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Abstract 
 

  Caches have been used to successfully alleviate the 
degradation in performance caused by accessing slow 
storage components, and hence have become a prominent 
part of memory hierarchy.  In this thesis, a cache generator 
is proposed which can produce a variety of different caches 
with different sizes.  This allows designers to effortlessly 
create, alter, and examine different caches in order to best 
meet the needs of their target system.   The target of these 
cache designs is for FPGA designs, specifically, Altera’s 
Stratix FPGA.  Analysis of the area and speed of the 
generated designs demonstrated that the designs can meet a 
wide range of design specifications and are in general fast 
and low-cost cache designs.   
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1  Introduction 

  Over the last couple of decades, memories have failed to keep up with the 

increase in speeds seen in microprocessors [6].  This is known as the processor-memory 

performance gap, which is a growing problem showing no signs of abating.  The most 

common way to bridge this performance gap is through the use of caches.  Caches were 

commercially introduced more than 30 years ago in the IBM 360/86 and have been an 

active area of research for even longer [3].  Several different types of caches were 

developed and were continuously improved upon, and as a result, significant performance 

gains can be achieved through their use.  Since then, caches have become a salient 

element in today’s memory hierarchy.  They are consistently used in both general 

purpose and embedded computer systems, as well as in hard disks, web servers, internet 

browsers, and any other devices beset by slower storage components.   

 The purpose of this thesis is to propose a cache generator which, given a set of 

input parameters, will output an efficient cache implementation satisfying the given 

parameters.  The generator is very versatile allowing for a number of different cache 

types to be generated, each with a number of configurable options.  Users can select the 

appropriate size, latency, interface, and behaviour for their desired cache and use the 

proposed generator to produce an implementation of it.  The implementations generated 

are targeted for FPGA designs, specifically, Altera’s Stratix family of FPGAs.  Altera’s 

recent release of version 3.0 of its soft processor Nios includes a cache, indicating an 

evident need for caches in FPGA designs. 

 The remainder of this document is organized in the following sections in order of 

appearance:  Section 2, the Background section, explains concepts fundamental to 
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understanding the designs and results in this report; section 3, the Design section, 

describes the various cache designs that can be generated; section 4, the Results section, 

examines the resource utilization and speed performance for caches of various types and 

sizes; section 5, the Conclusion section, includes concluding remarks.  Supplementary 

information is contained in three appendices. 
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2  Background   

2.1  Stratix and its device resources 

 Stratix is the name given to Altera’s currently most advanced family of 

programmable logic devices.  Using state of the art 0.13 micron technology, it contains 

an abundance of resources and permits operational speeds of up to 420 MHz [1].  

Resources in an FPGA come in two basic forms: Logic elements and memory blocks.  

Logic elements, or LEs, are used to implement arbitrary logic functions and consist of a 

4-input look up table (LUT) and a D flip flop.  Memory blocks are used as storage 

components, and in Stratix, come in three different sizes: 512 bits, 4 kilobits, and 512 

kilobits (not including parity bits).  These memory blocks are named M512, M4K, and 

M-RAM (Mega RAM) according to their size.  Respectively, they can operate at 318 

MHz, 291 MHz, and 256 MHz.  All memories are dual port memories with customizable 

address and data widths on each port.  However, the M512 can only use one port for 

reading, and the other for writing, Altera refers to this as a “simple dual-port RAM” [1].   

 Logic Elements and memories are distributed throughout the chip and can be used 

to build arbitrary digital systems as long as the device has enough to do so.  Thus, 

resource usage (or equivalently, area usage) is generally reported in terms of the number 

of logic elements (LEs), and individual memories used in the design. The size of a circuit 

is a crucial parameter in any digital design especially since it is directly proportional to 

cost.  In this case, larger circuits call for larger and hence more expensive Stratix chips.  

Thus minimizing area is a high priority in all designs.   
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2.2  CAD flow 

 The generator outputs a Verilog description of the cache as well as a Quartus 

project file.  Quartus is Altera’s Computer Aided Design (CAD) software package.  It can 

synthesize HDL code with its own native compiler and then place and route the design 

onto a selected Altera FPGA.  Since the Quartus software package is fully capable of 

accomplishing all aspects of the implementation of the caches onto a Stratix FPGA, it 

was the only tool used in the CAD flow of this project.  Specifically, the CAD software 

used was Quartus II version 2.1. 

2.3  Speed and fmax 

Quartus produces a report of resource utilization and timing analysis.  One of the 

most important measurements made during timing analysis is the register to register 

maximum frequency (fmax) which is used to define the speed of a system.  This metric 

represents the maximum speed the clock signal can have while ensuring data is correctly 

transmitted and received by all registers in the system.  The two registers which are 

furthest apart, in terms of the time it takes for data from the source register to reach the 

destination register, define the fmax.  The path taken by the slowest signal from this 

source to the destination is called the critical path. 

2.4  Latency 

Latency is defined as the number of cycles required to complete an operation not 

including the cycle in which it was issued.  Hence, an operation with a latency of one will 

receive its request in one cycle and deliver its result in the next.  Designers must choose 

how to allocate the time required to complete an operation.  An operation can be 
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distributed over multiple clock cycles, or completed in one long clock cycle.  This 

negotiation of latency and frequency is highly application specific. 

2.5  Caches 

 A cache can only store a subset of the data available in the address space.  If the 

currently addressed data is found in the cache, a hit is said to have occurred and the cache 

can satisfy the memory operation without involving the slower memory.  If, however, the 

data is not found in the cache, then a miss is said to have occurred and the slower 

memory must be accessed.  An effective cache is one which minimizes misses, hence 

having a high hit rate.   

Data values in the cache are identified using a tag.  A tag is the part of the address 

required to uniquely identify the data.  Tags are each stored in a tag store alongside its 

corresponding data stored in a data store.  To detect a hit, the cache must compare the tag 

of the currently addressed data, to all the tags in the tag store.  These are some of the 

basic terminologies relating to caches.  There are several adjustable attributes in a cache 

which may radically change its performance and cost.  These attributes are described 

below. 

2.5.1  Cache Line Size 

 The unit of data storage used in the cache is known as a cache line.  The cache 

line size, usually measured in bits, depends on the memory device and can be as small as 

the smallest possible data that can be transferred to/from the memory device.  Many 

memories will access a maximum of 32 bits of data in a single access, but still allow for 

individual 8 bit data values to be addressed.  The question arises of whether to cache each 
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individual byte, associating a tag with each one, or to cache groups of bytes.  By doing 

the latter, the circuit becomes more complex, but it can exploit the fact that after 

accessing one piece of data, it is highly likely that neighbouring data will be accessed 

soon after.  This is known as spatial locality and is exhibited by many programs [6].  In 

addition, this method takes advantage of burst mode transmissions which make accessing 

a group of bytes from the RAM faster than accessing each byte individually.   

