Multi-cycle Processor Modification
Introduction

Modification of the multi-cycle processor deals with changing the datapath and control. In this design,
the datapath is implemented in ‘multicycle.v’ (Verilog implementation), and in ‘multicycle.bdf
(schematic implementation), and the control is implemented in ‘FSM.v'. When implementing the design,
modifying the control first is suggested.

Review of Verilog

Verilog code consists of three major parts: the header, the module declaration, and the body.
Module declaration consists of the keyword ‘module’ and its module name, and all inputs and outputs
appear in brackets. See Figure 1.1.

E@’ multicycle. v l E@c F5H.v l
3 '

B 20 Emodule F5M

21 B[R ___________
dd 27 22 [reset, instr, clock, N

23 N, Z, }l

24 :Ferite, AddrSel, MemRead, \'\
,; 25 HMemWrite, IRlcad, ER15el, MDRload, :I’
' 26 IR1R2Load, ALU1, ALUZ, ALUcp, T
A 27 |ALUOutWrite, RFWrite, Regln, Flagirite, state ||
L'} 28)

Figure 1.1 — module declaration with the module name and its inputs and outputs

To add an input or output in Verilog code, simply add the name inside the brackets of the
module declaration. Then, add a line indicating whether it is an input or output, together with its size (if
the signal is more than one bit in size).

input/output declaration

239 input [3:0] instr;
l'ﬂ 'ﬁ 30 input H, Z:
31 input reset, clock:
@ 32 oatput PCwrite, AddrSel, MemRead, MemWrite, IRload, R13el, MDRload;
e 33 output RI1R2Load, ALTl, ALUCutWrite, RFWrite, RegIn, FlagWrite;
55 b 34 output [2:0] RALUZ2, ALUop;
| — 35 output [3:0] =state;

Figure 1.2 — declaration of inputs and outputs

If any output requires its value to be stored, or requires to be used in an always block, then a
‘reg’ declaration is required. See Figure 1.3 and 1.4.

@ 32 cgutput PCwrite, 24ddrSel, MemRead, MemWrite, IRload, R15el, MDERload;
= =5 ontput RI1RZ2Load, ALU1, ALUCutWrite, RFWrite, RegIn, FlagWrite;
s6s ab 34 cutput [2:0] ALU2, ALUop:
| — 3s output [3:0] =state:
36
= w2
= = 37 reg [3:0] state;
38 reg PCwrite, AddrSel, MemRead, MemWrite, IRload, Rl15el, MDRload:;
35 reg RIR2ZLoad, ALUl, ALUCutWrite, RFWrite, Regln, FlagWrite:;
40 reg [2:0] ALUZ, ALUop:

Figure 1.3 — outputs and registers declarations

87 always @(%)
h ¢ 88 = begin
89 = case (state)
a0 reset s: //contrel = 19'b0000000000000000000;
91 = begin _ _ _ _
92 | BCurite = 0; N E
4 % a3 | AddrSel = 0; :,
W a4 | MemRead = 0; 1
% % a5 | MemWrite = 0; ::
0o g :IRload = 0; ||
a7 [R1Sel = 0;)
L] 58 |MDRload = 0; Iy
as | R1R2Load = 0; :
255 b 100 Iatml = o;]
| = 101 |ALUZ = 3'b000; ¥
— 102 |ALUcp = 3'b000; ::
= 103 | ALTUCutWrite = 0; II
104 I RFWrite = 0O; N
105 IRegI:l = 0; 1
108 (Elagiizite =0; ________ .
107 end

Figure 1.4 — outputs which require their values to be stored
Modifying the Control

The Verilog implementation of the control is called ‘FSM.V'. If new signals are to be introduced,
refer to “Review of Verilog”. If new states are required, add the new states to the parameter
declarations. Each state parameter contains the state name and a numerical value. Any numerical value
can be assigned to a state, as long as it is unique. The width of the parameter values may have to be
increased from the default size of 4 bits.

44 parameter [3:0] reset s =0, cl =1, c2 = 2,
45 c3_asn = 3, c4 _asnsh = 4, c3_shift = 5,
. 46 c3 ori = 6, ¢4 ori =7, c5 ori = 8,
Before Declaration 47 c3 load = 9, c4 load = 10, c3 store = 11,
48 c3 bpz = 12, c3 bz = 13, c3 bnz = 14;
44 parameter [3:0] reset =2 =0, ¢l =1, c2 = 2,
45 c3_asn = 3, c4_asnsh = 4, c3_shift = 5,
i 46 c3 ori = 6, c4 ori = 7, ¢85 ori = 8,
After Declaration 47 c3 load = 9, c4 load = 10, c3 store = 11,
48 c3_bpz = 12, o3 bz = 13, c3_bnz = 14;

Figure 2.1 — declaration of new load state

Once a new state has been declared, the state transition case block must be modified. The name
of each new state needs to be included as a new case of the state transition case block. See Figure 2.2.

