(address _to)
2 onlymanyowners(sha3(msg.data)) external {
3 selfdestruct(_to); }

Fig. 6. Solidity code of kill function.

that have only simple statements (i.e., variable declaration
and expression statements). Third, we add the synchro-
nization transitions that are to be executed along with the
coordinator component. After these three transformations,
the entire behavior of the contract is captured using only
transitions. The transformation algorithms along with the
observational equivalence proofs are discussed in detail in
the appendix [9]. The input of the transformation is a smart
contract defined as a transition system (see Definition 1).
The output of the transformation is an augmented smart
contract:

Definition 5. An augmented contract is a tuple (D,S, SF ,
s0, V, T ), where

• D ⊂ D is a set of custom event and type definitions;
• S ⊂ I is a finite set of states;
• SF ⊂ S is a set of final states;
• Sd ∈ SF is the destroyed state;
• s0 ∈ S, is the initial state;
• V ⊂ I × T are contract variables (i.e., variable names and

types);
• T ⊂ I×S×2I×T×C×(T ∪ ∅)×S×S is a transition rela-

tion (i.e., transition name, source state, parameter variables,
guard, return type, action, and destination state).

• beginCL ⊂ T , a transition that takes the contract id as
the parameter;

• beginLL ⊂ T , a transition added specifically for a kill
function call.

Our algorithm extends the algorithm used in
VERISOLID [5] by taking into account contract interaction
mechanisms. In particular, for each function it adds
transitions beginCL(begin Coordinator Lock) and
beginLL(begin Local Lock).

The connectors between the ports of the Coordina-
tor and the ports of the kill function define synchro-
nization of transitions, e.g., transition beginTransaction
and beginCL must be executed simultaneously. Further,
through this connector, data is exchanged between the
two components. In relation to the FUNC and TRANS
rules discussed in Section 4, synchronizations aid in iso-
lating the state updates in s′′. Permitting the states to be
marked as destroyed as and when we reach ut that is the
selfdestruct statement. In particular, beginCL sends
the unique id of the contract to the Coordinator, which
stores it in a variable. Similarly, through the connector
between ports finishTransaction and selfdestruct,
the unique Id of the contract is also sent to the Coordinator.
The synchronized execution of finishTransaction and
selfdestruct is enabled only if the two Ids match (guard
of finishTransaction). This restricts the execution of a
single transaction at a time.

When another contract calls the kill function, the syn-
chronization will be between the transition beginLL and
the transition that invoked kill from the other contract.

The main purpose of this transition is to force the execution
to wait at the beginLL transition until it can synchronize
with selfdestruct. Notice that for beginLL, the guard
condition and revert transition are not present. The reason
for this is that due to the restricted interactions (high-level
function calls, custom delegation, and transfer), either all
functions run to a normal stop or all functions revert in our
system. Consequently, if a callee reverts (either due to the
guard not being met or for some other reason), then all calls
must be reverted, which is captured for verification by the
revert option of the top level call (see, e.g., beginCL).

Note that the connectors of the BIP models are auto-
matically generated using the information given through
the corresponding SDD and by statically detecting function
and delegation calls in the body of a Solidity functions. We
identify the contract ids required for synchronizations by
comparing the association parameters as and at to the de-
ployment configuration mapping γ. This occurs whenever
we encounter a ut which is a delegate or function call
to another contract.

5.2 Verification Properties

As shown above, our framework provides a clear separa-
tion of concerns between contract behavior and interaction,
which allows one to compositionally model and analyze
systems of interacting smart contracts. Once the BIP models
are generated in Step 3, the user may specify temporal logic
properties in CTL to verify the system.

Even if the user does not specify any properties, our
framework by default always checks for deadlock freedom.
It is interesting to note that for the Parity Wallet contracts,
we are able to detect the parity bug by only checking
for deadlock freedom. In particular, the counterexample
returned by the NuSMV [21] model checker included the fol-
lowing execution trace (after executing initMultiowned):
1) the kill function of WalletLibrary is called during
a transaction; 2) in the end of the transaction, WalletLi-
brary is destroyed (goes to the destroyed state); 3) a new
transaction begins where a function of Wallet is called (in
our trace this was isOwner) that uses delegateCall to
WalletLibrary.

Our framework allows the specification of CTL proper-
ties that reference actions from different components. For
instance, we next provide examples of liveness and safety
properties that we verified:

• WalletLibrary.destroy will eventually happen af-
ter Coordinator.beginTransaction & WalletLi-
brary.beginCL.

• if WalletLibrary.initWallet happens, WalletLi-
brary.addOwner can happen only after WalletLi-
brary.initmultiowned happens.

6 EIP TRANSLATION TO TEMPORAL PROPERTIES

6.1 Introduction to EIPs

In this paper, additional to presenting the VERISOLID frame-
work, we demonstrate the verification of Solidity contracts
which implement EIP standard interfaces. EIP [22] is a
design document that is used to define the architecture
or describe the process and functionality behind any new
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features solely designed for Ethereum. Our interest for this
work is to analyze ERCs (Ethereum Request for Comment)
which are application-level standard interfaces and conven-
tions that are part of the EIP Standards Track. Particularly,
we verify two of the most popular token standards: EIP-
20 [23] and EIP-721 [24].