2.5.2  Cache Depth 

 The maximum number of cache lines that can be stored in the cache is known as 

the cache depth. 

2.5.3  Associativity 

 Ideally, new data can be added to the cache as long as the cache has a cache line 

available.  This implies that any data can map to any cache line.  Such a cache is known 

as a fully associative cache, or just associative cache.  To find a match it must search 

through all entries in the cache and compare it to the tag given.  Because of this, a fully 

associative cache is large, expensive, and potentially slow.  To alleviate these problems 

more simplified caches such as the direct-mapped cache have been introduced.  A direct-

mapped cache maps data to only one cache line determined by the low order bits of its 

address; these bits are referred to as the index bits.  With this mapping, the cache line 

being read from or written to is known immediately from the address.  As a result, the 

circuit is much simpler and faster.  In between these two extremes is the set associative 

cache.  Instead of using the index bits do define a single cache line, they are used to 

define a small number of possible cache lines where the data can be placed.  These select 
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cache lines define one of many sets.  Since this cache needs only to search through the 

small set instead of the entire cache, it is also much simpler than the fully associative.  

Set associative caches generally provide the best compromise between circuit complexity 

and performance. 

2.5.4  Replacement Policy 

 When new data is to be cached and all available cache lines are occupied, old data 

must be evicted from the cache to make space.  The strategy used to choose which data to 

evict is known as the replacement policy.  Since a direct-mapped cache maps data to only 

one location, it is not applicable to speak of replacement policies for such a cache.  

However, for associative and set-associative caches, a replacement policy is mandatory 

and can come in many varieties.  The most common method is known as LRU (Least 

Recently Used).  This strategy tracks how recently each piece of data was referenced, and 

selects the one which was used least recently to evict.  This policy requires more circuitry 

than other more simple approaches; however, it accurately captures the principle of 

locality.   

2.5.5  Write Policy 

 The manner with which a cache manages write operations is referred to as the 

cache’s write policy.  A write operation can potentially cause the cache and memory to 

become unsynchronized.  If the cache contains a more recent value than the memory, and 

that value is evicted without being written to memory, this value would be lost.  To 

prevent this problem, a cache can ensure that new values are flushed to memory before 

being evicted.  A cache which behaves in this manner is using a write-back policy.  
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Another means of dealing with this problem is to ensure the synchronization of the cache 

and memory by always writing to both.  This is known as a write-through policy and is 

much simpler than the write-back policy.  However, using the write-back policy 

obviously results in more effective caches. 

2.6  Content Addressable Memories 

 As discussed previously, a cache must search through a number of tags to find a 

match; this process can be done using a CAM (Content Addressable Memory).  A CAM is 

the inverse of RAM.  While RAM is given an address and outputs the data stored at that 

address, a CAM receives data (often called a pattern) and returns the address where it is 

stored, or indicates that the pattern is not currently in the CAM.  This makes CAMs ideal 

for searching through tags and detecting cache hits.  CAMs can come in different 

varieties.  Some support multiple-matching and other more powerful search options, but 

these features are immaterial in the context of caches.  In a cache, the pattern given to the 

CAM is the tag and the address returned by the CAM is the position of the data in the 

data store.  Only one data word can be associated with each tag, and the tag itself is 

unique by definition.  Therefore, only the basic function of the CAM is required, the 

aforementioned features would needlessly increase resource utilization.  Consequently, 

the only relevant parameters are the CAM’s size.  A CAM’s size is specified in the same 

manner as in a RAM.  It has a depth and a width that are reported respectively.  For 

example, a 32 x 8 CAM stores 32 words each 8 bits wide.  The CAM used in this design 

was derived from an implementation described in a Xilinx Application Note [4].  The 

Xilinx implementation is summarized below. 
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2.6.1  Xilinx implementation of CAMs using Block RAM 

 This implementation was developed by Xilinx for use with their Virtex family of 

FPGAs.  It uses a technique which manipulates RAM to be used as a CAM.  The obvious 

approach of cycling through all words in the RAM testing each for a match would be a 

very slow implementation of a CAM.  Instead, in this Xilinx implementation, the pattern 

is used as the address to the RAM, and the data in the RAM stores the positions in the 

CAM where the pattern can be found.  To store the pattern with decimal value 6 in a 

CAM at address 2, its representation in the RAM would be as shown in Figure 1 for a 

CAM with 16 words and an 8 bit input pattern. 

 

 
Figure 1: Representation of a CAM in RAM 

 
 

In the RAM, there is an entry for every possible input pattern (as seen along the 

left most column of Figure 1), and each entry has one bit for every possible location in 

the CAM.  Thus an m x n CAM requires a 2n x m RAM.  Xilinx uses RAM blocks with 

4096 bits which can be configured as a 256-word x 16-bit RAM.  This in turn can be used 

as a 16-word x 8-bit CAM in the manner shown in Figure 1.   
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 Initially, this may seem like an extremely poor implementation since it requires a 

vast amount of RAM.  In fact, the amount of RAM required for an m x n CAM grows 

exponentially with the data width as seen in equation 1, where m is the CAM depth and n 

the width. 

 

 nmbits 2# ×=  (1) 

 

With 32-bit data, the CAM would require more than 4 gigabits of memory, far 

more than any FPGA can provide.  However its elegance lies in the fact that these small 

CAM blocks can be cascaded to increase both the depth and width of the CAM with 

linear growth in each dimension.  Hence a 32-word deep CAM can be built out of two 16 

word CAMs.  Similarly, a 16 bit wide CAM can be built out of two 8-bit wide CAMs.  In 

general, using M x N CAM blocks, an m x n CAM will require the following number of 

memory bits.  

 

 )()(2#
N
n

M
m

Mbits N ×××=  (2) 

Simplifying,  

 nm
N

bits N ××= 2
1

#  (3) 

 

As seen in equation 3, the growth is no longer exponential with n, instead, it is 

exponential with the parameter N which is fixed and determines the CAM block width.  

