

An Automatic Cache Generator

for Stratix FPGAs

by

Peter Yiannacouras

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF APPLIED SCIENCE

DIVISION OF ENGINEERING SCIENCE

FACULTY OF APPLIED SCIENCE AND ENGINEERING
UNIVERSITY OF TORONTO

Supervisor: J. S. Rose

April 2003

 ii

Abstract

 Caches have been used to successfully alleviate the
degradation in performance caused by accessing slow
storage components, and hence have become a prominent
part of memory hierarchy. In this thesis, a cache generator
is proposed which can produce a variety of different caches
with different sizes. This allows designers to effortlessly
create, alter, and examine different caches in order to best
meet the needs of their target system. The target of these
cache designs is for FPGA designs, specifically, Altera’s
Stratix FPGA. Analysis of the area and speed of the
generated designs demonstrated that the designs can meet a
wide range of design specifications and are in general fast
and low-cost cache designs.

 iii

Acknowledgements

I would like to thank my supervisor Professor Jonathan Rose for his guidance and
valuable input. I would also like to thank Sepehr Seyedi for his assistance with
formatting, John Virk for his insight, and Aneal Harlal for providing access to necessary
apparatus.

I would also like to thank my family and friends for their support throughout my
undergraduate experience in the Engineering Science program.

 iv

Table of Contents

1 Introduction 1

2 Background 3

2.1 Stratix and its device resources .. 3

2.2 CAD flow... 4

2.3 Speed and fmax.. 4

2.4 Latency... 4

2.5 Caches .. 5

2.5.1 Cache Line Size .. 5

2.5.2 Cache Depth.. 6

2.5.3 Associativity.. 6

2.5.4 Replacement Policy... 7

2.5.5 Write Policy .. 7

2.6 Content Addressable Memories ... 8

2.6.1 Xilinx implementation of CAMs using Block RAM.. 9

3 Design of the Caches 12

3.1 Fully Associative Cache .. 13

3.1.1 CAM.. 16

3.1.2 Encoder ... 17

3.1.3 Data store .. 17

3.1.4 Tag store.. 18

3.1.5 Counter Replacement .. 18

3.1.6 Optional Registers... 19

3.2 Direct-Mapped Cache .. 19

3.3 Two-Way Set Associcative Cache ... 20

3.4 Design Verification.. 22

3.5 Design of the Generator ... 23

 v

4 Results 24

4.1 Area .. 25

4.2 Speed.. 31

5 Conclusion 37

References 38

Appendix A – Data Gathered 39

Appendix B – Sample Waveform 41

Appendix C – Code 42

 vi

List of Figures

Figure 1: Representation of a CAM in RAM.. 9

Figure 2: Tree of possible cache variants... 12

Figure 3: Topology of a cache read for the associative cache ... 14

Figure 4: Topology of counter-based replacement policy... 18

Figure 5: Topology of a cache read for the direct-mapped cache 19

Figure 6: Topology of a cache read for the two way set associative cache 21

Figure 7: Graph of LE usage vs cache depth... 26

Figure 8: Graph of LE usage vs address width.. 26

Figure 9: Graph of LE usage vs data width ... 26

Figure 10: Graph of frequency vs cache depth.. 32

Figure 11: Graph of frequency vs address width... 32

Figure 12: Graph of frequency vs data width .. 33

Figure B.1: Waveform of sample cache test.. 41

Figure B.2: Continued waveform of sample cache test ... 41

 vii

List of Tables

Table 1: Characterstics of Each Cache Type .. 13

Table 2: Memories used for different cache depths ... 29

Table 3: Memories used for different address widths.. 29

Table 4: Memories used for different data widths ... 29

Table A.1: Measurements of LE usage for different cache depths 39

Table A.2: Measurements of LE usage for different address widths............................... 39

Table A.3: Measurements of LE usage for different data widths 39

Table A.4: Measurements of fmax for different cache depths ... 39

Table A.5: Measurements of fmax for different address widths 40

Table A.6: Measurements of fmax for different data widths ... 40

Table A.7: Speeds of a minute cache ... 40

 1

1 Introduction

 Over the last couple of decades, memories have failed to keep up with the

increase in speeds seen in microprocessors [6]. This is known as the processor-memory

performance gap, which is a growing problem showing no signs of abating. The most

common way to bridge this performance gap is through the use of caches. Caches were

commercially introduced more than 30 years ago in the IBM 360/86 and have been an

active area of research for even longer [3]. Several different types of caches were

developed and were continuously improved upon, and as a result, significant performance

gains can be achieved through their use. Since then, caches have become a salient

element in today’s memory hierarchy. They are consistently used in both general

purpose and embedded computer systems, as well as in hard disks, web servers, internet

browsers, and any other devices beset by slower storage components.

 The purpose of this thesis is to propose a cache generator which, given a set of

input parameters, will output an efficient cache implementation satisfying the given

parameters. The generator is very versatile allowing for a number of different cache

types to be generated, each with a number of configurable options. Users can select the

appropriate size, latency, interface, and behaviour for their desired cache and use the

proposed generator to produce an implementation of it. The implementations generated

are targeted for FPGA designs, specifically, Altera’s Stratix family of FPGAs. Altera’s

recent release of version 3.0 of its soft processor Nios includes a cache, indicating an

evident need for caches in FPGA designs.