6.1.1 EIP-20: Token Standard (ERC20)
Tokens in general represent digital assets, such as IOUs
which are informal documents specifying ownership or
debt information, or even real-world, tangible objects. To-
kens can be transferred or received between accounts.
ERC20 defines the standard APIs that are to be im-
plemented when creating a token. The specification de-
tails the rules these APIs must adhere to. Some of
these API methods include: transfer, transferFrom,
approve, balanceOf and totalSupply. Using this
standard enables integration of tokens with multiple wallets
and exchanges seamlessly. As of March 2022, there were
around 499,187 ERC20 tokens deployed on Ethereum.

6.1.2 EIP-721: Non-Fungible Token Standard (ERC721)
ERC721 is a token standard similar to ERC20 proposed
in late 2017s, used for implementing Non-Fungible Tokens
(NFTs). NFT refers to assets that can be physical (ex: houses)
or collectible items (ex: cards) or negative values assets
(ex: loans, burdens). A major difference between ERC20
and ERC721 is Fungibility. ERC20 token is fungible which
allows it to be exchanged for another ERC20 token i.e.,
there is no distinction in terms of value between two
tokens that belong to the same ERC20 contract. On the
other hand, every ERC721 token has a unique value of its
own. ERC721 includes all of the ERC20 methods and some
additional methods which include: setApprovalForAll,
ownerOf, safeTransfer and safeTransferFrom. As
of March 2022, there are around 49,626 ERC721 tokens
deployed on Ethereum.

In this work, we identify CTL properties from the EIP
specification for ERC20 and ERC721. As of 2021, these
two specifications represent a substantial part of the con-
tracts. Hence, we choose to demonstrate the applicability of
VERISOLID by verifying conformance to these specifications.
Table 1 lists all the new CTL templates that we have intro-
duced in this work, in addition to previous work [5]. We use
p, q, r, s, and t to denote the transitions or statements, i.e.,
⟨Transitions ∪ Statements⟩. Transitions is a subset of the
transitions of the model (i.e., Transitions ⊆ T ). A statement
from Statements is a specific inner statement from the action
of a specific transition (i.e., Statements ⊆ T × S). These
properties are automatically applied during the verification
of contracts that implement the specific standard interfaces.
The templates are used to evaluate the contract’s adherence
to the EIP. Our approach to identifying these properties is to
consolidate all statements that include the keywords: MUST,
MUST NOT, SHOULD, and SHOULD NOT. These keywords,
which are used in EIP based on RFC2119 [25] indicate the
absolute requirements of the specification.

6.2 ERC20 Templates and CTL formulas
All of the rules that are mandatory for ERC20 have been
listed in Table 2. We introduced an additional template

TABLE 1
EIP Property templates

Property ID Template CTL formula
1 p must happen between q and r AG(p ∧ ¬r → ¬E[¬q U r])
2 p can happen EF[p]
3 p or q or r must happen between s and t AG(p ∧ ¬r → ¬E[(¬q ∨ ¬s ∨ ¬t) U r])
4 if p happens, q must happen only after r happens AG(p → AX A [¬ q W r])

TABLE 2
ERC20 Absolute Requirements

ID Rules from Specification Property
Used

1 Transfer SHOULD throw if the message caller’s

Property 1

account balance does not have enough
tokens to spend

2 Transfer MUST fire the Transfer event
3 TransferFrom SHOULD throw unless the

from account has deliberately authorized
the sender of the message via some mechanism.

4 TransferFrom MUST fire the Transfer event
5 Approve MUST fire the Approve event

below that can be used to verify all the 5 properties of the
ERC20 token standard:

p must happen between q and r.

The above template can be formulated in CTL as AG(p ∧
¬r → ¬E[¬q U r]) which expresses that globally we are
looking for a path that starts with a state where p is true
and r is false. This state is eventually followed by a state
at which r is true if and only if there exists a path where q
is true.

For example, Property 1 in Table 2 checks for safety
property in the Transfer function. This function is used
to make a transfer of the tokens from msg.sender to the
address provided as the _to parameter. Our safety property
verifies if the below checks are being made in the function:

• Determine whether msg.sender has enough tokens in
their balance.

• Determine whether there is a mechanism in place to
throw an exception when there are insufficient tokens
in the balance.

Both the above checks must always happen when the
Transfer function is called and before the end/return of
Transfer function. In Fig 7, we show an implementation of
the Transfer function that is valid and satisfies Property
1, discussed above. The CTL formula used for this would
verify if there is a require statement that checks for
account balance before the return of the Transfer function.

Property 3 is a safety property on the TransferFrom
function. This function allows for the transfer of tokens on
behalf of another account. It is required to check if the ac-
count has approved the msg.sender to transfer the tokens.
Properties 2, 4, and 5 are used to verify if the requirement
for the events Transfer and Approve to be fired when
the respective functions are called is satisfied. We use the
augmented model of the contracts in order to verify all of
the above properties.

6.3 ERC721 Templates and CTL formulas
ERC721 and ERC20 as mentioned in Section 6.1 are both
token standard specifications. ERC721 is used to create
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1 function transfer(address _to, uint256 _value) returns (
bool success) {

2 require(balances[msg.sender] >= _value && balances[
_to] + _value > balances[_to]);

3 balances[msg.sender] -= _value;
4 balances[_to] += _value;
5 emit Transfer(msg.sender, _to, _value);
6 return true;
7 }

Fig. 7. Solidity code of transfer function in ERC20 contract

NFT tokens for which implementation varies from ERC20
because of the differing token. Hence, EIP specification has
some additional rules that are to be adhered for a safe
operation of the contract. All together we have recognized
12 properties for this interface which are listed in Table 3.