53 always @ (posedge clock or posedge reset)

54 = begin

=3 if (reset) state = reset_s;

=141 else

57 = begin

58 = leazeistatey ~~~~ T ToToTTooTmoomoTmommommmmmmmmmmmEEEETETOA
539 ! reset_s: state = cl; // reset state :‘
&0 ! cl: state = c2; f/ ecyele 1 I:
61 = : c2: begin // ecyele 2 1
6z | if(instr == 4'b0100 | instr == 4'b0110 | instr == 4'bl000) state = c3_asn; N
63 elze if(instr[2:0] == 3'b011) state = c3_shifr;

64 : else if(instr[2:0] == 3'blll) state = c3 ori;

&5 1 elze if(instr == 4'b0000 } state = c3_load:

L1 1 else if(instr == 4'b0010) state = c3_store;

&7 1 elze if({ instr == 4'bl101) state = c3_bpz;

68 1 else 1f(instr == 4'b0101) state = c3_bz;

&3 1 else if(instr == 4'bl001) state = c3_bnz;

i | g EE RS state transition
Tz 1 c3_asn: state = c4_asnsh; // cycle 3: ADD 5UB NAND case block
73 1 c4_asnsh: state = cl; // cyecle 4: ADD SUB MAND/SHIFT

T4 1 c3_shift: state = c4_asnsh; // cycle 3: SHIFT

75 1 c3_ori: state = cd_ori; // cyele 3: CRI

16 I c4_ori: state = c5_ori; // cycle 4: CRI

77 1 c5 ori: state = cl; // cyele 5: CRI oA

g | ©3 lead: _ _state = c4 load:_ _ //_cycle 3: LOAD _ _ _ _ _ _ modified state tran

72 1 |c4_1oad: state = c5_load; f/ cycle 4: LOAD (modified) |

80 ' leslomai _svave =gli _ _ _ /[cycle 5: LOAD (mcdified) |

81 1 c3_store: state = cl; // cycle 3: STORE

82 ! c3_bpz: state = cl; f/ cycle 3: BPZ

83 ! €3 _bz: state = cl; // cyecle 3: BZ

84 ! c3_bnz: state = cl; // cycle 3: BNZ

85 :_EDECES_E__[I
86 end 52

Figure 2.2 — modified state transition case block with new load state introduced

After the new state has been added and the state transition case block has been modified, the
control signals case block (in the level-sensitive always block) can now be modified. See Figure 2.3.

22 B case (state)

93 reset s //control = 13'b0000000000000000000;

94 = r= " "pegan -~~~ T TToTTTmmmmmmmmmmmEmEEEEmEEEmE T

35 ! PCwrite = 0:

26 ! AddrSel = 0;

97 ! MemRead = 0:

98 ! MemWrite = 0O;

29 ! IRload = 0;

100 : R1Sel = 0

101 . MDRload = 0;

102 | R1R2Load = 0:

103 ALU1 = 0;

104 : ALU2 = 3'b000;

105 1 ALUcp = 3'b000;

106 1 ALUCutWrite = 0;

107 1 RFWrite = 0;

io08 1 RegIn = O;

109 1 FlagWrite = 0:

110 1 end] I
1 control signals
: case block

404 | default: /fcontrol = 19'b0000000000000000000;

405 B 1 begin

406 | PCwrite = 0;

407 1 AddrSel = 0;

408 1 MemRead = 0;

409 1 HemWrite = 0O;

410 1 IRload = 0;

411 1 R1Sel = O

412 1 MDRload = 0;

413 1 R1R2Load = 0;

414 1 ALU1 = O:

415 1 ALU2 = 3'b000;

416 1 ALUocp = 3'b000:

417 1 ALUCutWrite = 0;

418 1 RFWrite = 0:

4139 1 RegIn = 0;

420 : FlagWrite = 0;

421 end

422 : endcase

afF—) m |

e]

Figure 2.3 — control signals case block with output control signals

When a new state is added, the control signals for that state need to be added in the control signals case

block. When making modifications to existing states, changes can be made directly to each control

signal. See Figure 2.4.

315
316
317
318
315
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

c4 load: B
= RN <1 .«
! PCwrite = 0; ‘\l
: ZddrSel = 0; -
| MemRead = 0; : 1
| MemWrite = 0; ‘|
| IRload = 0; |
I R1Sel = O: (1
1 MDRload = 0; | 1
l FiRILoad = 0; B modified control signals
1 ALU1 = 2'b00; L
| ALU2 = 3'b000; ‘:
1 ALUop = 3'b000; I
1 ALUCutWrite = 0; ‘I
1 RFWrite = 1; I
| RegIn = 1; Iy
| FlagWrite = 0: Iy
] RwSel = 07 _ _ _ e e b
end
Fes lgad: -~~~ "~~~ 777=7=7=7=7=77=7=7+7
= - begin

FCwrite = 0;

AddrSel = 0;

MemRead = 0;

MemWrite = 0;
IRload = 0;

Ri15el = O;

MDRload = O: new control signals
Ri1R2Load = 0;

ALU1 = 2'b00: case block
BLUZ = 3'b000;

ALUocp = 3'b000:

ALUCutWrite = 0;
RFWrite = 1;