The expression is also independent of M, meaning CAM blocks can be of any depth (less 
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than m) without affecting the amount of memory used overall.  As a result, it remains 

only to choose a suitable N.  The function N

N
2

1
 is monotonically increasing for integer 

values of N greater than zero, hence, the optimal N is the minimal N allowed.  Because of 

constraints on the aspect ratio of the RAM blocks in Xilinx’s Virtex, the smallest possible 

N, or shallowest memory, occurs for N=8.  The CAM block depth M is then assigned a 

value such that it utilizes the entire 4096 bit RAM block, and hence the Xilinx 

implementation uses a 16 x 8 CAM block to build larger CAMs. 

 As shown above, the re is certainly a recognizable advantage in cascading smaller 

CAM blocks to build larger sized CAMs.  This scalability is provided by the CAM’s 

decoded address.  The output of the CAM block has one bit for each word in the CAM.  

Thus, to add more depth to the CAM, one need only increase the number of bits in the 

output.  This can be done with some additional logic by simply using multiple CAM 

blocks in parallel.  The additional logic is required to select the correct CAM block when 

write operations occur.  The width of the CAM can also be extended by simply 

performing a logical AND of the output of multiple CAM blocks.  Each CAM block 

receives a subsection of the input pattern; the full pattern is in the CAM if each CAM 

block experiences a match in the same address. 

 The major limitation in this design is that there is poor support for erasing values 

from the CAM.  The CAM can easily remove a given pattern from a given address, but 

can not remove all patterns at a given address.  Doing so requires erasing it from every 

possible entry in the CAM.  Looking at Figure 1, this would require writing a zero to the 

correct column of each of the 256 rows in the RAM.  Using 256 cycles to erase data is 

impractical, hence requiring designers to remedy or avoid this erasing problem. 



 12 

3 Design of the Caches 

 The automatic cache generator can be used to produce a variety of different 

caches, each with a variety of different options.  This flexibility allows designers to better 

meet their unique needs for area, speed, and cache effectiveness.  The dominant factor in 

finding this balance is in choosing the associativity of the cache.  With this generator, 

designers can choose between fully-associative, direct-mapped, or two-way set-

associative caches.  Each cache can then be configured to have different read and write 

latencies.  Latency here is exclusive of any time required to access peripherals outside the 

cache, namely, a slower memory device.  A tree diagram of the various cache designs and 

their configurable read/write latencies is shown in Figure 2. 

 

 
Figure 2:  Tree of possible cache variants 

 
 

Options also exist to provide an output port for indicating cache hits, and whether 

to propagate control signals (read/write requests) to the memory immediately or only 

after the cache discovers it has missed.  These options can be used to meet certain 
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interface requirements.  However, neither produces an appreciable change in the area, 

speed or functionality of the cache and hence will be ignored in this discussion.   

Other characteristics of the cache are not configurable and are common to all the 

caches. Since the generator can ideally be used with any type of memory, and by any 

processor/device, these unconfigurable implementation decisions were often made in 

favour of faster performance and smaller area.  Hence, all generated caches employ a 

write-through policy.  For the same reason, none of the caches allow access to sub-

sections of the cache line.  Cache operations work only on whole cache lines and the 

cache line is equal to the size of the user-defined data word.  Aside from these two 

stipulations, there are other options to allow designers ample flexibility in choosing a 

cache.  A summary of the cache characteristics are shown in Table 1.  Entries in italics 

are user-selectable.  A more detailed description of the individual caches and their 

various configurations follow. 

Table 1: Characteristics of Each Cache Type 
Associativity Fully Associative   Direct-mapped  Two-way Set Associative 
Read Latency 2/3 1/2 1/2 
Write Latency 1 1 1/2 
Replacement Policy Counter-based N/A LRU 
Write Policy Write-Through Write-Through Write-Through 
Depth any any any 
Address Width any any any 
Data Width any any any 
Cache Line Size =Data Width =Data Width =Data Width 
Cache hit Output yes/no yes/no yes/no 
Propagate on Miss yes/no yes/no yes/no 

 

3.1  Fully Associative Cache 

The design of the fully associative cache involves 5 main components:  A CAM, 

an encoder, a data store, a tag store, and a counter.  Before getting into the 

implementation details of each component, the functionality of the cache will be 
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described in terms of how these components help to achieve its function.  A schematic of 

a how the CAM, encoder, and data store satisfy a read operation is shown in Figure 3. 

 

 
Figure 3:  Topology of a cache read for the associative cache 

 

After receiving a read request, the cache must determine which, if any, of the 

locations in the data store contain the data associated with the given tag.  This location 

will be referred to as the data’s position.  The CAM provides a mapping from tags to 

positions, therefore the CAM will return where the data is located in the data store.  Since 

the CAM has an output line for each possible position in the data store, the line that 

corresponds to the correct position will be set high.  If none of the lines are high then a 

miss has occurred and the data is not in the cache.  A simple logical OR of all the CAM 

outputs is used to detect this.  However, while the decoded output of the CAM is ideal for 

detecting cache hits and cascading CAM blocks (as discussed previously), it is slightly 

inadequate here since the data store is a block of RAM which requires an encoded 

address.  Hence an encoder must be used between the CAM and the data store as shown.   

 The optional registers allows for the choice in 2 or 3 cycle read latenc ies.  To 

implement the 2 cycle read latency, the optional registers are taken out of the design 

leaving the CAM lookup, logical OR, and encoding to be done in one clock cycle.  In the 

3 cycle read latency case, the optional registers are employed to isolate the CAM lookup 
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in the first cycle.  The logical OR and encoding is done in the second cycle, and the third 

cycle performs the data fetch.   

 When a cache miss occurs the difference is only in the last cycle.  Instead of 

fetching from the data store, a read is issued to memory and the cache waits for the data 

to be retrieved.  Upon receiving the data, it passes it to the processor (or other bus master 

device) and performs a write operation in order to cache the new data. 

Write operations have a completely different structure than reads.  A write 

requires two clock cycles though the first is done in the same clock cycle the write is 

requested.  This first cycle merely deletes whatever cached value is located at the position 

targeted by the counter replacement algorithm.  Performing this deletion requires 

overcoming the previously discussed erasing problem of the Xilinx CAM which is used 

in this design.  To this end, a tag store is included with the associative cache, despite the 

fact that ideally the CAM should serve as the tag store.  Since the Xilinx CAM 

implementation allows multiple matching, which also enables its cascading ability, the 

cache must explicitly enforce that only one tag can be associated with a cache location.  

The tag store is used for this purpose since it can only store one tag in each location.  The 

CAM is a one-way mapping from tag to cache position, while the tag store is a one-way 

mapping from cache position to tag.  When data is being evicted from a given position in 

the cache, the tag store is used to identify its tag so that it may be erased from the CAM.  