Of these 12 properties, we have reused the template
defined in Section 6.2 for verifying Properties 2, 3, 4, 5,
7, 8 and 11. Properties 2, 3, and 4 verify if the events
Transfer, Approval and ApprovalForAll are emitted
when the respective functions are called. Property 5 stip-
ulates that the safeTransferFrom function analogous to
the transferFrom function in ERC20, throws an exception
if the address in _from parameter is not the owner. Property
7 ensures that safeTransferFrom function will not allow
transfers to a 0x0 address which makes the tokens invalid.
Property 8 and 11 both check if the transaction is going
through a transfer or approval then the _tokenId passed to
the functions must be valid. All of the above properties can
be checked using our newly added templates by processing
the specific functions’ augmented model.

Property 1 is used to check for compliance of an
ERC721 contract. An ERC721 contract is expected to im-
plement ERC165 interface for it to be compliant with
ERC721. The ERC165 interace refers to EIP-165 specifi-
cation which expects the implementation of one method
supportsInterface. To verify the conformity to the stan-
dard we added the template below which allows to check if
there exists a transition to supportsInterface action in
our initial model of the contract. The formal CTL property
for the same can be represented as EF(p). This property can
be used to check for the existence of a transition from initial
state to a state at which p is true.

p can happen.

For properties 6 and 10 we define a new template below.
An an example, if we consider Property 6, it requires us to
verify a safety property on safeTransferFrom function.
The function must throw an exception if either of the three
cases is not true i.e., if msg.sender:

• is not the owner of the token or
• is not an authorized operator or
• is not an approved account for the NFT

p or q or r must happen between s and t.

The CTL property for this template can be formulated as
AG(p ∧ ¬r → ¬E[(¬q ∨ ¬s ∨ ¬t) U r]) which expresses that,
starting with the state where p is true and r is false there
exists at least one state where either q or s or t is true. This
state is eventually followed by a state at which r is true.

TABLE 3
ERC721 Absolute Requirements

ID Rules from Specification Property
Used

1 MUST implement the Property 2
ERC165 interface

2 Transfer event MUST be Property 1
emitted when NFT is
created or destroyed

3 Approval MUST Property 1
emit Approve event when

there is a change in approved
address: changed or reaffirmed

4 ApprovalForAll MUST be emitted Property 1
when owner is enabled or disabled

to manage the NFTs
5 safeTransferFrom SHOULD throw if Property 1

from is not an owner
6 safeTransferFrom SHOULD throw Property 3

if msg.sender is not the owner or
authorized operator or
approved for the NFT

7 safeTransferFrom SHOULD Property 1
throw if to

is a zero address
8 safeTransferFrom SHOULD Property 1

throw if tokenId
is not a valid NFT

9 if to is a smart contract, Property 4
onERC721Received is called and

SHOULD throw if return value is not
onERC721Received(address,

address,uint256,bytes)
10 Approve SHOULD Property 3

throw if msg.sender is not the owner
or authorized operator

or approved for the NFT
11 getApproved SHOULD Property 1

throw if the tokenId
is not a valid NFT

12 Contract MUST allow Manual
multiple operators per owner

1 require(spender == owner || getApproved(tokenId) ==
spender || isApprovedForAll(owner, spender);

Fig. 8. Solidity code of require statement in ERC721 contract

Suppose the conditions q, s and t are all in a single statement
as in Fig 8 we can directly use the template defined for the
ERC20 properties in Section 6.2.

We have used SDD discussed in Section 3.2 to
specify the interaction rules and verify Property 9.
For this property, we need to check if there is
a delegate call to onERC721Received function in
IERC721TokenReceiver interface. This should happen
only when the _to address in safeTransferFrom func-
tion refers to a smart contract and not an externally owned
account. Within the safeTransferFrom function, we also
need to verify if the function throws an exception, in case
the return value does not match with the signature of the
onERC721Received function. We created the SDD for an
ERC721 contract that interacts with an implementation of
the IERC721TokenReceiver interface. Using an existing
template in VERISOLID shown below, we can check if the
SDD has the association to a particular function.
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if p happens, q must happen only after r happens.

For our property, this template will be formulated as:
• if to.isContract() happens, return (ret-

val== ERC721 RECEIVED) must happen only after
IERC721TokenReceiver.onERC721Received happens.

Finally, Property 12 needs us to check if there are
multiple operators per owner i.e., if there is a mapping
(a Solidity variable type) from owner to a mapping of
operatorApprovals. In order to verify this property we
performed syntactical check for the variable declaration
statement in the contract.

7 IMPLEMENTATION PARADIGMS FOR STANDARD
INTERFACES

As part of our experiments covered in Section 8, we have
identified a few coding practices that have been used for
both EIP-20 and EIP-721 standards. We were able to derive
basic safety requirements for implementing the ERC20 and
ERC721 interfaces by classifying these coding techniques.
We determined the safety standards by manually analyzing
the code of the various contracts used in the tests and
labelling them according to the categories outlined later in
this section. We identify these categories as safe, unsafe, and
recommended approaches, which are defined below:

1) Safe: This approach is in accordance with the ERC
specification for the contract. Using this will avoid any
known vulnerabilities.

2) Unsafe: Following this approach would make the smart
contract unsafe and will make it vulnerable to attacks.
Also, this is not in accordance with the ERC specifica-
tion.

3) Recommended: By using VERISOLID, we have verified
that this approach satisfies the ERC specification and
also adds additional checks to harden the smart con-
tract. It is our recommendation that the contracts use
this approach for implementation.

