
SIMULATION-BASED HW/SW CO-DEBUGGING FOR
FIELD-PROGRAMMABLE SYSTEMS-ON-CHIP

Ruediger Willenberg

Electrical and Computer Engineering
University of Toronto

Toronto, Ontario, Canada
email: willenbe@eecg.toronto.edu

Paul Chow

Electrical and Computer Engineering
University of Toronto

Toronto, Ontario, Canada
email: pc@eecg.toronto.edu

ABSTRACT
We are presenting SimXMD (Simulation-based eXperimen-
tal Microprocessor Debugger), a tool that allows developers
to debug microcontroller code and custom hardware simul-
taneously. SimXMD connects a GNU debugger instance to a
full-system simulation of an embedded FPGA system. This
enables free-roaming investigation of hardware-software in-
teractions inside the system, including reverting back to an
earlier point in simulation time. A custom memory log-
ging mechanism enables access to variables in on-chip, off-
chip and cached memory. SimXMD is open source, and its
modular architecture facilitates extension to other embedded
processors as well as different simulators and debuggers.

1. INTRODUCTION

Developers of reconfigurable embedded systems have a host
of useful debugging tools at their convenience. To verify
their RTL designs at the behavioral and gate levels, they can
use digital system simulators [1][2]. FPGA vendors provide
on-chip logic analyzer functionality [3][4] that enables the
designer to trigger on and examine signals in a live FPGA
system via a JTAG connection.

On the software side, to debug the C/C++ or assembler
code running on an embedded processor core, designs can
be downloaded into hardware and then stepped through from
instruction to instruction or breakpoint to breakpoint with a
debugging tool like GNU Debugger (GDB) [5] running on
the host. The host connects to the on-chip system through

 CPU

Application

Driver code
(untested)

Peripheral A
(not verified)

Peripheral B
other

on-chip
hardware
(not fully
verified)

FPGA

Fig. 1. System with hardware/driver combination to debug

JTAG, serial or network interfaces. If the code behaviour is
not dependent on peripherals, a debugger can instead con-
nect to an instruction set simulator and debug code on an
emulated processor core. This process does not differ from
debugging code for any non-FPGA embedded microproces-
sor system.

The unique challenge of embedded systems in FPGAs
can be identified in Figure 1: Designers can develop their
own peripheral hardware, which commonly will require dri-
ver code to access it. Furthermore, established peripherals
can communicate with other custom hardware implemented
on the FPGA. In both cases, the task of verifying the hard-
ware functionality involves writing software to interact with
them. This software itself is prone to design errors. To de-
bug a system with two untested interacting components, it is
preferable if their interaction can be precisely traced.

Furthermore, to debug embedded code in the established
way, an FPGA bitstream has to be generated after each hard-
ware change, which is time-consuming. Systems that are
functionally correct might also not yet meet timing, so that
configuring the chip for debugging purposes is precluded.

In this paper, these challenges are met by presenting
SimXMD (Simulation-based eXperimental Microprocessors
Debugger), a tool that allows CPU code to be debugged
in a full-system digital simulation. The designer can step
through C or Assembler code with the software debugger
and simultaneously observe cycle-by-cycle behaviour of any
hardware signal in the simulator’s wave window. Our con-
tributions are:

• Introduction of a tool that allows easy correlation of
software and hardware behaviour. Instead of a highly
customized proof-of-principle, we focus on providing
a system that is compatible with and can be produc-
tively used with established FPGA tools

• The capability to “go back in time” and resume de-
bugging from a previously simulated time segment.

• Providing a software architecture that is easily exten-
sible to other processor models and tools.

This paper is structured as follows: Section 2 explores re-

lated work. Section 3 illustrates how SimXMD operates
from the user perspective, while Section 4 details how this
functionality is achieved. The current project status is re-
ported in Section 5, and Section 6 concludes.