This lookup requires one clock cycle; however in the design, it is ensured that this is done 

before the end of any previous operation.  Hence the tag to be evicted is available at the 

start of any subsequent operation, enabling the first cycle to be used to erase this tag, and 
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the following cycle used to write the data to the data store and the new tag into both the 

CAM and tag store.   

The counter-based replacement policy allows for a simple and effective way to 

select data to evict from the cache.  The counter points at the next value to be evicted in 

the cache and increments with each new value cached.  Hence, values which were entered 

in the cache least recently are evicted first.  The downfall of this method is that it does 

not take into account how many times a piece of data was accessed since it was initially 

cached.  The advantage is that it requires much less resources and simpler control 

circuitry.  This method was also used in the sample code for an associative cache using 

Altera CAMs [2].  Implementation details of the individual components follow. 

3.1.1  CAM 

 The CAM implementation used in this design is identical to the Xilinx CAM; the 

only modification is in the chosen dimensions of the CAM blocks.  The Xilinx 16 x 8 

CAM blocks were implemented in 4096-bit RAM blocks since this is the only size of 

RAM blocks available on Xilinx’s Virtex chips.  From equation (3) it can be seen that the 

coefficient N

N
2

1
 is solely responsible for the inflation of memory bits required.  This 

coefficient will be referred to as the waste factor.  For N=8, as used in the Xilinx design, 

the waste factor is 32.  On Stratix, the parameter N can be made as small as 5 if 

implemented in an M512 as a 16 x 5 CAM.  This results in a waste factor of 6.4, which is 

one fifth of that of the Xilinx design.  Consequently, the M512 is used for the CAM 

blocks in this design.  This was done using Altera’s altsyncram megafunction. 
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3.1.2  Encoder 

 The encoder is the largest block of logic in the cache and is hence often within the 

system’s critical path.  The size of the encoder is determined solely by the depth of the 

cache, thus increases in cache depth result in a longer critical path and smaller fmax.  An 

efficient implementation of an encoder is required to mitigate this reduction in fmax.    

Standard implementations of encoders have outputs which are each a function of all the 

inputs.  The implementation used here separates the outputs and makes each of them a 

wide logical OR of half the inputs.  Since the output of the CAM is guaranteed to have at 

most only one bit high, each output of the encoder needs only to examine the inputs 

which can set it high and otherwise assume it is low.  The zeroth bit, for instance, will be 

high if any odd- indexed input is high.  Similar, patterns can be found with the other 

outputs.  In addition to the reduction of the complexity of the function, further 

performance gains are achieved by the ability of Stratix to implement fast wide OR 

function using a direct connection to neighbouring LEs known as a carry chain. 

3.1.3  Data store 

 The data store is simply implemented as RAM using the altsyncram 

megafunction.  No specific RAM block is specified which allows the compiler to decide 

which of the three blocks, or combination of blocks, should be used to meet the size 

requirements of the data store.  The data store has separate data input and data output 

ports.  The data input port contains a multiplexer which chooses between the data from 

the processor or memory.  Similarly, the data output port chooses between the cache’s 

output and the memory’s output.  This is the case for all cache designs. 
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3.1.4  Tag store 

 The tag store is also implemented as a RAM block using the altsyncram 

megafunction.  Again it is left to the compiler to decide which RAM blocks to use.   

3.1.5  Counter-based Replacement 

The counter is implemented using the built in lpm_counter megafunction.  

However the design is slightly more elaborate, as seen in Figure 4, in order to save a 

clock cycle as mentioned previously.  It saves a clock cycle by ensuring that at the end of 

any memory operation, the tag to be evicted on the next memory operation is outputted 

from the tag store.  Normally, this requires only that the counter value be used as the tag 

store’s input, the exception is after an eviction.  After an eviction occurs, the counter is 

signaled to increment during the one latent cycle available during a write operation.  The 

counter will be updated in the next clock cycle meaning that the tag store won’t be 

updated until the clock cycle after.  The cycle spent incrementing the counter can be 

concealed with a purely combinational incrementer.  The circuit chooses between the 

latched counter output and the combinational incremented output in a manner to ensure 

that the output of the mux is a value which increments immediately upon being signaled. 

 

 
Figure 4:  Topology of counter-based replacement policy 
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3.1.6  Optional Registers 

 The optional registers were implemented using the built- in flip flops of the 

memory blocks.  The altsyncram function enables users to specify whether these registers 

should be used or not.  If not they are bypassed.  Doing this small optimization allows the 

optional registers to be added to the circuit without any increase in logic cells.  

Throughout the design, optional registers will always be placed adjacent to the output of 

memory blocks in order to capitalize on this savings. 

3.2  Direct-Mapped Cache 

 The direct-mapped cache has a very trivial design.  It requires only a tag store, 

data store, and comparator.  Since only one tag in the tag store can match the tag input, 

that tag is the only one read, and the only one that need be compared.  Therefore only one 

comparator is needed.   A schematic of the read circuitry is shown in Figure 5. 

 

 
Figure 5:  Topology of a cache read for the direct-mapped cache 

 

 

 The tag store and data store are in parallel in this configuration.  Since the data 

store does not require any output values from the tag store, the data fetch can be done 
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concurrently with the tag lookup enabling single-cycle latencies.  In the single cycle case, 

the data is fetched while the tag is fetched and compared.  If the tags match than a hit has 

occurred and the mux is set to output the contents from the data store.  Otherwise the 

cache waits for the memory to fetch the data and passes it through the mux.  The insertion 

of the optional register can significantly increase the fmax of the cache by separating the 

memory access time from the time to do a comparison.   

 The individual components were implemented using the megafunctions available 

in Quartus.  The tag store and data store both used the altsyncram megafunction while the 

comparator used the lpm_compare megafunction.  The mux and any other small logic 

were implemented with standard Verilog constructs. 

3.3  Two-Way Set Associative Cache 

 The two-way set associative cache is generally a slightly bigger and slower, but 

more effective cache than the direct-mapped.  Its purpose is to serve as a compromise 

between the expensive fully associative cache and the oversimplified direct-mapped 

cache.  Because of this, it is designed to be more configurable in order to provide more 

flexibility for designers.  The two-way set associative cache can have either a one or two 

cycle read latency coupled with either a one or two cycle write latency.  It is also made 

more effective by employing a true LRU replacement policy.   