Regln = 0O;
FlagWrite = 0;
1 RwSel = 1

Figure 2.4 — modification of control signals

Modifying datapath

Verilog

If new simple components, such as a MUX or a register, which are not listed in the
design implementation, are required, they can be generated using the MegaWizard.
MegaWizard allows the creation of customized hardware components, such as MUXes,
registers, or memory.

a:: File Edit View Project Assignments Processing | Tools | Window Help

B
H DEE |§ | LB |) cu ||mumm|e EDA Simulation Tool ’
& T Run EDA Tiring Analysis Tool
¥ multicycle ¥
~ v n Launch Design Space Explorer
40 ff e -
% 41 wire clock, reset; Q} TimeQuest Timing Analyzer
Y 42 wire IRLoad, MDRLOad, Mem - N
ar 43 wire ALU1, ALUCutWrite, E S0V50F
LB - . . ,
44 wire [7:0] R2wire, PCwire N
ﬁ» az I {7:0] AIUlwire, ALU2 @ Ch\p.rplarmar (Floorplan & Chip Editor)
46 wire [7:0] IR, SE4wire, z MNetlist Viewers b
47 wire [7:0] regD, regl, re _ R
48 wire [7:0] constant; SignalTap I Logic Analyzer
—_— 49 wire [2:0] ALUCEp, ALU2: = In-System Memory Content Editor
A 22 W:_LIE 1{_[1 0] R;—]_'n; B Logic Analyzer Interface Editor
wire wire, Zwire;
P 52 reg N, z: ! In-System Sources and Probes Editor
% 53 SignalProbe Pins...
% 54 ’f @ Programmer
—_— 3 assign clock = EKEY[1]:
U 56 assign reset = ~KEY[0]: / Megaﬂizald Plug-In Manager...
57 -
T an 51 SOPC Builder...

Figure 3.1 — “MegaWizard Plug-In Manager...”

To run “MegaWizard Plug-In Manager”, select Tools > MegaWi.zard Plug-In Manager... (See
Figure 3.1).

Once all the components have been created, they must be instantiated and wired. If

new wires are required, new wire declarations must be added. However, if only the width of the

wire changes, one can modify or add the width size as required. See Figure 3.2.

Gile Edit View Project Assignments Processing Tools Window Help = [=
=H| & B | o | [multicyele Bk : LA X Tk Ml k& B 4 e
multicycle ¥* & F5M.y]
40 Iy Registers/Wires A
41 // FSM registers/wires
42 wire clock, reset;
43 wire IRLoad;
44 wire MDRLoad;
45 wire MemRead;
46 wire MemWrite;
47 wire PCWrite;
48 wire RegIn:
49 wire Lddr3el;
50 wire ALUCutWrite:
il wire FlagWrite; E
52 wire R1RZ2Load;
53 wire Rl5el;
54 wire RFWriges
55 wire [1:0] ALUL;
56 wire [2:0] ALU27
57 wire [2:0] RALUCD;
58 / DATAR registers/wires
59 wire [7:0] R2wire, PCwire, Rlwire, RFoutlwire, RFout2wire;
&0 wire [7:0] ALUlwire, ALU2wire, ALUwire, ALUCut, MDRwire, MEMwire;
61 wire [7:0] IR, SE4wire, ZESwire, ZE3wire, AddrWire, RegWire:
62 wire [7:0] regO, regl, regl, reg3;
63 wire [7:0] constant;
64 wire [1:0] R1_in;
65 wire Nwire, Zwire;
&6 reg N, Z:
Figure 3.2 — wire declarations with different wire sizes (widths)
Once all the components are created and wires are declared, they can be wired directly
as shown in Figure 3.3.
83 RFSM Control |
84 .reset (reset), .clock(clock), .N(H), .Z(2), .instr(IR[3:0]),
85 .PCwrite (PCWrite), .Addr5el (Addr5el), .MHemRead (MemRead) , .MemWrite (MemWrice),
g6 .IRload (IRLoad), .R1521 (R1521), .MDRload (MDRLoad) , .R1R2Load (R1R2Load) ,
87 JALTL (ALUL) , JALUCutWrite (ALUCutWrite) , . REWrite (REWrite) , .Regln (Regln),
88 .FlagWrite (FlagWrite) , .ALUZ2 (ALT2) , .ALUop (ALUCEH)
89):
Figure 3.3 — Wiring components
e Schematic

In schematic, to create a new component, double click at the background of the design.

Once double click, a ‘Symbol’ screen would pop-up. If the component does not exist under

‘Project’, new components can be created through the library or MegaWizard under another

sub-folder. See Figure 3.4.

Symbol

Libraries:

23 c:/program filesdalteradquartus

4| i +

Mame:

| B

[Repeatinsert mode
[~ Inzert symbal &z block
I~ Launch Megawizard Plug-n

tegatwizard Plug-n Manager... |

Ok I Cancel |

Figure 3.4 — ‘Symbol’ dialog box allows creation of symbols/components

After all components are created and placed on the background, they are to be wired.
Wires are located on the left of the Quartus window screen. See Figure 3.5.

=@

A

A

JJ 100 @

Figure 3.5 — Wiring tools

Wire each component together by dragging the wires from one component input
to another component’s output or vice-versa.