 The remainder of this document is organized in the following sections in order of

appearance: Section 2, the Background section, explains concepts fundamental to

 2

understanding the designs and results in this report; section 3, the Design section,

describes the various cache designs that can be generated; section 4, the Results section,

examines the resource utilization and speed performance for caches of various types and

sizes; section 5, the Conclusion section, includes concluding remarks. Supplementary

information is contained in three appendices.

 3

2 Background

2.1 Stratix and its device resources

 Stratix is the name given to Altera’s currently most advanced family of

programmable logic devices. Using state of the art 0.13 micron technology, it contains

an abundance of resources and permits operational speeds of up to 420 MHz [1].

Resources in an FPGA come in two basic forms: Logic elements and memory blocks.

Logic elements, or LEs, are used to implement arbitrary logic functions and consist of a

4-input look up table (LUT) and a D flip flop. Memory blocks are used as storage

components, and in Stratix, come in three different sizes: 512 bits, 4 kilobits, and 512

kilobits (not including parity bits). These memory blocks are named M512, M4K, and

M-RAM (Mega RAM) according to their size. Respectively, they can operate at 318

MHz, 291 MHz, and 256 MHz. All memories are dual port memories with customizable

address and data widths on each port. However, the M512 can only use one port for

reading, and the other for writing, Altera refers to this as a “simple dual-port RAM” [1].

 Logic Elements and memories are distributed throughout the chip and can be used

to build arbitrary digital systems as long as the device has enough to do so. Thus,

resource usage (or equivalently, area usage) is generally reported in terms of the number

of logic elements (LEs), and individual memories used in the design. The size of a circuit

is a crucial parameter in any digital design especially since it is directly proportional to

cost. In this case, larger circuits call for larger and hence more expensive Stratix chips.

Thus minimizing area is a high priority in all designs.

 4

2.2 CAD flow

 The generator outputs a Verilog description of the cache as well as a Quartus

project file. Quartus is Altera’s Computer Aided Design (CAD) software package. It can

synthesize HDL code with its own native compiler and then place and route the design

onto a selected Altera FPGA. Since the Quartus software package is fully capable of

accomplishing all aspects of the implementation of the caches onto a Stratix FPGA, it

was the only tool used in the CAD flow of this project. Specifically, the CAD software

used was Quartus II version 2.1.

2.3 Speed and fmax

Quartus produces a report of resource utilization and timing analysis. One of the

most important measurements made during timing analysis is the register to register

maximum frequency (fmax) which is used to define the speed of a system. This metric

represents the maximum speed the clock signal can have while ensuring data is correctly

transmitted and received by all registers in the system. The two registers which are

furthest apart, in terms of the time it takes for data from the source register to reach the

destination register, define the fmax. The path taken by the slowest signal from this

source to the destination is called the critical path.

2.4 Latency

Latency is defined as the number of cycles required to complete an operation not

including the cycle in which it was issued. Hence, an operation with a latency of one will

receive its request in one cycle and deliver its result in the next. Designers must choose

how to allocate the time required to complete an operation. An operation can be

 5

distributed over multiple clock cycles, or completed in one long clock cycle. This

negotiation of latency and frequency is highly application specific.

2.5 Caches

 A cache can only store a subset of the data available in the address space. If the

currently addressed data is found in the cache, a hit is said to have occurred and the cache

can satisfy the memory operation without involving the slower memory. If, however, the

data is not found in the cache, then a miss is said to have occurred and the slower

memory must be accessed. An effective cache is one which minimizes misses, hence

having a high hit rate.

Data values in the cache are identified using a tag. A tag is the part of the address

required to uniquely identify the data. Tags are each stored in a tag store alongside its

corresponding data stored in a data store. To detect a hit, the cache must compare the tag

of the currently addressed data, to all the tags in the tag store. These are some of the

basic terminologies relating to caches. There are several adjustable attributes in a cache

which may radically change its performance and cost. These attributes are described

below.

2.5.1 Cache Line Size

 The unit of data storage used in the cache is known as a cache line. The cache

line size, usually measured in bits, depends on the memory device and can be as small as

the smallest possible data that can be transferred to/from the memory device. Many

memories will access a maximum of 32 bits of data in a single access, but still allow for

individual 8 bit data values to be addressed. The question arises of whether to cache each

 6

individual byte, associating a tag with each one, or to cache groups of bytes. By doing

the latter, the circuit becomes more complex, but it can exploit the fact that after

accessing one piece of data, it is highly likely that neighbouring data will be accessed

soon after. This is known as spatial locality and is exhibited by many programs [6]. In

addition, this method takes advantage of burst mode transmissions which make accessing

a group of bytes from the RAM faster than accessing each byte individually.

2.5.2 Cache Depth

 The maximum number of cache lines that can be stored in the cache is known as

the cache depth.