 The design of the two-way set associative cache is very similar to that of the 

direct-mapped cache.  In effect, the design is simply two direct-mapped caches arranged 

in parallel.  This makes the design ideal for taking advantage of Stratix’s bi-directional 

dual port memory in order to compress the two caches into single RAM blocks.  During a 

read operation, the set is accessed in its entirety.  Both tags, as well as both cached values 
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in the set are read simultaneously using the dual port feature.  Each of the tags are 

compared to the input tag using two different comparators.  If either tag matches, the 

corresponding data is returned.  If neither tags match, the cache must wait for the fetch 

from memory to complete.  A schematic of this operation is shown in Figure 6. 

 

 
Figure 6:  Topology of a cache read for the two way set associative cache 

 

 The data store and tag stores are each implemented using the altsyncram 

megafunction with the bidirectional dual port option set.  The comparators are 

implemented using the lpm_compare megafunction.  The optional registers allow for 

single or dual cycle read latencies in the same manner as in the direct-mapped cache. 

Write operation are also identical to the direct-mapped cache except that the LRU 

circuitry must specify which of the two cache lines in a set are to be overwritten.  The 

LRU circuitry must establish an ordering of all the values in each set.  Since there are 

only two possible values in the sets of a two-way set associative cache, an ordering can 

be imposed using a single bit.   The circuit needs only to toggle the bit when any change 
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is made to the ordering.  The implementation of this circuit is a one bit wide RAM block 

with one bit for each set in the cache (in this case this is half the cache depth).  The 

circuit toggles by inverting its output and feeding it to its own input data lines.  The RAM 

can be used with optional output registers which allows the user to expand the write 

latency to two and potentially speed up the design.  Doing so isolates the LRU read 

operations from logic that uses this result.  

The LRU circuit can be implemented using LEs, which may be faster for small 

cache sizes.  However, by using block RAMs, the speed of the circuit is fixed for any size 

cache.  A cache with 4096 words would require 2048 LEs to implement a flip flop for 

each set.  This would use an enormous amount of area on the chip and would also require 

a huge select circuit to choose which flip flop is currently being accessed.  The larger this 

circuit becomes, the slower it will perform.  Surely its performance would quickly 

become slower than the 3 ns (approximately) needed to access the one M4K block which 

can be used instead.   

3.4  Design Verification 

 The designs of all caches were initially exposed to exhaustive testing to verify 

their correct functionality.  This was done using the waveform simulation in Quartus.  All 

read and write operations, the replacement policy, the assertion of the wait signal, and 

overall functionality of the cache were confirmed using simulation.  After the overall 

structures of each cache variant were verified, the caches were further tweaked and 

altered.  In order to ensure that these changes did not introduce new bugs, a small subset 

of the tests were performed on new versions of the caches.  A sample of the waveforms 

used is shown in Appendix B. 
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3.5  Design of the Generator 

 The program which generates the cache designs is a small C program which reads 

input parameters from the command line and outputs the corresponding cache to a file.  

This program is relatively small and simple since many of the configurables are 

embedded in the Verilog output code using preprocessor directives.  The program has a 

template of Verilog code for each associativity, each containing preprocessor directives 

which can be easily set to compile the desired cache.  In fact, the direct-mapped and two-

way set associative caches can be entirely configured within the Verilog code by simply 

defining or undefining the constants located at the top of the file.  Additionally, the 

dimensions of the cache are parameters to the module which can be set when instantiating 

the cache.  The C program simply returns this code with the correct parameters set or 

unset.  On the other hand, generation of the associative cache requires significantly more 

effort.  The cascading of the CAMs is a non-trivial task and is hence done in the C code.  

Similarly, the encoder is also generated wholly from within the C generator program. 
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4 Results 

 There are many factors to consider when choosing the best cache for a system.  

One such factor is the effectiveness of the cache in terms of its hit rate.  There has been 

an abundance of studies on the hit rates of caches with different sizes, associativities, 

write policies, and replacement policies [6].  The statistics provided by these studies can 

be combined to evaluate the effectiveness of one of the generated caches over another.  

This thesis will not attempt to classify any generated cache with respect to hit rates or 

overall effectiveness.  Instead the focus will be on measurements related to the cache’s 

implementation onto Stratix.  Specifically, the designs will be compared with respect to 

their speed, in terms of fmax, and area, in terms of both LEs and memories used, as 

reported by Quartus II version 2.1.   

Factors such as latency, size, and cache associativity will be treated as 

independent variables.  Each of these are parameters which designers can choose based 

on the results to follow.  Measurements were made for each of the eight cache variants, 

that is, for each type of associativity and latency (as seen in Figure 1).  Unfortunately, the 

size parameter allows for an enormous amount of different caches.  Taking measurements 

for each one is clearly unfeasible; instead, the size of the cache is broken up into its three 

components (cache depth, address width, and data width) so that each may be examined 

independently.  Thus, two of the components are held fixed while the third is varied in 

order to observe the effect it has on the cache’s area and speed.  A 32-word cache with a 

32-bit address space and 32-bit data (32x32x32 respectively), is used as a common 

reference point.  Each dimension is increased individually starting from this reference 

point. 
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4.1  Area 

 Area measurements were made by compiling the cache chip alone.  If the cache 

was compiled within some system, there is a good chance that logic could be merged 

with logic from the system so that the effective area added to the system is less than that 

reported here.  In addition, parts of the design may be reduced by the compiler if unused 

or aliased signals are found.  Hence these measurements are an upper bound on the area 

of the cache.   

 Both LEs (logic elements) and memories (M512s, M4Ks, and Mega RAMs) will 

be measured and discussed in this section.  The effect of increased cache depth, address 

width, and data width will be examined for all cache types.  However, it was discovered 

that changes in latency have a negligible impact on the area of the circuits.  This is mostly 

due to the savings attained by implementing the optional registers as part of the memory 

blocks.  Otherwise, only small changes to the control logic were made, and hence, the 

area was scarcely affected.  Because of this, the measurements will be made only for the 

different associativities.  This data is shown in Figures 7 through 9. 
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Figure 7:  Graph of LE usage vs. cache depth 
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Figure 8:  Graph of LE usage vs. address width 
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Figure 9:  Graph of LE usage vs. data width 
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 Figure 7 shows the logic elements used for implementing caches with depths 

ranging from 32 to 4096 words.  One important feature in this graph is that the number of 

LEs used for both the direct-mapped and two-way set associative cache is independent of 

the cache’s depth.  They are fixed at 98 and 155 respectively (see Table A.1 in Appendix 

A).  This is expected since the logic components of those designs include only the 

comparator, which depends on address width, and the output multiplexers, which depend 

only on the data width.  The increased cache depth only affects the memories used.   