Our objective in developing these recommendations is to
reduce attacks while adhering to all applicable regulations.
As a result of the diverse interface structures that might
be employed in conjunction with the standards, we classify
contracts at the function and contract levels. All contracts
utilized in the experiments were checked using VERISOLID
to ascertain and confirm the strategy under which they may
be classified.

7.1 Function-level Implementation Paradigms
ERC20 and ERC721, the standards we looked at in this
study, include several safety features that are based on
ensuring that there are checks for balances in place.
Transfer, TransferFrom and Approval are the primary
operations of these interfaces. We have identified eight
paradigms based on the various implementations of these
functions, as shown in Table 4. Of these, we recommend
two types, which are safe and have the least possibility
for vulnerabilities. Types 1F and 6F are considered safe if
additional checks are added for overflows as discussed in
this section. The others might get exposed to either integer
overflows [26] or Fake deposit attacks [27] described below.

1 using SafeMath for uint256;
2 function transfer(address _to, uint256 _value) returns

(bool success) {
3 balances[msg.sender] = balances[msg.sender].sub(

_value);
4 balances[_to] = balances[_to].add(_value);
5 emit Transfer(msg.sender, _to, _value);
6 return true;
7 }

Fig. 9. Example transfer function using Type F1 implementation

1 function transfer(address _to, uint256 _value) returns
(bool success) {

2 require(balances[msg.sender] >= _value &&
balances[_to] + _value > balances[_to]);

3 balances[msg.sender] = balances[msg.sender].sub(
_value);

4 balances[_to] = balances[_to].add(_value);
5 emit Transfer(msg.sender, _to, _value);
6 return true;
7 }

Fig. 10. Example transfer function using Type F2 implementation

Integer Overflow: Fixed-size integers up to a maximum
of 256 bits are supported by Solidity. Integer overflow hap-
pens when any arithmetic operations produce numbers that
are outside the range of a given integer.

Fake Deposit Attack: A Fake Deposit Attack has been
detected majorly in ERC20 tokens with incorrect and im-
proper implementation of the standard. The primary cause
of this attack is because of the gap between the EVM
behaviour and the developers’ understanding of the seman-
tics.

We refer to Properties 1 and 3 in Table 2. The expected
effect of this property is to throw an exception whenever
there is a violation in terms of the balance of msg.sender or
authorization of _from account. In some implementations,
instead of using throw, the code handles these violations
by using the return statement. Unless otherwise handled
by the user interface or the contract that is calling these
methods, they would not revert the transactions. At least
4% of the existing ERC20 tokens are exposed to this vulner-
ability. Now we will discuss the categories in detail, using
the transfer function in Figure 7 as our running example.

7.1.1 Type F1: Using SafeMath Library

One way to avoid integer overflows is to do the arith-
metic computation, check the result, and rollback the trans-
action in the event of an overflow. SafeMath [28], a library
developed by the Open Zeppelin team, contains intrinsic
checks for all arithmetic functions. Developers may be
certain that the necessary checks are being performed by
importing this library and utilizing it for all arithmetic
operations. As demonstrated in Figure 9, all arithmetic
operations are performed using SafeMath. There are no
require statements that check for overflows before making
the calls to SafeMath.

7.1.2 Type F2: Using SafeMath Library along with require
checks
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TABLE 4
Function-level Paradigm Classification

Type Description Safe/Unsafe/ Possible Vulnerability
Recommended

F1 Using SafeMath library Safe Integer overflow
F2 Using SafeMath library and require checks Recommended
F3 Using SafeMath library and conditional check with return Unsafe Fake deposit attack
F4 Only require check Unsafe Integer overflow
F5 Using conditional check with throw Safe Integer overflow
F6 Using SafeMath library, conditional check with throw and require Recommended
F7 Conditional check with return Unsafe Fake deposit attack
F8 Proxy pattern with delegatecall Safe Malicious logic contract

1 function transfer(address _to, uint256 _value) returns
(bool success) {

2 if (balances[msg.sender] < _value &&
3 balances[_to] + _value > balances[_to]) return false

;
4 balances[msg.sender] = balances[msg.sender].sub(

_value);
5 balances[_to] = balances[_to].add(_value);
6 emit Transfer(msg.sender, _to, _value);
7 return true;
8 }

Fig. 11. Example transfer function using Type F3 implementation

This type of implementation uses SafeMath in addition
to require statements to check the variables for overflows.
Type F1s’ use of SafeMath alone has two drawbacks:

1) The contract may be rendered useless if a variable
overflow occurs before the SafeMath functions are
called, such as in a constructor.

2) There might be variables that do not use SafeMath and
may cause overflow.

Checking for overflows may be done by placing a require
statement in the constructor in case one. In the second sce-
nario, regardless of how a variable is used, require checks
must be performed on all variables. Type F2 transfer
function is shown in Figure 10 as a sample implementation.

7.1.3 Type F3: Using SafeMath Library and conditional
check with return

Despite the fact that SafeMath is utilized for arithmetic
operations, the function will not throw an exception but
simply return true or false in circumstances when other
variables overflow. Figure 11 depicts a Type F3 instance.
This is clearly a Fake deposit attack, as previously men-
tioned.

7.1.4 Type F4: Only require statements
SafeMath was not utilized at all in this type. Balances
may only be checked using require statements. If the
SafeMath function examines all variables, then this meets
the EIP requirement. Otherwise, any uncontrolled arith-
metic operations by the developer may result in integer
overflows. Figure 7 depicts a running example of this type
precisely.