2. RELATED WORK

Co-simulation of hardware and software is a well-established
field that has produced extensive work since its inception
[6]; much of the work has rightly centered on accelerating
the simulation process [7]. Its focus is on verification of cor-
rect processor functionality for large amounts of code, e.g.
complex operating systems and applications. Towards this
goal, researchers have tried to minimize communication be-
tween simulated software and hardware with sophisticated
notification and timing mechanisms[8][9] and by employing
transaction-level[10] and bus functional[11] models; some
approaches simulate software on higher abstractions than
instruction-level[12][13]. Many of these models are very
processor-centric and the simulated hardware, transactional
or cycle-accurate, centers on providing a standard memory
hierarchy, networking and communication peripherals.

In embedded FPGA systems, the focus lies on the op-
portunity to develop highly-customized peripherals, and de-
bugging and verification tools should center on providing
insight into those systems. SimXMD is targeted to hone
in on very close interactions of embedded software and pe-
ripherals. Obviously a non-optimized, cycle-accurate simu-
lation of a whole microprocessor is less time-efficient than
some of the approaches referred to above; however, this is
outweighed by the productivity that the tool delivers by sup-
porting and extending existing infrastructure that FPGA de-
signers are familiar with. Booting the Linux kernel on a
MicroBlaze is outside the intended scope of SimXMD.

NIFD[14] is a debugging infrastructure that uses GDB
and JTAG infrastructure to establish signal readback from
the FPGA fabric. Signal state in the FPGA can be retrieved
and displayed on the host and can be correlated with cross-
platform GDB debugging of embedded processors on the
same chip. Both debugging mechanisms can share the same
JTAG connection. Crosthwaite et al.[15] are using the popu-
lar open source processor emulator QEMU to emulate code
execution on a Microblaze. This processor model can in-
terface to either C-language behavioral models of hardware
components or simulator-based HDL models.

Benini et al.[16] use the GDB Remote Serial Interface
in the reverse way than we do: They use a GDB client to
control an instruction set simulator and retrieve information
to synchronize it with a SystemC hardware simulation.

As mentioned in the introduction, FPGA vendors have
established a host of debugging tools[1][2][3][4]. More re-
cently, Xilinx has offered its ISim [17] simulator with hard-
ware co-simulation capability. It can partition the simulation

into a part being simulated conventionally in software and a
part being run on an FPGA. Communication and synchro-
nization between the two parts is achieved over a JTAG con-
nection. ISim is very useful for co-simulating components
with real-time constraints like an Ethernet core; however,
debugging code running on an on-chip MicroBlaze while
simulating the peripherals on the host is still not possible.
ISim’s functionality is therefore orthogonal to SimXMD’s
features.

3. SIMXMD OPERATION

3.1. Remote GDB debugging

The open-source GNU Debugger (GDB) software supports
the debugging of many types of embedded processors via the
GDB Remote Serial Protocol [18][19]. All communication
between debugger and hardware is implemented through a
simple protocol of request-and-reply strings that can be ex-
changed over TCP or UDP sockets, serial devices or POSIX
pipes. Table 1 lists a few examples of common GDB remote
commands.

Table 1. GDB remote command examples
Command Meaning
? Indicate reason why target halted
p20 Read register 0x20
g Read the whole register set
s Step forward by one assembler instruction
c Continue until the next breakpoint
m65a,2 Read 2 memory bytes starting at address 0x65a
Z0,017c,4 Set instruction breakpoint at address 0x017c,

type is 4-byte breakpoint

Figure 2 illustrates how GDB remote serial debugging
works on a system built with Xilinx EDK: A GDB instance,
optionally accessed through a Graphical User Interface, con-
nects through a TCP socket to the Xilinx Microprocessor
Debugger (XMD), which acts as a TCP server for the remote
serial protocol. The vendor-specific XMD connects through
the FPGA’s JTAG interface to an on-chip MicroBlaze(uB)
processor using the MicroBlaze Debug Module (MDM). The
MDM can either use the processor’s built-in hardware break-
points for debugging, or function as a serial communication
device for a MicroBlaze binary with debug code.