The effect of cache depth is particularly important, since larger cache depths 

generally mean larger hit rates.  The address width and data width are likely to be defined 

by the system but the cache depth can be independently adjusted to attain a desired hit 

rate.  The results seem to suggest that in the direct-mapped and set associative caches, 

this can be done without increasing the number of logic elements.  Moreover, the number 

of logic elements is seen to be very small.  The smallest Stratix chip, the S10, contains 10 

570 logic elements.  The 98 or 155 LEs required by these caches will use up only a small 

fraction of these, making the designs very inexpensive with respect to LEs. 

 Conversely, the fully associative cache is quite expensive, as is expected.  The 

change in LEs with cache depth appears to be linear with a slope of 3.53 LEs/word.  The 

contributing factors are the CAM, the encoder, the LRU circuitry, and the wide logical 

OR.  Still the design is reasonably small in terms of LEs.  A 16KB (4096 words x 4 

bytes/word) associative cache, which is twice the size of the Pentium 4’s L1 data cache, 

can be implemented with 14 438 LEs.  This can be programmed on the slightly bigger 
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S20 Stratix chip, and would need only a minute fraction of the LEs of the biggest Stratix 

which has 114 140. 

 In Figure 8, it is demonstrated that all cache types suffer increases in area with 

increases in address widths.  The direct-mapped and two way set associative cache 

designs both exhibit increases because of the comparators which will now need to 

compare larger tags.  For tags of width n, the comparators are a function of 2n inputs.  

Since this function is likely implemented using the fast carry-chains, one input of the 

LUTs is used up and hence each LUT has only 3 available inputs.  Thus the number of 

LUTs (and hence LEs) needed for the function is 2n/3 or 0.667 LEs/bit.  By no 

coincidence, the increase seen in Figure 8 for the direct-mapped and two-way set 

associative caches are linear with slopes of 0.667 LEs/bit and 1.33 LEs/bit respectively.  

The two way set associative cache increases at twice the rate of the direct mapped since it 

contains two comparators.  The associative cache increases at a much higher rate of 3 

LEs/bit.  This figure is composed of the 1 LE/bit for the tag mux which inputs into the 

CAM, added to the 2LEs/bit for cascading CAM blocks.  Ideally only 1 LE/ bit is 

required for cascading CAM blocks, but two CAM blocks are required to expand the 

CAM’s depth  to the reference value of 32, therefore 1 LE/bit is required for each.  Still 

LE usage is reasonably small allowing for an absurdly large 512-bit address space to use 

only 1673 LEs for a fully associative cache. 

 The effect of increasing data width on the number of LEs used is shown in Figure 

9.  The only logic which depends on the data width are the two muxes on the data input 

and data output ports of the data store.  Thus the growth is linear with slopes of 2 LEs/bit 

(1 LE/bit for each mux) for the associative cache and direct-mapped cache.  The two-way 
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set associative cache contains an additional data multiplexer to choose between the two 

values in a give set.  Thus its slope is 3 LEs/bit.  Again these increases are rather 

moderate.   

 While all the designs had relatively small LE requirements, the opposite is seen in 

their memory requirements.  The designs are quite memory intensive and this defines the 

upper bound on the size of the cache that can be implemented on a given Stratix chip.  

The number of M512, M4K, and MRAM (Mega RAMs) required for each cache design 

is shown in Tables 2, 3 and 4.  Again the latencies are ignored since this did not impact 

the number of memories used. 

Table 2:  Memories used for different cache depths 
  Associative Direct Mapped Two Way Set Ass. 

Depth M512 M4K MRAM M512 M4K MRAM M512 M4K MRAM 
32 14 2 0 0 2 0 1 4 0 

128 56 2 0 0 2 0 1 4 0 
256 112 4 0 0 4 0 1 4 0 

1024 448 16 0 0 14 0 1 14 0 
2048 NA NA NA 0 27 0 0 29 0 
4096 NA NA NA 0 0 1 0 55 0 

 
Table 3:  Memories used for different address widths 

Addr. Associative Direct Mapped Two Way Set Ass. 
Width M512 M4K MRAM M512 M4K MRAM M512 M4K MRAM 

32 14 2 0 0 2 0 1 4 0 
128 53 4 0 1 4 0 3 8 0 
256 105 8 0 0 8 0 3 16 0 
512 207 15 0 0 15 0 3 30 0 

 
Table 4:  Memories used for different data widths 

Data Associative Direct Mapped Two Way Set Ass. 
Width M512 M4K MRAM M512 M4K MRAM M512 M4K MRAM 

32 14 2 0 0 2 0 1 4 0 
64 14 3 0 0 3 0 1 6 0 
92 14 4 0 1 3 0 1 8 0 

128 14 5 0 1 4 0 1 10 0 
256 15 8 0 0 8 0 1 17 0 
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 Most of these results are intuitive given the limitation in a memory block’s depth 

and width.  Memory blocks are cascaded appropriately to overcome this limitation and 

create the desired memory space.  In the case of the 2048 and 4096 word associative 

caches, no Stratix chip has enough memory to do so, for this reason the values are not 

available.  Other more important observations will be discussed below. 

One important observation is that using a memory block in bidirectional dual port 

mode reduces the maximum allowed data width in half.  Because of this, increases in 

address and data widths require twice as many memories to increase the tag store and 

data store in the two way set associative cache.  The naïve designer might hence declare 

that two way set associative caches are hence twice as big in area than a direct-mapped 

cache but this is clearly not true.  While the memory blocks needed are twice as many, 

they use only half the depth.  Therefore corresponding increases in cache depth would 

eventually make the number of memory blocks used equal for both the direct-mapped 

and two-way set associative cache.  This can clearly be seen in the data corresponding to 

increases in cache depth.  The two-way set associative cache initially requires twice as 

many M4Ks, but as the depth reaches 256, the two equalize since 256 32-bit words fit in 

a single M4K. 

Another important observation is the growth of the M512s used for the CAMs.  In 

the measurements for the associative cache, the number of M512s used are almost 

entirely for the CAM.  As seen in the tables, these measurements agree with the fact that 

the growth of the CAM is linear with the growth in each dimension.  The slope of this 

linear growth is 1 M512 per word of depth, and 1 M512 per bit of address.  Changes in 

the data width obviously have no effect on the CAM and this too can be seen in Table 4.  
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The most interesting observation occurs for the direct-mapped cache with a depth 

of 4096 words.  The compiler apparently merged the tag store and data store into a single 

Mega RAM block, otherwise, the implementation would have required more than 50 

M4K blocks as in the two way set associative cache.  This is clearly a valid approach 

since the Mega RAM can support data widths of up to 144 bits wide, or two 72-bit wide 

data ports in dual port mode.  The tag store requires only 27 bits (32 – log232), and the 

data store 32 bits.  Since both values are less than 72 and since each are used in single 

port mode, they can each be assigned to one of the available ports of the Mega RAM and 

each use a subsection of the memory.  Implementing the design this way has two main 

advantages.  The first advantage is that it saves an enormous amount of memory blocks.  