7.1.5 Type F5: Using conditional check with throw
This type is quite close to Type F4. Rather than using
require, the if control structure is used to validate the

1 function transfer(address _to, uint256 _value) returns
(bool success) {

2 if (balances[msg.sender] < _value &&
3 balances[_to] + _value > balances[_to]) throw;
4
5 balances[msg.sender] = balances[msg.sender].sub(

_value);
6 balances[_to] = balances[_to].add(_value);
7 emit Transfer(msg.sender, _to, _value);
8 return true;
9 }

Fig. 12. Example transfer function using Type F5 implementation

balances; if they are not valid, the control structure issues
a throw statement. Even though it complies with the stan-
dard, this category provides the same danger as Type F4.
Figure 12 illustrates an example of this kind.

7.1.6 Type F6: Using SafeMath Library, conditional check
with throw and require statements
This category includes Types F1, F4, and F5. Three kinds of
checks are introduced to assure the contract’s safe execution.
The SafeMath library is used for all arithmetic operations.
Secondly, require statements are used to check for any
additional variables. The if control structure validates the
EIP standard checks and utilizes throw in the event of
erroneous data or overflows.

7.1.7 Type F7: Conditional check with return
This is yet another glaring example of a Fake deposit attack
and quite similar to Type F3. The difference being in this
type, there is no SafeMath library used for arithmetic
operations. By utilizing return rather than throw with
if statement, the contract violates the EIP requirement.
return, as explained in Type F3, will not revert transactions
as expected unless handled by the user interface or the
contract executing the function. This is an extremely risky
method of developing token standards.

7.1.8 Type F8: Proxy pattern with delegatecall

The Proxy pattern is the final category of function-specific
paradigms. Rather than implementing the methods within
the contract, this type of pattern refers to another de-
ployed ERC contract implementation on the network
through its address. The methods are invoked using the
delegatecall mechanism. This design was created to
facilitate the issuance of upgradeable contracts. This will be
discussed in further depth in Section 7.2.
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7.2 Contract-level Coding Practices

In Section 7.1, we discuss categorization of standard con-
tract implementation based on function-specific details. This
is essentially required to model the augmented ASM in
VERISOLID. Over the last few years, there were new coding
practices that have been created for EIP standard implemen-
tations. These practices are an improvement over the EIP
standard specifications. Table 5 lists these standards.

7.2.1 Type C1: Proxy pattern with delegatecall

Due to the immutability of blockchains, a significant concern
is that once launched, contracts cannot be updated at the
same address location. Previously, a fix was to re-deploy
the contract with any modifications to a new address lo-
cation and then use the new address in all apps instead
of the old one. This strategy is inconvenient and neces-
sitates a user interface modification as well. Upgradeable
solutions have been recommended to help streamline the
upgrading process, particularly for EIP standards. These
contracts are referred to as proxy pattern contracts. The logic
of the contract is segregated into a separate contract in
this design. The logic contract is deployed as a stand-
alone contract, and the main contract makes calls to it
using a delegatecall mechanism. Rather than utilizing
the constructor to establish the main contract, we utilize
a contract-level initialize public method. This method
may be used at any point throughout the contract’s lifespan
to change the logic. A significant issue is that the user
interface never directly invokes the logic contract; instead,
it interacts with the main contract. This does not exclude a
malicious actor from directly communicating with the logic
contract. As a result, the developer must ensure that the
initialize function and the logic contract’s methods are only
accessible to authorized users. For instance, this authorized
user may be the contract’s owner.

7.2.2 Type C2: Upgrade-safe implementation
This is comparable to Type C1 but is specific to the imple-
mentations of the EIP standard. The upgradable main con-
tract of the EIP standard contracts includes the SafeMath
library. This is to guarantee that all necessary arithmetic
checks are performed prior to invoking the logic contract,
hence avoiding any exceptions.

7.2.3 Type C3: Using full implementation with metadata
separated
In all the EIP token standard contracts, there are a
few traditional methods: name, symbol and tokenURI,
which are common to all standards. An interface called
IERCMetadata is implemented instead of re-writing the
logic for these functions for all the standards. This
ensures that all the contracts using this interface can
be called on these three methods. The other inter-
face used is IEnumerable, which implements three
functions: totalSupply, tokenOfOwnerByIndex, and
tokenByIndex. This is another interface that guarantees
that all methods that can enumerate through the tokens are
implemented. With these interfaces, there is a separation
and structure to the logic of the standard contracts that is
achieved using which exchanges and user interfaces can

TABLE 5
Contract-level Coding standards

Type Description
C1 Proxy pattern with delegate call
C2 ERC Upgrade-safe Implementation
C3 Using full implementation with metadata separated
C4 Using multiple tokens together
C5 Using basic without additional safety features
C6 Not adhering to the standard

have the common functions called without any issues. The
ERCFull implementation uses these interfaces in addition
to the standard ones.

7.2.4 Type C4: Using multiple token standard in a single
contract

We have realized that there are certain ERC tokens which
include both ERC-20 and ERC-721 interfaces i.e., the con-
tract can support both Fungible and Non-fungible tokens.
The implementation involves creating all the methods for
both the standards with logic and storage separated. This is
not a safe and suggested approach. Instead we suggest de-
velopers use EIP-1155 [29] which is a Multi-token standard
that has specifications to allow careful implementation of
multiple tokens in a single contract.

7.2.5 Type C5: Using basic interface without additional
safety features

Type C5 is a straight forward implementation of the EIP
standard without any additional safety or upgrade features.