In contrast to Figure 2’s customary XMD setup, Figure
3 depicts simulation-based debugging with SimXMD: GDB
connects via TCP to SimXMD, which now acts as a TCP
server in XMD’s place.

On the other end of the chain, ModelSim has initiated
a system simulation based on compiled HDL code. After
starting the simulation in ModelSim, a tcl script sets up a
simple TCP server running in the background. SimXMD
connects to this server as a client. The TCP server receives

GDB
XMD

FPGA

µBMDM

TCP JTAGGUI

Fig. 2. Regular GDB debugging in Xilinx system

SimXMD
ModelSimTCP
system_tb.v
system.vGDB

TCP
GUI

Fig. 3. Debugging with SimXMD

commands for the ModelSim command-line from SimXMD
and returns the output of the initiated commands. Since the
TCP server is a background process, commands can still be
entered by hand into the ModelSim command-line, for ex-
ample to run up to a certain simulation time without any
debugger control.

SimXMD’s main task is to parse the requests that GDB
sends and translate them into ModelSim operations. To re-
port the state of processor, memory and variables back to
GDB, SimXMD monitors the simulated MicroBlaze’s Trace
Port, which tracks all cycle-to-cycle processor operations.

The user experience from the GDB perspective is iden-
tical to the earlier case: The user can step through the C or
assembler source, set and remove breakpoints and watch lo-
cal and global variables. But in addition to that, the user
can simultaneously observe the hardware state changing in
ModelSim’s waveform window.

Debugging with SimXMD entails the following sequence
of steps:

1. Simulation model generation by EDK
2. Modification of simulation and scripts by SimXMD
3. Compilation and start of simulation by ModelSim
4. Connection of a debugger to SimXMD
5. SimXMD translates between debugger and simulator

3.2. SimXMD debugging modes

SimXMD can switch between two different modes of op-
eration, Run mode and Replay mode. Figure 4 illustrates
this with a simplified representation of the simulator’s wave-
form window and GDB’s source code window. SimXMD
starts in Run mode (A): The reported processor state is based
on the most recent time simulated, which will be indicated
by a special position-locked simulation cursor (see vertical

line). To continue program execution to the next breakpoint,
the simulation itself is run until the breakpoint condition is
reached. GDB will then request updated information for all
processor state and monitored variables. The information re-
ported by SimXMD will again be based on the most recent
simulation time.

The user can now pick any time inside the already simu-
lated timeframe by marking it with a regular simulation cur-
sor (dotted line) and directing SimXMD to resume debug-
ging at this time(B). GDB is at this moment idle and wait-
ing for user input; therefore, it still shows the most recent
processor state from Run mode. By asking GDB to step or
continue, the user initiates execution from the chosen time.

When the next break condition is reached in the simu-
lated data, SimXMD marks the time with the locked cursor
and GDB updates all displayed state according to that time;
the system has transitioned into Replay Mode(C). The user
can continue debugging in the pre-simulated data, with the
locked cursor being moved forward in time on each step.

SimXMD can transition back into Run Mode(D) for two
reasons: The user can deliberately choose to switch back to
Run mode, and therefore to continue debugging and simulat-
ing from the most recent simulation time forward. Secondly,
the user can keep debugging in Replay mode up to the most
recent simulated time. If SimXMD can’t find another break
condition in the pre-simulated timeframe, it will automati-
cally transition to Run mode and continue simulation until a
break condition happens.

Replay mode capability offers two important advantages:
1. In Run mode, it is easy to go past a critical point where

things are starting to go wrong in hardware. At the
point where this hardware behaviour is fully identifi-
able, the debugger has already passed the critical code
segment. Replay mode enables the designer to easily
jump back in time and re-examine the code; because
SimXMD logs all memory modifications (see Section
4.2), the designer can even decide at any point to ex-
amine additional variables or memory locations.

