ECE 243 — Computer Organization 1

Simple Multi-Cycle Processor

Overview This implementation of a simple multi-cycle processor consists of the datapath,
control (FSM), and various inputs and outputs. The processor supports only
fixed-length 8-bit instructions and data, and can only access memory one byte at
a time. Overall, 10 instructions are implemented in hardware.

Functional The inputs and outputs include:

Description = Inputs:

O reset —clears the values of all registers and control signals, resets
the condition flags, and resets the control FSM (KEY[0])

0 clock —all writes and cycle transitions happen on the positive
edge of the clock (KEY[1])

O HEXsel[1..0] —selects one of the four registers to be displayed on
the hex displays; this exists for the users of the DE1 board, which
does not have many hex displays. The chooseHEXs circuit
component can still be used to display four values simultaneously
(for example, of the four registers), but that requires eight hex
displays, available only on the DE2. Users of the DE2 can make
the necessary circuit connections if they so desire. (SW[17..16])

= Qutputs:
O PCWrite — LEDR[17]
AddrSel — LEDR[16]
MemRead — LEDR[15]
MemWrite — LEDR[14]
IRLoad — LEDR[13]
R1Sel — LEDR[12]
MDRLoad — LEDR[11]
R1R2Load — LEDR[10]
ALU1 - LEDR[9]
ALU2[2..0] — LEDRJ8..6]
ALUOp[2..0] — LEDR[5..3]
ALUOutWrite — LEDR[2]
RFWrite — LEDR[1]
Regln — LEDR[O]
FlagWrite — LEDG[7]
N (negative) — LEDG[1]
Z (zero) — LEDG[0]
Register Display
= upper 4 bits HEX1[6..0]
= |ower 4 bits HEX0[6..0]
= Note: as mentioned previously, the circuit can be modified

O 0O 000000000000 O0oOO0oOOo

ECE 243 — Computer Organization 2

Instructions
(Hardware)

Assembler

to support the remaining 6 hex displays, available on the
DE2 board.

= Addition (add)

= Subtraction (sub)

= NAND (nand)

= Shifting (shift)

= OR with Immediate (ori)

* Load (load)

= Store (store)

» Branch If Positive Zero (bpz)
= Branch If Zero (bz)

= Branch If Not Zero (bnz)

An assembler is provided with the processor to aid students with the process of
creating simple programs. It generates a Memory Initialization File (MIF) that
can be used to initialize the memory of the processor design. The assembler can
be invoked in the shell (after logging in using SSH) by typing “asm”. If this does
not work, make sure that the assembler is located in the working directory or is
configured to run properly. The assembler accepts one mandatory argument
and one optional argument. The first argument is the name of the file containing
the assembly program, and must be provided. It can have any file extension, but
we suggest using “.s”. The second argument is optional, and is the name of the
output MIF file. If it is not provided, the default output filename is always
“data.mif”. This name was chosen because the Quartus implementation of the
processor assumes “data.mif”, located in the same directory as the design, to be
the initialization file. This can be changed, however, using a wizard in Quartus.

The assembler is based on the concept of columns, similar to many other
assemblers. The first column begins at the first character of a line, the second
column is separated from the first by any amount of whitespace, and the third
column is separated from the second in the same way. If more columns are
present, the assembler will issue an error, unless the text immediately after the
third column is a comment.

Comments are indicated using a semicolon. The assembler will ignore anything
following a semicolon, unless the semicolon interrupts an instruction or
directive, in which case an error will be issued.

The first column must either be blank, or contain a unique label. Please note
that this assembler only allows labels on the same line as the
instruction/directive to which they refer. A label cannot appear on a line by
itself.

ECE 243 — Computer Organization 3

The second column must contain a valid keyword identifying the instruction or
directive. Finally, the third column must contain the parameters/operands.
Please note that in this assembler no spaces are allowed in the third column. If
two operands are required, they are separated using a comma without spaces in
between.

Numerical constants can be specified in binary, octal, decimal, or hexadecimal
format. Binary values are preceded with a ‘%’ sign, octal values are preceded by
an initial zero (0), and hexadecimal values are preceded with a ‘S’ sign. If none of
these characters precede the number, it is assumed to be in decimal format.
Please note that negative signs are only supported when using the decimal
format.