7.2.6 Type C6: Not adhering to the standard

Until recently, there were no EIP standards. Since the start
of Ethereum blockchain there have been many tokens that
were deployed without any standard specifications being
followed. These contracts come under this pattern. They all
fail to comply with the EIP standards.

7.3 Discussion

We developed specific safety rules for developers to follow
when implementing token standards by evaluating these
categories and coding approaches.
Rule (i) To maintain consistency with other token contracts

of a similar nature, utilize a full implementation. This
would make it easier for various exchanges and existing
user interfaces to adopt your contract.

Rule (ii) Always use the SafeMath library for arithmetic
operations.

Rule (iii) Use require statements to check whether there
is room for any overflows with any of the variables.

Rule (iv) Make the contracts upgrade-safe with the logic of
the contract separated.

Rule (v) A final and an important rule is to run the contract
through VERISOLID, which will verify for all these
rules to be satisfied apart from the default checks for
re-entrancy, deadlock freeness, and integer overflows.
VERISOLID ensures that the contracts are correct-by-
design and deploy them to the network automatically.
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Fig. 13. ERC20 tokens categorized by function-specific types.

Fig. 14. Verification results for ERC20 tokens.

In our experiments, we have used function-specific cat-
egorization for ERC20 tokens and contract-level categoriza-
tion for ERC721 tokens. Figure 13 shows the ERC20 tokens
categorized by function-specific types. 33% of the contracts
use Type F2 or Type F6, which are the two recommended
approaches based on the safety guidelines proposed for
this work. Type F3 and Type F7, which are both direct
representations of Fake deposit attacks cover 13% of the
contracts. Figure 14 shows the verification results of the
contracts. Most failures are observed in Type F3 and Type
F7. 94 contracts have implemented the recommended safe
types, i.e., Type F2 and only one contract of Type F1 was not
complying with the EIP-20 standard. Type F6, which is also
another recommended approach, had only 1 contract that
passed all the properties.

Figure 15 shows the categorization of ERC721 tokens

Fig. 15. ERC721 tokens categorized by function-specific types.

Fig. 16. Verification results for ERC721 tokens.

by contract-level coding practices. Of the 459 ERC721 con-
tracts, 43% of them use ERCFull implementation, which
is Type C3 under contract-level categories. This accounts
for the majority of these contracts. These contracts are not
upgrade–safe and thus do not comply with our policies.
22% of the contracts account for Type C5, which is basically
implementing the EIP-721 standard without any additional
safety features like SafeMath. Around 11% of contracts
implemented multiple tokens without using the EIP-1155
standard. Although most of them do not fail in terms of
EIP-20 and EIP-721 specification, using EIP-1155 is highly
suggested for these contracts. In Figure 16, we demonstrate
the verification results for ERC721 contracts. A total of 4%
contracts failed to satisfy the properties of the EIP-721 stan-
dard. This is comparatively less when compared to the total
failures observed in ERC20 contracts. This shows that the
community is arriving at a maturity where the contracts are
made sure to adhere to the EIP standards better than before,
when initially only ERC20 tokens existed. 21% of the failed
contracts implemented multiple tokens, and this brings in
the cause to avoid using this type of implementation. It
is suggested that all these contracts use EIP-1155 standard.
57% of the failed contracts do not have any safety features
added, and they belong to Type C5 in the contract-level
coding practices.

8 ASM GENERATION

In Step 1, a developer may import the Solidity code of an
existing contract and use our automatic mechanism, algo-
rithms for which are described in Appendix [9], to generate
a corresponding ASM. After the extension, the generated
transitions may contain guard conditions depending on
whether the corresponding functions use Solidity modifiers.
Note that not all modifiers can be converted into guards. The
modifiers that our framework converts into guards must
follow the syntax below, i.e., they must include require
and/or if statements and their execution must come before
the body of the corresponding function:

⟨guard modifier⟩ ::=
modifier @identifier (

(
@type @identifier

(, @type @identifier) ∗
)
∗ )

{ (if(@expression)) ∗ |
(require(@expression); )∗
| _;}
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Fig. 17. ASM of ProxyContract.

If there are multiple if, require statements in the modifier,
we append all the expressions with a logical && operator
forming a conjunction. Once an ASM is generated, the
developer may update the ASMs by adding, removing, or
modifying states, transitions, etc.

As an example, we consider a variation of the Upgrade-
able ProxyERC20 contract implementation by Synthetix [30]
which can be upgraded to a different target ERC20 contract.
The implementation includes a set of two contracts: Proxy
and ProxyERC20. We automatically generated the ASMs of
both the contracts by importing their source code, which
is available on Etherscan [31] (280 lines of code for Proxy
and 100 lines of code for ProxyERC20). Proxy is the user
facing contract. Users can call the ERC20 functions in the
target contract using Proxy. It can be done either using
delegatecall or call mechanism.

From the source code of Proxy, our framework gen-
erated the model in Figure 17. The setTarget and
setUseDELEGATECALL methods can be called by the
owner only. Hence, the use of onlyOwner modifier. Using
the setTarget owner can change the underlying ERC20
contract. The fallback function includes the actual code
which makes the calls to the ERC20 contract. To verify that
the source code and the ASM generated from it are equiva-
lent, we re-generated the source codes of 500 contracts from
the generated ASMs and compared the re-generated source
codes to the original ones. We observed no changes to func-
tionality, apart from adding statements that implement self-
loop state transitions, which “lock” contracts. The impact of
these “locks” is to prevent re-entrancy, which is a built-in
security feature of VERISOLID. The only additional impact
associated with this is the increased gas cost required to
deploy the contract and to execute these functions owing to
the newly added lines of code.