2. Especially for larger systems, Replay mode is signif-
icantly faster than Run mode because SimXMD only
needs to search for logged trace port events instead of
simulating the whole system step by step. This means
that a system can be pre-simulated for a longer stretch
of time without the designer’s involvement, and the
designer can then examine interesting segments in Re-
play mode.

4. IMPLEMENTATION

4.1. System and testbench modifications

For the purpose of simulation, Xilinx Embedded Develop-
ment assembles a complete source code hierarchy that rep-
resents the system inside the FPGA. Furthermore, it gener-

x2 0x3 0x4 0x5 x2 0x3 0x4 0x5 0x6x2 0x3 0x4 0x5 x2 0x3 0x4 0x5

(A) (B) (D)(C)PC = 5 PC = 5 PC = 3 PC = 6

Run RunReplay

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

Fig. 4. SimXMD debugging modes (above: ModelSim waveform window - below: GDB window)

ates a Verilog testbench file that instantiates the whole sys-
tem and generates external stimuli like the clock and reset
signals. Lastly, it provides tcl scripts that automate compi-
lation, simulation and wave window setup.

SimXMD uses the Microblaze’s built-in trace port to
monitor the register state, the current program counter and
the nature of memory accesses. To facilitate debugging func-
tionality, it modifies some of the files generated by EDK and
adds others:

• System definition (system.v): To be accessible from
the testbench1, the trace port signals of the MicroB-
laze instance need to be connected to wires. Our mod-
ification inserts wires and connects them to the in-
stance’s trace port.

• Testbench (system tb.v) Since the internal MicroBlaze
signals are not accessible, the register file is not di-
rectly available. Instead, the testbench manages its
own copy of the register file, which is updated accord-
ing to the trace port register access signals. Further-
more, instruction memory breakpoints are inserted by
comparing the breakpoint registers with the trace port
program counter. In Run mode, an activated break-
point will interrupt the simulation run by calling the
Verilog $stop task.
The testbench modifications are actually written into
a separate file, and then included into the file with
a single line ‘include instruction. This keeps the
testbench simple and does not conflict with other test-
bench modifications like input stimuli or assertion test-

1In the currently used Verilog and VHDL dialects it is not possible to ac-
cess signals in VHDL components lower in the hierarchy from the Verilog
top-level or testbench. Since most Xilinx EDK components are VHDL-
based, only the information in the system top-level file, which can be gen-
erated in Verilog, is accessible for the testbench.

ing on outputs.
• Simulator scripts (*.do): SimXMD adds several tcl

scripts that execute steps to bring the simulator into
a state in which it is ready to work with SimXMD
and GDB, namely: Compile the simulation model and
testbench, set an environment variable to link a dy-
namic library into the simulation, start the simula-
tion, setup the waveform window, run the simulation
up to the start of main() and open a TCP server port
to receive SimXMD commands. Another very con-
venient script function is the addition of SimXMD-
specific menu options to the waveform window. Be-
cause of this, SimXMD can operate invisibly in the
background and does not clutter the already contested
screen real estate.

4.2. Memory access logging and retrieval

Accessing the state of memories in the system is not straight-
forward for a host of reasons:

• All the processor state including the registers and the
program counter is read from the MicroBlaze’s trace
port. However, because the processor is pipelined and
different actions are taken in different stages, the trace
port signals are delayed a few cycles to be able to indi-
cate all the processors actions for a single instruction
in the same cycle. As a consequence, memory writes
that happen logically after the currently traced instruc-
tion can have already executed, and a corresponding
variable could be shown with a wrong value given the
current breakpoint.

• A related issue arises out of the fact that contrary to a
real software breakpoint exception, the pipeline is not

flushed and memory operations are not finished before
polling memory values - since the simulator stops in
Run mode, memory accesses are interrupted together
with the processor.

• Accessing data in a simulated external memory is hard,
since the organization of data in the external memory
simulation models might be vendor-dependent, and
might even change as a result of different memory
controller settings.

