SimXMD: Integrated debugging of
C code and hardware components

Ruediger Willenberg, Paul Chow

Electrical and Computer Engineering, University of Toronto
Toronto, Ontario, Canada
willenbe@eecg.toronto.edu
pcleecg.toronto.edu

(Demonstration Paper)

Abstract—In our demonstration, we present SimXMD, a tool
that enables developers to debug microcontroller code and cus-
tom hardware simultaneously. SImXMD (Simulated eXperimental
Microprocessor Debugger). SimXMD connects a GNU Debugger
instance to a ModelSim instance simulating an embedded FPGA
system with a Xilinx Microblaze processor. We will demonstrate
debugging a multiprocessor FPGA system where the processor
cores are connected through custom-designed network hardware.
SimXMD is Open Source, and its modular architecture facilitates
extending it to other embedded processors as well as different
simulators or debuggers.

I. INTRODUCTION AND RELATED WORK

Developers of reconfigurable embedded systems have a host
of useful debugging tools at their convenience. To verify their
RTL designs on the behavioral and gate levels, they can
use digital system simulators [1][2]. FPGA vendors provide
on-chip logic analyzer functionality [3][4] that enables the
designer to trigger on and examine signals in a live FPGA
system via a JTAG connection.

On the software side, to debug the C/C++ or assembler
code running on an embedded processor core, designs can
be downloaded into hardware and then stepped through from
instruction to instruction or breakpoint to breakpoint with a
debugging tool like GNU Debugger (GDB) [5] running on the
host. The host connects to the on-chip system through JTAG
or serial or network interfaces. If the code behaviour is not
dependent on peripherals, a debugger can instead connect to
an instruction set simulator and debug code on an emulated
processor core. This process does not differ from debugging
code for any non-FPGA embedded microprocessor system.

other
on-chip
hardware
(not fully
verified)

CPU Perlphe'rr?\IA Peripheral B)
[Application] (not verified) -

Driver code I I
(untested)

Fig. 1.

FPGA

System with hardware/driver combination to debug

978-1-4673-2845-6/12/$31.00 © 2012 IEEE

The unique challenge of embedded systems in FPGAs can
be identified in Figure 1: Designers can develop their own
peripherals, which usually will need driver code to access
them. Furthermore, established peripherals can communicate
with other custom hardware implemented on the FPGA. In
both cases, the task of verifying the hardware functionality
involves writing software to interact with them. This software
itself is prone to design errors. To debug a system with
two untested interacting components, it is preferable if their
interaction can be precisely traced.

Furthermore, to debug embedded code in the established
way, an FPGA bitstream has to be generated after each
hardware change, which is time-consuming. Also, systems that
are functionally correct might not yet meet timing, so that
downloading to the chip for debugging is precluded.

SimXMD meets these challenges by allowing the CPU
code to be debugged in a full-system digital simulation. The
designer can step through C or Assembler code with the
software debugger and simultaneously observe cycle-by-cycle
behaviour of any hardware signal in the simulator’s wave
window.

Until EDK Version 10, Xilinx offered the now-deprecated
Virtual Platform Generator [6], which simulated older versions
of the MicroBlaze processor as well as its buses and standard
peripherals, though not the custom peripherals that are an
essential advantage of FPGA systems.

More recently, Xilinx has offered its ISim [7] simulator with
hardware co-simulation capability. It can partition the simula-
tion into a part being simulated conventionally in software,
and one part being run on an FPGA. Communication and
synchronization between the two parts is achieved over a JTAG
connection. ISim is very useful for co-simulating components
with real-time constraints like an Ethernet core; however,
debugging code running on an on-chip MicroBlaze while
simulating the peripherals on the host is still not possible.

JTAG

GDB

Insight GUI

Fig. 2.