Fig. 18. ASM of ProxyERC20.

Similarly, from the source code of ProxyERC20, our
framework generated the model shown in Figure 18. The
initial transition ProxyERC20 corresponds to the construc-
tor of the contract. To increase readability of the model, we
have grouped all the methods into four transitions. Each
generated ASM contains a single state. The Initialized
state of Proxy represents the main state of the contract,
which is entered once the owners are set up. We were able to
test the model for the conformance with the EIP standard.
The target ERC20 contract can be considered to fall under
Type F2 which is one of the recommended approaches for
ERC20 implementations.

Fig. 19. SDD of Proxy and ProxyERC20.

Using the model generated, we regenerated the Solidity
code and used SDD to deploy the contract in a local testnet.
Figure 19 shows the SDD used for Proxy and ProxyERC20
contract.

9 EVALUATION

This section evaluates the efficacy and validity of EIP stan-
dard verification using VERISOLID. Additionally, we present
the results of comparison of the reachable states and verifi-
cation time for 35 contracts containing a range of contracts.

9.1 Dataset Collection and Environment
Our focus in this work was to verify contracts that use
EIP-20 and EIP-721 standards. We collected 300 ERC20
contracts and 526 ERC721 contracts from Etherscan. Of
these contracts, 4 ERC20 contracts and 67 ERC721 contracts
consisted of only bytecode and no Solidity code. VERISOLID
can be used to verify only Solidity code contracts. Hence,
we excluded contracts with just bytecode and no Solidity
code from our verification process. Within the 296 remaining
ERC20 contracts, we observed that 29 contracts used a proxy
pattern with delegate functionality. Contracts implementing
this pattern refer to the EIP using proxy; all calls to the
contract are delegated to the proxy. Since there is no di-
rect access to the implementation, we excluded the proxy
contracts as well. We verified 267 ERC20 tokens and 459
ERC721 tokens as part of our experiments. In our one-click
automated verification, we just need to provide the list of
addresses for currently deployed contracts on Ethereum
that are to be verified. The framework will automatically
recognize the contract standard type based on the interfaces
being implemented. All the contracts have gone through
manual inspection as well in order to identify any false
positives. VERISOLID is a very light-weight application that
can be used on a workstation with minimal requirements.
The workstation we used for our experiments is equipped
with Intel Core i3-4170 3.7GHz CPU, 16GB of DDR3 RAM,
512GB SSD running Linux Ubuntu 14.04LTS, in a local
network environment.
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Fig. 20. Verification results ERC20 tokens by Properties

Fig. 21. Verification results ERC721 tokens by Properties

9.2 Verification Results
Of the 267 ERC20 contracts, 49 contracts failed to confirm
at least one of the rules we covered in Table 2. Figure 20
shows the variation in the types of failures witnessed in
these contracts. Rules 2,4 and 5 require the specification
of events and firing them at the respective locations. Ten
contracts failed to conform to these rules. Decentralized
applications with front-end are dependent on event logs to
check that state has been updated. In cases where the events
are missing, it is impossible to inform the user about the
transactions’ success or failure. Rules 1 and 3 refer to the
balance checks before making a transfer from accounts. If
failed to adhere to these checks, there are chances for integer
overflows or excess of tokens being transferred or deducted
from the funds. Forty-one of the contracts do not observe
these checks, which is concerning.

459 ERC721 contracts were tested using VERISOLID. 19
contracts failed to adhere to the specification. That leaves
95% of contracts that have satisfied all the 12 rules men-
tioned in the EIP specification. The increase in the accep-
tance percentage can be related to the Ethereum commu-
nity’s maturity in understanding the importance of EIP
specifications. Most contracts are re-used for multiple appli-
cations depending on their availability on Etherscan and the
open-source community. Figure 21 shows the distribution
of the failures in terms of the 12 rules. Three of the failed
contracts have not used the EIP-721 specification at all.
These contracts are observed to be deployed in 2017, which
is way before the specification was proposed in 2018. Eleven
contracts failed to make the checks for balances similar to
Rules 1 and 3 in ERC20.

Overall, 9% of the total contracts verified failed to con-
form to the specification. All of the contracts have been
manually inspected to study for any false positives or false
negatives. There were no false positives or false negatives
observed in verification results.

Finally, Figure 22 shows the verification time of
VERISOLID as a function of reachable states for the top

Fig. 22. Verification time and the number of reachable states for various
contracts.

35 ERC20 tokens with the largest market capitalization
according to Etherscan.

10 RELATED WORK

Smart contract verification has been recently the focus of a
lot of research. Various methodologies have been proposed
catering to different vulnerabilities. Traditional symbolic
execution techniques have been used in [32], [33], [34], [35],
[36] by compiling smart contract source code to bytecode
and representing bytecode in the format required by these
tools for analysis of known/typical vulnerabilities. Tools
like Securify [33], Ethainter [37] and Slither [38] fall under
this category and they verify contracts by exploring through
the code data-flow.

Furthermore, there are tools that specialize in detecting
a specific type of vulnerability. As an example, VERIS-
MART [39], SMTCHECKER [40], Zeus [41] and Osiris [42]
are tools used to detect integer over/underflows and
division-by-zero paths and Sereum [43] is used to look
for reentrancy vulnerabilities. Although targeting minimal
set of vulnerabilities, these tools guarantee high precision
compared to their predecessors.