• To cover all data storage accurately, cache behaviour
would have to be tracked and simulated caches be
readable. While the trace port reports cache opera-
tions, the structure of the cache could change between
different microarchitecture versions, making it com-
plex to keep our access patterns correct and up-to-date
for different versions of the MicroBlaze.

• Lastly, contrary to signals, ModelSim by default only
stores the last valid state of instantiated memories.
Our Replay mode would therefore not be able to re-
trieve earlier memory state from these models.

For all these reasons, SimXMD keeps track of memory chan-
ges independently instead of relying on ModelSim. Figure
5 illustrates the mechanism. On every write access indi-
cated by the MicroBlaze trace port, our modified Verilog
testbench calls a task named $memlog. This task has been
implemented in C code and compiled into a shared library
that can be called by ModelSim through the Verilog Pro-
gramming Interface (VPI).

The $memlog task accepts the relevant write access in-
formation of time, address, data and byte enables and stores
it in a tree-based dynamic data structure that allows efficient
retrieval of memory state by SimXMD. $memlog allocates a
shared memory section that SimXMD can also access, there-
fore allowing efficient log management without any commu-
nication overhead. Race conditions cannot happen because
SimXMD only retrieves memory state when ModelSim is
interrupted.

$memlog stores any MicroBlaze write accesses happen-
ing after the start of the simulation. If memory at the re-
quested address has never been modified by the requested
time, SimXMD instead checks for the initialization state
with which the simulation had been started. This is usu-
ally true for the processor’s instruction memory, but also for
unmodified global variables.

$memlog’s limitations pertain mostly to shared access
of memory with other processors or peripherals (also see
Section 5.3) .

4.3. Software Architecture

4.3.1. Language and component framework

SimXMD has been written in C++ using the Qt Application
Framework [20], which is available for open source projects

Shared
Log

ModelSim

$memlog

VPI

GDB
GUI

SimXMD

Fig. 5. Memory access logging and retrieval between Mod-
elSim and SimXMD

under the Lesser GNU Public License (LGPL) [21]. Qt pro-
vides portable Graphical User Interface (GUI) components
as well as portable components for other operating system
functionality like sockets. All relevant functionality is pro-
vided in the default command-line mode. However, a GUI
can be enabled by command-line option; it offers a conve-
nient alternative to specify certain settings and splits up the
log output into three separate windows for debugger, pro-
cessor and simulator.

4.3.2. Modularity

SimXMD makes use of polymorphism in C++ to provide
for extensibility. Figure 6 shows a simplified version of
SimXMD’s class hierarchy. The debugger interface, proces-
sor and simulator interface are modeled in the abstract base
classes debug base, core base and sim base. They provide
generic functionality to communicate between each other
that is independent of what specific processor, debugger and
simulator are used. In our current configuration, these in-
terfaces are inherited and implemented by core Microblaze,
debug GDB and sim Modelsim respectively. The applica-
tion’s main object SimXMD holds pointers of the three base
class types. However, they actually each point to an in-
stance of an inherited class. In the current implementa-
tion, only one child class each exists, so that only a Mi-
croBlaze processor can be simulated with ModelSim and
debugged with GDB. Support for a new processor, for ex-
ample the Altera Nios II, can now be added to the tool with
limited effort by implementing a new class inheriting from
core base, without communication to the debugger or simu-
lator changing. This class would need to handle the different
structures of the Nios II simulation model and the Altera
SoPC Builder projects. The same inheritance-based pro-
cess works for other debuggers and other simulators, as long
as they support a basic set of functionality that is essential
for SimXMD operation. Note that a number of non-GDB
debuggers support GDB’s remote serial protocol; in these
cases, no other debugger class is required.