Regular GDB debugging in Xilinx system

ModelSim

system_tb.v

system.v

GDB

SimXMD
Insight GUI

Fig. 3. Debugging with SimXMD

II. OPERATING CONCEPTS
A. Basics of remote GDB

The open-source GNU Debugger (GDB) software supports
the debugging of many types of embedded processors via the
GDB Remote Serial Protocol [8][9]. All communication be-
tween debugger and hardware is implemented through a simple
protocol of request-and-reply strings that can be exchanged
over TCP or UDP sockets, serial devices or POSIX pipes.

Figure 2 illustrates how GDB remote serial debugging
works on a system built with Xilinx EDK: A GDB in-
stance with the Insight Graphical User Interface [10] connects
through a TCP socket to the Xilinx Microprocessor Debugger
(XMD), which acts as a TCP server for the remote serial
protocol. The vendor-specific XMD connects through the
FPGA’s JTAG interface to an on-chip MicroBlaze(uB) proces-
sor using the MicroBlaze Debug Module (MDM). The MDM
can either use the processor’s built-in hardware breakpoints
for debugging, or function as a serial communication device
for a MicroBlaze binary with debug code.

B. SimXMD system setup

In contrast to Figure 2, which shows the customary setup
using XMD, Figure 3 depicts a SimXMD configuration: GDB
connects via TCP to SimXMD, which now acts as a TCP
server in XMD’s place.

On the other end of the chain, ModelSim has compiled the
testbench and system files and started the system simulation.
For the purpose of simulation, Xilinx EDK generates a Verilog
testbench file that instantiates the whole FPGA system and
generates external stimuli like the clock and reset signals.
SimXMD modifies this testbench to include further signals
and processes that help with the MicroBlaze debugging. After
starting the simulation in ModelSim, a fcl script sets up
a simple TCP server running in the background. SimXMD

connects to this server as a client. The TCP server receives
commands for the ModelSim command-line from SimXMD
and returns the output of the initiated commands. Since the
TCP server is a background process, commands can still be
entered by hand into the command-line, for example to run
ModelSim up to a certain point in time without debugger
control.

SimXMD’s task is to parse the requests that GDB sends
and translate them into ModelSim instructions:

o Register read requests are converted to commands that
query the simulation model’s processor registers.

o Breakpoints are managed as a set of address registers
in the testbench; their values are compared every cycle
with the processor’s program counter. If a breakpoint is
reached, the simulation is interrupted.

« Memory reads need to be translated from the requested
global memory address to the instances and addresses
of memory blocks that compose the complete processor
memory.

C. System and testbench modifications

SimXMD uses the Microblaze’s built-in trace port to mon-
itor the register state, the current program counter and the na-
ture of memory accesses. To support the current functionality,
the following changes are being made to the system top-level
file as well as to the testbench:

o system.v: To be accessible from the testbench!, the trace
port signals of the MicroBlaze instance need to be
connected to wires. Our modification inserts wires and
connects them to the instance’s trace port.

o system_tb.v: Since the internal MicroBlaze signals are
not accessible, the register file is not directly available.
Instead, the testbench manages its own copy of the
register file, which is updated according to the trace port
register access signals.

o system_tb.v: Instruction memory breakpoints are inserted
by comparing the breakpoint registers with the trace port
program counter and, on identity, calling the Verilog
$stop task to interrupt simulation.

The testbench modifications are actually written into a sep-
arate file, and then included into the file with a single line
‘include instruction. This keeps the testbench simple and
eases other common testbench modifications, e.g. the inclusion
of board components external to the FPGA, like DRAM.

D. Sequence of operation

To debug with SimXMD, the following steps have to be
taken:

1) Generate a simulation model with EDK and start Model-
Sim

'In the currently used Verilog and VHDL dialects it is not possible to
access signals in VHDL components lower in the hierarchy from the Verilog
top-level or testbench. Since most Xilinx EDK components are VHDL-based,
only the information in the system top-level file, which can be generated in
Verilog, is accessible for the testbench.

SimXMD

- debugger: debug_base
- processor: core_base
- simulator: sim_base

?

t

debug_base

core_base

sim_base

processor: core_base
debug_sock: QTcpServer

debugger: debug_base
simulator: sim_base

processor: core_base
sim_sock: QTcpSocket

yay

7 7

]
debug_GDB

core_Microblaze

sim_Modelsim

Fig. 4.