Only 1 Mega RAM block and 98 LEs are needed to implement this 16 KB direct-mapped 

cache.  This enables the design to fit on the smallest Stratix, the S10, while using less 

than 1% of its logic elements and none of its M512 or M4K memories.  The second 

advantage is that it simplifies routing which can possibly speed up the circuit.  Instead of 

cascading several M4K blocks which span the entire chip, the design can be confined to 

the small area near the Mega RAM.  The disadvantage is that the Mega RAMs are 

reported as being up to 35 MHz slower than the M4K [1].  More details about the speed 

of all caches follow. 

4.2  Speed 

 Finding the system’s speed required taking measures to ensure the values were 

consistent and accurate.  First, the speed of the caches had to be measured by placing the 

circuit in a test bed with registers on all inputs and outputs of the cache.  Doing this 

ensures that the fmax reported by Quartus would be the maximum clock speed allowed 
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for any signal to travel from the inputs of the cache to the outputs of the cache.  Another 

potential inconsistency is in the different speed grades of Stratix chips.  To remedy this 

problem the compiler was instructed to use only the fastest speed grades.  With both these 

solutions in place, data was gathered for all cache types including different latencies since 

latency plays a pivotal role in the system’s fmax.  Figures 10, 11, and 12 depict graphs 

generated from the measured data (see Appendix A) and plotted on a log base 2 scale. 
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Figure 10:  Graph of frequency vs. cache depth 
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Figure 11:  Graph of frequency vs. address width 
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Frequency vs Data Width
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Figure 12:  Graph of frequency vs. data width 

 

 In all cases the direct-mapped cache with a two cycle read latency is the fastest of 

the designs with a peak frequency of 218.91 MHz.  This is definitely an expected result 

since this was the motivation behind the birth of direct-mapped caches.  Another 

expected result is that the absolute slowest frequency occurred for the two cycle 

associative cache of maximum allowed depth and was 52.12 MHz.  The price of cache 

effectiveness is hence a hefty one in these designs; though it is interesting to note that an 

associative cache with a three cycle read latency often outperforms a single cycle read 

latency direct-mapped cache.  Single cycle reads are also an expensive commodity in 

these caches.  In the 32x32x32 case, the fmax is reduced by 70 MHz for all caches which 

implement single cycle reads.  On the other hand, the adjustable write latencies had a 

very small impact on the fmax.  As seen in the graphs, caches which differ only in write 

latency exhibit almost identical performances.  However, in a minute cache with 

dimensions 16x10x8, this option produced speed ups of up to 70 MHz since in this and 

some other caches, the LRU circuitry can become the critical path.  This data can also be 

found in Appendix A.  
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 Enlarging the cache depth has a similar affect on speed as it did in area.  The 

direct-mapped and two-way set associative caches maintain a relatively consistent 

frequency while the associative caches suffer from significant speed degradation.  Speeds 

reach as low as 52.12 MHz for a 1024 word associative cache.  This reduction in speed 

was expected since the critical path is certainly in the encoder and wide logical OR 

circuits of the associative cache.  Since both of these circuits increase with cache depth, it 

was expected that the fmax would fall.  Unfortunately, the two different latencies produce 

converging frequencies, rendering this option ineffective for large depths.  Initially, the 

associative cache with a 3 cycle read latency is 40 MHz faster for a 32 word cache.  

However it quickly decreases and converges until the two are within 12 MHz as seen in 

Figure 10. This is also expected since the optional registers only isolate lookups in 

individual CAM blocks, an unfortunate by-product of using the output registers of RAM 

blocks as the optional registers. As the depth grows, the time to perform an individual 

lookup does not increase though the encoding step does.  The convergence arises since as 

the encoding stage becomes slower, the savings, which are fixed, become less significant 

relative to the time it takes to perform the encoding.   

None of this is seen in either the direct-mapped or two-way set associative caches.  

The critical path for both these caches is the comparator, which has no dependence on 

cache depth.  The fmax starts to decrease slightly as the design is dispersed over the chip, 

causing the inputs to travel greater distances, but otherwise remains relatively consistent.  

One important note is that the 4096 word direct-mapped cache implemented using the 

single Mega RAM outperforms the caches of the same type with depths as low as 1024.  
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Consequently, it seems the Mega RAM implementation improves the speed of the system 

despite the fact that the Mega RAM is in fact slower than the smaller memory blocks. 

 The effect of increasing address width has a devastating effect on all caches.  It 

increases CAM size, as well as the comparators, hence directly affecting the critical path 

of all the cache designs.  The aforementioned convergence also occurs here, but for all 

cache designs, resulting in maximum and minimum speeds of 95.06 MHz and 59.8 MHz 

for address widths 512 bits wide.  Fortunately, widths this large are never used.  In fact, 

the Pentium 4 has only a 36-bit address space [8].  However, the results do show that 

increases in the tag directly affect the fmax of the system. 

 Increasing the data width does not alter the critical path.  The only circuitry 

affected are the muxes at the data ports of the data store.  Hence, increases in data width 

do not adversely affect the speed of the system.  As seen in Figure 12, the caches 

maintain a relative ly steady fmax for data widths of up to 128 bits.  However a sudden 

decrease is observed for all caches when the data width reaches 256 bits, which is the 

same width as the bus on a Pentium 4 to the L2 cache [8].  With this width, it was 

observed that the critical path had shifted and now included the data store and muxes.  It 

was also observed that the delay resulted largely from logic elements being forced in 

locations far away from the RAM.  This is a fundamental property of any digital system, 

namely that even parts of the system which are not in the critical path can expand enough 

that they become the critical path. 