debug_base

processor: core_base
debug_sock: QTcpServer

core_base

debugger: debug_base
simulator: sim_base

sim_base

processor: core_base
sim_sock: QTcpSocket

debug_GDB core_Microblaze sim_Modelsim

SimXMD

- debugger: debug_base
- processor: core_base
- simulator: sim_base

Fig. 6. SimXMD class hierarchy

4.3.3. Portability

A positive side-effect of using the Qt framework for design-
ing the tool is operating system independence. An applica-
tion that handles all of its user interface, file accesses and
communication channels through Qt classes can be com-
piled without changes for 32- and 64-bit versions of Linux,
Windows and MacOS. While this has not been evaluated yet,
SimXMD is expected to work without major modifications
with the Windows versions of Xilinx EDK (13.1 and higher)
and ModelSim.

5. PROJECT STATUS

The development and evaluation of SimXMD up to this point
have been carried out with the following software and com-
ponents:

• OpenSUSE Linux 12.4 64-bit
• Xilinx Embedded Development Kit 14.2, including

Xilinx SDK and GDB 7.3.5 for MicroBlaze
• Xilinx MicroBlaze processor version 8.40a
• Mentor Graphics ModelSim SE 10.1c
• DDD 3.3.12, KDbg 2.5.2, Nemiver 0.9.4

5.1. GDB support

SimXMD currently supports the following GDB requests:
• ? - Indicate reason for target halt; currently this is

always S05, the POSIX code for a trap condition
• p,g - Read one specific or all processor registers
• s - Step one assembler instructions
• c - Continue to next breakpoint
• Z0 - Set instruction breakpoint
• z0 - Remove instruction breakpoint
• m - Read from memory

• H - Choose which thread subsequent requests apply
to; this is acknowledged without action because Mi-
croBlaze does not support multithreading

• D - Disconnect
For all other requests, SimXMD answers with a legal

empty string (plus parity), therefore cleanly indicating that
this feature is not implemented. With the current feature
set, GDB can connect to the simulated processor, inquire
about all essential state, execute code line by line or up to
breakpoints, and indicate the values of variables; most un-
supported functionality is related to multithreading.

SimXMD supports the Eclipse-based debugger frontend
that is part of Xilinx Software Development Kit, and in prin-
ciple any other debugger frontend using the GDB remote
protocol. The mb-gdb command-line as well as the popular
DDD, KDbg and Nemiver GUI frontends can be started au-
tomatically through menu buttons that SimXMD integrates
into the ModelSim wave window; this unfortunately does
not work for the Xilinx SDK debugger because of limita-
tions in Eclipse’s command-line interface.

5.2. Performance

To judge SimXMD’s impact on both simulation and debug
performance, we ran three experiments. For all of them, we
used a very small MicroBlaze system (default MicroBlaze
core at 100MHz, 64KB of BlockRAM, no external RAM,
AXI bus, one GPIO device) implemented for a Xilinx Spar-
tan 6 FPGA on a Digilent Atlys board. The BlockRAM was
initialized with an application writing up to 32KBytes of
data byte by byte into a contiguous block of on-chip RAM.

5.2.1. Simulation time

We first measured the time that Modelsim needs on the test
system to simulate writing different-sized blocks of data,

Table 2. Simulation time in seconds
Write size w/o SimXMD w/ SimXMD

1KB 6.9 7.3
2KB 13.8 14.5
4KB 27.3 29.0
8KB 54.9 57.7
16KB 109.0 117.1
32KB 218.9 231.7

Table 3. Memory allocation for $memlog
Write size Log memory

1KB 40KB
2KB 56KB
4KB 88KB
8KB 152KB
16KB 280KB
32KB 536KB

once with an unmodified simulation model as generated by
Xilinx EDK, and once with a system with SimXMD modifi-
cations. Table 2 shows the results. On average, the mod-
ifications add 6.0% of simulation time. We assume that
most of this time is spent in the VPI extension for mem-
ory logging, while the testbench modifications only add a
very small amount of Verilog to process in relation to the
rest of the simulation model. It is worth noting that simu-
lating any more complex system would make the time spent
on SimXMD additions relatively smaller.