2) Start SimXMD (optionally supply project path informa-
tion on the command-line)

3) If not done with command-line arguments, choose an
EDK project path (and, in multi-core systems, the core
to be debugged) through the GUI

4) SimXMD will parse the project files for relevant informa-
tion like the structure of memory in the simulation model
and the binary to be debugged

5) SimXMD will modify the system and testbench files with
the additions described in Section II-C

6) Compile the simulation model, load the simulation and
enable the wave display

7) Start the tcl script to run the ModelSim TCP server
8) Connect SimXMD to the ModelSim server
9) SimXMD runs the simulation until either the Microblaze
starts execution (Address 0) or up to the beginning of
main()
Start GDB and connect to SimXMD’s server port; GDB
can optionally be started from SimXMD. GDB will
request some initial information like the program counter
state; SImXMD will request this information from Mod-
elSim and reply to GDB; GDB will indicate the current
position in the source code (First assembler instruction
in the C runtime or the first line of main())

11) Continue debugging as you see fit

10)

III. SOFTWARE ARCHITECTURE
A. Graphical User Interface

SimXMD has been written in C++ under use of the Qt
Application Framework [11], which is available for open
source projects under the Lesser GNU Public License (LGPL)
[12]. Qt provides portable Graphical User Interface (GUI)
components as well as portable components for other operating
system functionality like sockets. While a GUI is not strictly
necessary for SimXMD functionality at this point (all relevant

SimXMD class hierarchy

operating parameters can be provided through command-line
arguments), a GUI offers additional flexibibility, e.g. the option
of changing settings without re-starting SimXMD. Currently,
the SimXMD GUI also allows a closer look at its operation
through three log windows that report GDB and ModelSim
communication and processor-specific information.

Furthermore, interaction with SimXMD might be necessary
for envisioned future functionality. An example would be the
capability to go back to an earlier point in time in the sim-
ulation where a hardware misbehaviour has been pinpointed,
and show the related position in the C code. This function
would need to be requested by the user through the GUI;
SimXMD would then read the current time cursor position
from ModelSim, and then request model state information for
that time, so that the next GDB requests can be answered
referring to that point in time

B. Modularity

SimXMD makes use of polymorphism in C++ to provide
for extensibility. Figure 4 shows a simplified version of
SimXMD’s class hierarchy. The debugger interface, processor
and simulator interface are modeled in the abstract base classes
debug_base, core_base and sim_base. They provide generic
functionality to communicate between each other that is inde-
pendent of what specific debugger, processor and simulator
are used. In our current configuration, these interfaces are
inherited and implemented by debug_GDB, core_Microblaze
and sim_Modelsim respectively. The application’s main GUI
object SimXMD holds pointers of the three base class types.
However, they actually each point to an object of an inherited
class, as defined by command-line options or even changed
later during operation. In our current implementation, only one
child class each exists, so that only a MicroBlaze processor
can be simulated with ModelSim and debugged with GDB.
Support for a new processor, for example the Altera Nios
I, can now be added to the tool with limited effort by

| BlockRAM |
|
Test
MicroBlaze Network| data
Processor %.nterface‘

receive_data.c

:

Crypto
Co-processor

system.v

system_tb.v

Fig. 5. Processor system for debug demonstration: MicroBlaze with on-chip
memory, network peripheral and cryptographic co-processor

implementing a new class inheriting from core_base, without
communication to the debugger or simulator changing. This
class would need to handle the different structures of the Nios
IT simulation model and the Altera SoPC Builder projects.
The same inheritance-based process works for other debuggers
and other simulators, as long as they support a basic set of
functionality that is essential for SimXMD operation. Note that
a number of non-GDB debuggers support GDB’s remote serial
protocol; in these cases, no other debugger class is required.