 Overall, a significant amount of information can be drawn from these results 

which can aid designers in selecting appropriate cache parame ters.  First, the purpose 

behind the existence of direct-mapped and set associative caches, namely that they reduce 
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area and speed up the design, are clearly exemplified in the data presented.  The direct-

mapped and two way set associative caches are both smaller and faster, particularly when 

comparing caches with the same latencies.  Evidently, designs which require small and 

effective caches can use associative caches, but when larger caches are needed, designers 

have little choice but to use set associative or direct-mapped caches.   The decision 

between these latter two is less obvious.  It is a matter of how eager a designer is for an 

effective cache. For example, Altera’s newest soft processor, Nios version 3.0, uses a 

direct-mapped cache while the Pentium 4 uses an 8-way set associative L2 cache.  These 

decisions are highly subjective and application specific. 

 The adjustable latencies allows for a finer grain of tuning.  Read latencies can 

vary from 1 to 3 cycles while adding no additional area to the designs.  Systems which 

can tolerate an additional wait state can use this to replace a single cycle direct-mapped 

cache for a more effective, and also much faster, two cycle two-way cache.  Similar 

tradeoffs can be made between two way and fully associative caches, though at the 

expense of additional area. 

 With respect to choosing cache dimensions,  cache depth can be expanded to the 

target chip’s capacity without significant penalties in LE area and speed for non-fully 

associative caches.  It was also seen that the most influential dimension of a cache is the 

address width.  Any increase in tag size will directly increase area and decrease fmax.  

Growth in the data width will certainly increase area but in general doesn’t change the 

speed of the system. 
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5 Conclusion 

 An automatic cache generator was crafted which emits Stratix specific cache 

designs in a Verilog output file.  The input to the generator is a set of parameters 

describing the desired cache.  Inputs include associativity, latency, cache depth, address 

width, and data width.  Cache designs were generated and evaluated for a wide variety of 

input parameters.  From this analysis, a number of trends were established concerning 

their area and speed.  Overall, it can be concluded that the generator is very robust 

offering a wide variety of cache types, each able to satisfy a wide variety of size and 

speed constraints.   

 A few future modifications can be made to improve the generator.  First is support 

for accessing subsections of a cache line using the byte enable lines of the memory 

blocks.  A second improvement is support for the more popular 4-way set associative 

cache.  Another modification is the possibility of pipelining cached reads.  Finally, 

investigation into Mega RAM implementations for set associative caches may be of 

interest. 
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Appendix A – Data Gathered 

Note:  Rx Wy refers to a cache with a read latency of x and write latency of y.  Also, data 
for the memory usage was given in the body of the thesis and will not be repeated here. 
 

Table A.1:  Measurements of LE usage for different cache depths 

Depth Associative 
Direct 

Mapped 
Two Way Set 
Associative 

32 235 97 156 
128 575 97 156 
256 1049 97 155 

1024 3736 99 155 
2048 7318 99 154 
4096 14438 98 155 

Slope 3.53  0.00  0.00 
 

Table A.2:  Measurements of LE usage for different address widths 
Address 
Width Associative 

Direct 
Mapped 

Two Way Set 
Associative 

32 234 97 156 
128 521 164 284 
256 905 247 455 
512 1673 417 796 

Slope            3.00  0.667 1.33  
 

Table A.3:  Measurements of LE usage for different data widths 
Data 

Width Associative 
Direct 

Mapped 
Two Way Set 
Associative 

32 234 97 156 
64 298 161 252 
92 354 217 336 

128 426 289 444 
256 682 545 828 

Slope            2.00  2.00 3.00  
 

Table A.4:  Measurements of fmax for different cache depths 
  Associative Direct Mapped Two Way Set Associative 

Depth R2 W1 R3 W1 R1 W1 R2 W1 R1 W1 R1 W2 R2 W1 R2 W2 
32 123.51 163.45 144.84 210.08 115.09 118.79 175.93 172.86 

128 91.75 109.4 145.05 215.47 126.04 119.7 176.43 177.97 
256 80.75 99.8 149.39 218.91 122.43 121.77 171.35 176.34 

1024 52.12 65.23 140.19 206.78 121.4 118.37 162.53 152.93 
2048 No fit No fit 139.3 195.2 120.4 113.29 147.97 150.44 
4096 No fit No fit 133.28 199.44 116.02 111.74 134.66 162.95 
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Table A.5:  Measurements of fmax for different address widths 

  Associative Direct Mapped Two Way Set Associative 
Addr R2 W1 R3 W1 R1 W1 R2 W1 R1 W1 R1 W2 R2 W1 R2 W2 

32 123.51 163.45 144.84 210.08 115.09 118.79 175.93 172.86 
128 94.69 125.36 123.78 155.86 104.67 105.23 138.77 145.24 
256 86.87 113.51 108.31 149.39 93.33 95.76 127.58 124.69 
512 59.8 75.49 81.32 95.06 67.7 66.18 93.61 86.91 

 
Table A.6:  Measurements of fmax for different data widths 

  Associative Direct Mapped Two Way Set Associative 
Data R2 W1 R3 W1 R1 W1 R2 W1 R1 W1 R1 W2 R2 W1 R2 W2 

32 123.51 163.45 144.84 210.08 115.09 118.79 175.93 172.86 
64 117.34 141.34 142.94 198.22 114.08 115.93 165.87 170.88 
92 112.66 135.15 139.97 192.72 113.3 116.18 170.44 171.7 

128 107.41 137.25 132.33 193.42 110.49 113.06 166 161.73 
256 90.61 108.71 119.98 163.4 94.26 95.98 146.74 141.98 

 
Table A.7:  Speeds of a minute cache 

   Associative Direct Mapped Two Way Set Associative 
Dimensions R2 W1 R3 W1 R1 W1 R2 W1 R1 W1 R1 W2 R2 W1 R2 W2 

16x10x8   162.47 212.92 215.33 328.41 172.21 167.01 215.61 271.12 
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Appendix B – Sample Waveform 

Test of Associative Cache 
 
1.  Testing of basic read/write possibilities.  Note that the read write operations need only 
be signaled for the first cycle of the operation.  Since this is an R2 W1 cache, reads will 
complete two cycles later (if cached), and writes will complete one cycle later.  Also, 
note that the cache_hit signal is valid only for the second cycle of an operation.  Finally, 
note that M_ is prefixed to signals from the master (the processor), and S_ is prefixed to 
signals to the slave (the memory). 
 

 
Figure B.1:  Waveform of sample cache test 

 
2.  Continuing, the associative cache is filled and it is ensured old values were kicked out.  
Proof:  Notice the last read operation results in a cache miss even though it was cached 
above. 
 

 
Figure B.2:  Continued waveform of sample cache test 
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Appendix C – Code 

All source code, scripts, and sample outputs are on the included CD-ROM.  Also, 
all caches measured in the results section of this thesis can be found in the sample 
outputs. 
 
 