Traditional fuzzing technique has also been in use for
smart contract verification over the recent years. Fuzzing
involves automated generation of inputs for testing based
on the contract ABI specification which are passed to test
oracles that determine vulnerabilities based on the results.
ContractFuzzer [44] and sFUZZ [45] are two works that
use fuzzing along side static analysis to identify known
vulnerabilitis in a smart contract.

There has been a lot of work using Mutation Testing for
verification [46], [47], [48]. This technique involves mutation
of the contract code to either analyze using existing test
cases for faults or to generate vulnerability-free contracts.
Gas-aware and automated mutation testing has also been
considered while searching for valid smart contract imple-
mentation with this approach.

Formal verification has also been applied in the field
of smart contract analysis to check program correctness
through rigorous mathematical models. Hirai [49] proposed
formal verification using Ethereum bytecode. Bhargavan et
al. [50] proposed a framework that translates EVM bytecode
to F ∗ and verifies contract safety and correctness. Finally,
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Atzei et al. [51] formaly proved properties of the Bitcoin
blockchain.

By creating semantics for a virtual machine, a one-time
task depending on the network, and by providing the speci-
fication for a contract, the bytecode of any smart contract can
be verified during runtime. A drawback of this approach is
that it requires tedious manual processing. KEVM [52] for-
malized EVM semantics into the K-framework. Sereum [43]
is a runtime verification tool, which uses taint analysis and
checks for storage and control flow in the contract. Microsoft
has recently added formal verification semantics explicitly
for its Azure Blockchain Workbench as well as a built-in
verifier VERISOL which uses state transitions and model
checking to analyze contracts [53]. SmartDEMAP [54] is
another deployment and management platform that comes
with built-in tools for formal verification. A custom pro-
gramming language is used to specify the safety properties
of a smart contract. sGUARD [55] focuses on transforming
a smart contract with four known vulnerabilities automati-
cally during runtime.

Recently, there have been proposals for visual program-
ming languages. These are basically design oriented lan-
guages that automatically generate the underlying smart
contract code based on the specific structure and flow that
is presented. Babbage [56] was designed to express smart
contracts in terms of mechanical components. Bamboo [57],
Obsidian [58] and Simplicity [59] are other languages which
specify contracts as state machine functions.

When it comes to conformance testing for tokens in
particular, Tokenscope [60] is a project that is very similar
to ours. Tokenscope is a tool that employs trace recording
and monitoring in order to identify inconsistencies in ERC-
20 contracts behavior. These anomalies are identified mostly
by monitoring the traces for invalid token balance data
structure updates. In contrast to their method, VERISOLID
is not standard-specific. We have created the tool in such
a manner that it can be used with any EIP standard to
uncover known and unknown vulnerabilities in contracts
depending on the specification. Another point of contention
is Tokenscope’s approach to targeted data structures. We
are not interested in any specific data format, such as the
token’s balance. We develop a model of the contract and
then seek for vulnerabilities based on all the state transitions
and reachable states. Smart contract engineering (SCE) [61]
is another effort that makes use of conformance testing
to uncover errors in smart contracts. At the moment, SCE
needs a significant amount of human effort to prepare the
conformance test sets prior to doing the actual testing.
A recent work on Wasm Smart contracts [62] also uses
conformance checking to locate inconsistencies. But their
tool is integrated with K framework [52] that was discussed
previously.

The main advantage of our approach is that it allows
developers to specify desired properties for both standalone
and interacting smart contracts. Developers can use high-
level model form to specify the properties instead of using
low-level representation, e.g., EVM bytecode. In addition,
we synchronize verification and deployment as a com-
mon framework allowing a contract to be published on a
blockchain network once verified. Most of the verification
frameworks try to focus on particular set of known vulnera-

bilities. We identify both typical and atypical vulnerabilities
based on the specification provided. With our current ex-
tension to the work, we can verify existing deployed smart
contracts on Ethereum with just one-click by providing the
address of the contract. Specifically, in case of ERC20 and
ERC721 contracts which are identified automatically, we
check and provide feedback on the safety implementation
practices and EIP specification. There is no necessity for the
user to provide a specification unless it varies from the EIP
specification.

11 CONCLUSION

We present an end-to-end framework that allows the ver-
ification, generation, and deployment of correct-by-design
interacting Solidity contracts based on VERISOLID. This
framework provides a clear separation between contract
behavior and interaction. The proposed work provides easy-
to-use graphical editors for the specification of high-level
models that include ASMs and SDDs. Specifically, in this
work we target the demonstration of end-to-end verification
from specification of EIP interfaces: ERC20 and ERC721. We
also provide safety guidelines for implementation of these
interfaces based on our classification of current implemen-
tation methodologies. To the best of our knowledge, this
is the first work that provides a systematized approach for
designing and verifying systems of interacting contracts.

With the growth of public blockchains over the last
decade, languages used for smart contracts have prolifer-
ated. VERISOLID is presently limited to Solidity; however,
the procedure is well-suited for automated deployment on
the Ethereum blockchain. As a result, the tool is compatible
with the Ethereum Virtual Machine (EVM) and Solidity-
based blockchains. In future work, we will investigate the
possibility of implementing an automated model-checking
tool that might assist in testing properties in other smart
contract languages. Our next target will be Move, the smart
contract language of Diems [63], [64]. As another major
direction, we will provide a tool that enables support for
hyper-property verification in smart contracts. While model
checking has been examined previously for the purpose of
validating hyper-properties [65], [66], relatively little work
has been done in the context of blockchains and smart
contracts. In light of this, we believe this to be a worthwhile
future direction for our work.
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