5.2.2. Memory usage

Table 3 lists the memory allocated by the VPI $memlog
module for different amounts of written data. It grows lin-
early after an initial allocation of about 24KB; note that be-
cause the basic logging unit is a processor word, writing the
same overall amount of memory with 32-bit words would
have only required about a quarter of the indicated size. Ob-
viously a pattern of completely random accesses through the
whole address space would inherently result in a much larger
allocation, but that would not reflect realistic application be-
haviour. Overall, we believe that the memory allocated by
$memlog is small in comparison to ModelSim’s memory use
to log waveforms.

5.2.3. Responsiveness to debug code stepping

To compare performance between in-system debugging and
SimXMD debugging, we wrote a GDB script that executes
50 step requests cycling through the C code line by line. We

Table 4. Average time for a single code line step
Hardware w/ JTAG 1.350 s
SimXMD Run mode 0.850 s
SimXMD Replay mode 0.313 s

measured the execution time of this script for the real system
as well as SimXMD in Run and Replay modes; Table 4 lists
the results, averaged for a single step instruction. Because
of the delays incurred by JTAG communication, SimXMD
actually performs faster than hardware under these specific
circumstances. Obviously the real system would be orders
of magnitude faster than SimXMD when waiting on a rare
breakpoint condition. However, going through code step by
step is a common debugging task and therefore relevant to
productivity. Simulating more complex systems would also
slow down SimXMD Run mode, while Replay mode would
not be significantly impacted.

5.3. Limitations

Debugging with SimXMD has a few limitations; some of
these are intrinsic to the way that we are using simulation,
while others will hopefully be removed in future work:

• Trace port delay: All of an instructions’ actions are re-
ported by the trace port after the instruction has com-
pleted and left the pipeline. Consequently, some of
these actions are visible in the periphery a few cycles
before the current debug time. For most actions this
delay is between 2 and 4 cycles, but if the processor
is stalled for a bus access the gap can be significantly
larger. If the user keep this in mind, there are no prac-
tical disadvantages to it.

• Since SimXMD only observes simulated system be-
haviour, it can inherently not modify register, variable
and memory contents while debugging. Correspond-
ing GDB remote requests are denied as unsupported.

• As SimXMD only logs memory changes performed
by the processor, volatile memory locations can not be
guaranteed to be shown correctly. If other processors
or components share direct memory access with the
debugged processor, changes by these actors would
currently not be observed, and a satisying and univer-
sal solution to this problem is hard to conceive.

• Since SimXMD relies on the MicroBlaze’s externally
available trace port information, no special register
except the MSR is accuratedly reported in GDB.

5.4. Availability & Cooperation

The most recent version of SimXMD is available as open
source at http://www.eecg.toronto.edu/~willenbe/simxmd

SimXMD is published under the Apache License 2.0
[22], essentially allowing free use and modification with at-
tribution in non-commercial and commercial projects. While
SimXMD should still be considered in beta status, we feel
it can by now be productively used to investigate real-life
designs, and we encourage users to give it a try.

We further invite interested parties to join us in the de-
velopment and extension of SimXMD. We especially envi-
sion adding support for other FPGA processors and simula-
tors. Please contact us under willenbe@eecg.toronto.edu.

6. CONCLUSION

This paper introduced SimXMD, a tool to debug soft pro-
cessor code together with hardware components. SimXMD
currently provides all essential features to debug code on
a Xilinx MicroBlaze processor with GDB and ModelSim
without significantly impacting simulator or debugger per-
formance. More debugging features and extension to other
processors and tools are planned as future work.

Acknowledgment
We thank Xilinx, CMC Microsystems, Embedded Systems
Canada (emSYSCAN) and NSERC for supporting our re-
search.