Overall, 14 keywords are supported:
= addril,r2
= subril,r2
= nandrl,r2
= shiftrl,imm3
0 shiftl rl,imm2
0 shiftrrl,imm2
= oriimm5
* Joadrl,(r2)
= storerl,(r2)

= bpz ADDR
= bz ADDR
= bnz ADDR
= orgimm8
= dbimm8

The shift instruction, as described in the course notes, accepts a 3-bit value. Bit
#2 determines the direction (0 — right, 1 — left), and bits #1 and #0 determine the
number of shift positions. For convenience, “shiftl” and “shiftr” are provided to
shift left and right, respectively. They accept a number between 0 and 3,
specifying the number of shift positions. They are not true instructions, because
they both get converted to an equivalent “shift” instruction. Please note that
imm2, imm3, and imm5 must be unsigned positive numbers (i.e. negative signs
are not allowed). The brackets around “r2” for “load” and “store” are also
required. ADDR can be either a previously defined label, or a 4-bit signed
number. Please note that the effective branch address is calculated as follows:
current_address + imm4 + 1. Do not forget about the 1 that is added, especially
when using backward branching. “org” can be used to set the current address. It
is specified here to use imm8, but the actual width of the number depends on
the memory size. For this lab, a number between 0 and 255 can be used. “db” is
used to place a single byte of at the current address. The byte can be either an

ECE 243 — Computer Organization

8-bit number, or a character in single quotes. Only one byte can be specified per
“db” directive. While “org” and “db” are not instructions, they can be associated
with a label, identifying the new address that they define (in the case of “org”),
or the address at which they place their data (in the case of “db”). Please note
that a label associated with an “org” statement and with an instruction or
directive immediately following it identify the same address, unless another

“org” statement is the following directive.

1. To change the initial contents of the memory, first open the Quartus

Changing
Initial
Memory be able to change this
Contents
project called “
O New.. CorleN
& Open... Ctr+0
Close Ctrl+F4

i) Mew Project Wizard...

B Ctrl+)
Convert MAX+PLUS I Project...
Save Project

Close Project

Save Ctrl+5
Save As...

Save Current Report Section As...
File Properties...

Create / Update 3
Eport...

Convert Programming Files...

Page Setup...
Print Preview
Print.. Cirl+P

Recent Files r

Recent Projects 3

Exit Alt+F4

2.

to a different file name.

multicycle.qpf”.

MegaWizard Plug-In Manager - LPM_RAM_DQ [page 1 of 6]

(it

)

LPM_RAM_DQ

Version 7.1

egs/Clken/Byte EnablefAdrs

address(7..0]
clock

Currently selected device family:

Cydone 1T

1 M4K

How wide should the 'a' output bus be? B[] bits
How many B-bit words of memory? 256 [N words
Wihat should the memory block type be?
% Auto O M512 MK
) MRAM Lcs Options...
Set the maximum block depth to Auto % words

Wihat clocking method would you like to use?
* Single dock
Dual dock: use separate ‘input and ‘output’ docks

[Cancel || <Back [Next> |[Enish |

By default, the memory block used in the design assumes that its initial contents
come from a MIF file called “data.mif”. However, it may sometimes be useful to

€} Open Project d [===)
Lok [Miticycte CPU = = ®EeFEr
I= Hamne Date mwdd... Type Size Tags
= b
Pecert Maces
greyhox tmp
B Eegdea
Desktop
-
seomthing
A
Compuser
[™
-
Metwadk
multicycle.qpf
Fle gome: rticyeie o =] | g |
Fies o e [Custs 1 Prsect ot gt cummuncm) =] ool |

Double click on the component labeled “Data Memory”.

ECE 243 — Computer Organization

3. Select “Mem Init”, and locate the MIF file generated by the assembler.
=5

MegaWizard Plug-In Manager - LPM_RAM_DQ [page 4 of 6]

LPM_RAM_DQ
Version 7.1 ,m

Documentation

Do you want to spedfy the initial content of the memory?

memaory

1 No, leave it blank
[tnitialize memory content data to XX..X on power-up in simulation

data[7..0] ql7..0]
wren
address[7..0]

clock

® Yes, use this file for the memory content data
(fou can use a Hexadedmal (Intel-format) File [hex] or a Memory

Initiglization File [.mif])
File name: | T g\

Location of data generated by an assembler

[Allow In-System Memory Content Editor to capture and update content
independently of the system dock

The 'Instance ID' of this RAM is: MNONE

Resource Usage

1 M4K
| Cancel ” < Back ” Mext > ” Finish |

4. Compile the project.

R D k(B e

Compile!!!

5. Run the program!