C. Platform Independence

A positive side-effect of using the Qt framework for de-
signing the tool is operating system independence. An appli-
cation that handles all of its user interface, file accesses and
communication channels through Qt classes can be compiled
without changes for 32- and 64-bit versions of Linux, Win-
dows and MacOS. While we have not evaluated this yet, we
expect SimXMD to work without problems with the Windows
versions of Xilinx EDK and ModelSim.

Finally, the simultaneous debugging of several processor
instances on the same chip could be very useful for parallel
systems. SimXMD should support this at some point.

IV. AVAILABILITY & COOPERATION

The most current version of SimXMD is available as
open source at http://www.eecg.toronto.edu/~willenbe/simxmd
SimXMD is published under the Apache License 2.0 [13],
essentially allowing free use and modification with attribution
in non-commercial and commercial projects.

We further invite interested parties to join us in the devel-
opment and extension of SimXMD. We especially envision
adding support for other FPGA processors and simulators.
Please contact us under willenbe @eecg.toronto.edu.

We also hope for vendor support, at this point especially
from Xilinx, to enhance compatibility with their intellectual
property and tools.

V. DEMONSTRATION OVERVIEW

Figure 5 shows the simple processor system that we are
using for our SimXMD demonstration: A MicroBlaze pro-
cessor is connected via 32-Bit FIFOs (Fast Simplex Links)
to two peripherals, a network device and a cryptographic
co-processor. The network peripheral sends received network
packets with encrypted data to the processor. The software
running on the CPU strips the header off the packet, sends the
data to the co-processor for decryption and reads the decrypted
data back.

For the demonstration, a testbench provides the simulated
system with input packets. The system shows two issues:

1) The decrypted packet data starts with a wrong data word

and misses the last data word.

2) After resetting the system once, the co-processor pro-

duces completely wrong data.
With SimXMD, we can now debug these problems by fol-
lowing the code execution and the peripheral operation at the
same time.

VI. CONCLUSION

We demonstrated SimXMD, a tool to debug C and assem-
bler code on processors during full-system FPGA simulation.
SimXMD currently provides for all essential features to debug
on a Xilinx MicroBlaze processor with GDB and ModelSim.
More debugging features, as well as extension to other pro-
cessors and software tools, is planned as future work.

ACKNOWLEDGMENT

We would like to extend our gratitude to Xilinx, CMC
Microsystems, Embedded Systems Canada (emSYSCAN) and
NSERC for supporting our research.

REFERENCES

[1] Mentor Graphics ModelSim. [Online]. Available:
http://www.model.com/

[2] Cadence incisive enterprise simulator. [Online]. Available:
http://www.cadence.com/products/sd/enterprise_simulator
/pages/default.aspx

[3] Cadence Incisive Enterprise Simulator. [Online]. Available:
http://www.xilinx.com/tools/cspro.htm

[4] Altera SignalTap 1I. [Online]. Available:

http://www.altera.com/products/software/quartus-ii/subscription-
edition/verification-board-level/swf-ver-bdlevel.html

[5] GDB. the GNU Project Debugger. [Online]. Available:
http://sources.redhat.com/gdb/

[6] Xilinx Virtual Platform Generator. [Online]. Available:
http://www.xilinx.com/itp/xilinx 10/help/platform_studio
/ps_c_dbg_debugging_sw_vp.htm

[71 Xilinx ISE Simulator. [Online]. Available:
http://www.xilinx.com/tools/isim.htm

[8] GDB User Guide: Remote Serial Protocol. [Online]. Available:

http://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html
[9] (2008) EMBECOSM Howto: GDB Remote Serial Protocol -
writing a RSP server, Application Note 4, Issue 2. [Online].
Available: http://www.embecosm.com/appnotes/ean4/embecosm-howto-
rsp-server-ean4-issue-2.html
[10] Insight GDB GUI. [Online]. Available: http://sources.redhat.com/insight/
[11] Qt Framework. [Online]. Available: http://qt-project.org/

[12] GNU Lesser General Public License. [Online]. Available:
http://www.gnu.org/licenses/lgpl.html
[13] Apache License, Version 2.0. [Online]. Available:

http://www.apache.org/licenses/LICENSE-2.0.html