7. REFERENCES

[1] Mentor Graphics ModelSim. [Online]. Available:
http://www.model.com/

[2] Cadence incisive enterprise simulator. [Online]. Available:
http://www.cadence.com/products/sd/enterprise simulator
/pages/default.aspx

[3] Cadence Incisive Enterprise Simulator. [Online]. Available:
http://www.xilinx.com/tools/cspro.htm

[4] Altera SignalTap II. [Online]. Available:
http://www.altera.com/products/software/quartus-
ii/subscription-edition/verification-board-level/swf-ver-
bdlevel.html

[5] GDB. the GNU Project Debugger. [Online]. Available:
http://sources.redhat.com/gdb/

[6] J. A. Rowson, “Hardware/software co-simulation,” in
Proceedings of the 31st annual Design Automa-
tion Conference, ser. DAC ’94. New York, NY,
USA: ACM, 1994, pp. 439–440. [Online]. Available:
http://doi.acm.org/10.1145/196244.196458

[7] V. Živojnovic and H. Meyr, “Compiled hw/sw co-
simulation,” in Proceedings of the 33rd annual Design
Automation Conference, ser. DAC ’96. New York, NY,
USA: ACM, 1996, pp. 690–695. [Online]. Available:
http://doi.acm.org/10.1145/240518.240649

[8] S. Kraemer, L. Gao, J. Weinstock, R. Leupers, G. As-
cheid, and H. Meyr, “Hysim: A fast simulation framework
for embedded software development,” in Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2007 5th
IEEE/ACM/IFIP International Conference on, 2007, pp. 75–
80.

[9] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel,
“High-performance timing simulation of embedded soft-
ware,” in Design Automation Conference, 2008. DAC 2008.
45th ACM/IEEE, 2008, pp. 290–295.

[10] S. Swan, “Systemc transaction level models and rtl ver-
ification,” in Design Automation Conference, 2006 43rd
ACM/IEEE, 2006, pp. 90–92.

[11] Xilinx AXI Bus Functional Model. [Online]. Available:
http://www.xilinx.com/support/index.html/content/xilinx/en
/supportNav/ip documentation/interconnect infrastructure
/axi bus functional model.html

[12] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner, “Simics: A full system simulation platform,”
Computer, vol. 35, no. 2, pp. 50–58, 2002.

[13] R. Bedichek, “Some efficient architecture simulation tech-
niques,” in Winter 1990 USENIX Conference, 1990, pp. 53–
63.

[14] H. Angepat, G. Eads, C. Craik, and D. Chiou, “Nifd: Non-
intrusive fpga debugger – debugging fpga ’threads’ for rapid
hw/sw systems prototyping,” in Field Programmable Logic
and Applications (FPL), 2010 International Conference on,
2010, pp. 356–359.

[15] P. Crosthwaite, J. Williams, and P. Sutton, “A unified em-
ulation/simulation environment for reconfigurable system-
on-chip development,” in Field-Programmable Technology
(FPT), 2011 International Conference on, 2011, pp. 1–8.

[16] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and
M. Poncino, “Systemc cosimulation and emulation of multi-
processor soc designs,” Computer, vol. 36, no. 4, pp. 53–59,
2003.

[17] Xilinx ISE Simulator. [Online]. Available:
http://www.xilinx.com/tools/isim.htm

[18] GDB User Guide: Remote Se-
rial Protocol. [Online]. Available:
http://sourceware.org/gdb/current/onlinedocs/gdb/Remote-
Protocol.html

[19] (2008) EMBECOSM Howto: GDB Remote Se-
rial Protocol - writing a RSP server, Ap-
plication Note 4, Issue 2. [Online]. Avail-
able: http://www.embecosm.com/appnotes/ean4/embecosm-
howto-rsp-server-ean4-issue-2.html

[20] Qt Framework. [Online]. Available: http://qt-project.org/

[21] GNU Lesser General Public License. [Online]. Available:
http://www.gnu.org/licenses/lgpl.html

[22] Apache License, Version 2.0. [Online]. Available:
http://www.apache.org/licenses/LICENSE-2.0.html