2.5.3 Associativity

 Ideally, new data can be added to the cache as long as the cache has a cache line

available. This implies that any data can map to any cache line. Such a cache is known

as a fully associative cache, or just associative cache. To find a match it must search

through all entries in the cache and compare it to the tag given. Because of this, a fully

associative cache is large, expensive, and potentially slow. To alleviate these problems

more simplified caches such as the direct-mapped cache have been introduced. A direct-

mapped cache maps data to only one cache line determined by the low order bits of its

address; these bits are referred to as the index bits. With this mapping, the cache line

being read from or written to is known immediately from the address. As a result, the

circuit is much simpler and faster. In between these two extremes is the set associative

cache. Instead of using the index bits do define a single cache line, they are used to

define a small number of possible cache lines where the data can be placed. These select

 7

cache lines define one of many sets. Since this cache needs only to search through the

small set instead of the entire cache, it is also much simpler than the fully associative.

Set associative caches generally provide the best compromise between circuit complexity

and performance.

2.5.4 Replacement Policy

 When new data is to be cached and all available cache lines are occupied, old data

must be evicted from the cache to make space. The strategy used to choose which data to

evict is known as the replacement policy. Since a direct-mapped cache maps data to only

one location, it is not applicable to speak of replacement policies for such a cache.

However, for associative and set-associative caches, a replacement policy is mandatory

and can come in many varieties. The most common method is known as LRU (Least

Recently Used). This strategy tracks how recently each piece of data was referenced, and

selects the one which was used least recently to evict. This policy requires more circuitry

than other more simple approaches; however, it accurately captures the principle of

locality.

2.5.5 Write Policy

 The manner with which a cache manages write operations is referred to as the

cache’s write policy. A write operation can potentially cause the cache and memory to

become unsynchronized. If the cache contains a more recent value than the memory, and

that value is evicted without being written to memory, this value would be lost. To

prevent this problem, a cache can ensure that new values are flushed to memory before

being evicted. A cache which behaves in this manner is using a write-back policy.

 8

Another means of dealing with this problem is to ensure the synchronization of the cache

and memory by always writing to both. This is known as a write-through policy and is

much simpler than the write-back policy. However, using the write-back policy

obviously results in more effective caches.

2.6 Content Addressable Memories

 As discussed previously, a cache must search through a number of tags to find a

match; this process can be done using a CAM (Content Addressable Memory). A CAM is

the inverse of RAM. While RAM is given an address and outputs the data stored at that

address, a CAM receives data (often called a pattern) and returns the address where it is

stored, or indicates that the pattern is not currently in the CAM. This makes CAMs ideal

for searching through tags and detecting cache hits. CAMs can come in different

varieties. Some support multiple-matching and other more powerful search options, but

these features are immaterial in the context of caches. In a cache, the pattern given to the

CAM is the tag and the address returned by the CAM is the position of the data in the

data store. Only one data word can be associated with each tag, and the tag itself is

unique by definition. Therefore, only the basic function of the CAM is required, the

aforementioned features would needlessly increase resource utilization. Consequently,

the only relevant parameters are the CAM’s size. A CAM’s size is specified in the same

manner as in a RAM. It has a depth and a width that are reported respectively. For

example, a 32 x 8 CAM stores 32 words each 8 bits wide. The CAM used in this design

was derived from an implementation described in a Xilinx Application Note [4]. The

Xilinx implementation is summarized below.

 9

2.6.1 Xilinx implementation of CAMs using Block RAM

 This implementation was developed by Xilinx for use with their Virtex family of

FPGAs. It uses a technique which manipulates RAM to be used as a CAM. The obvious

approach of cycling through all words in the RAM testing each for a match would be a

very slow implementation of a CAM. Instead, in this Xilinx implementation, the pattern

is used as the address to the RAM, and the data in the RAM stores the positions in the

CAM where the pattern can be found. To store the pattern with decimal value 6 in a

CAM at address 2, its representation in the RAM would be as shown in Figure 1 for a

CAM with 16 words and an 8 bit input pattern.

Figure 1: Representation of a CAM in RAM

In the RAM, there is an entry for every possible input pattern (as seen along the

left most column of Figure 1), and each entry has one bit for every possible location in

the CAM. Thus an m x n CAM requires a 2n x m RAM. Xilinx uses RAM blocks with

4096 bits which can be configured as a 256-word x 16-bit RAM. This in turn can be used

as a 16-word x 8-bit CAM in the manner shown in Figure 1.

 10

 Initially, this may seem like an extremely poor implementation since it requires a

vast amount of RAM. In fact, the amount of RAM required for an m x n CAM grows

exponentially with the data width as seen in equation 1, where m is the CAM depth and n

the width.

 nmbits 2# ×= (1)

With 32-bit data, the CAM would require more than 4 gigabits of memory, far

more than any FPGA can provide. However its elegance lies in the fact that these small

CAM blocks can be cascaded to increase both the depth and width of the CAM with

linear growth in each dimension. Hence a 32-word deep CAM can be built out of two 16

word CAMs. Similarly, a 16 bit wide CAM can be built out of two 8-bit wide CAMs. In

general, using M x N CAM blocks, an m x n CAM will require the following number of

memory bits.

)()(2#
N
n

M
m

Mbits N ×××= (2)

Simplifying,

 nm
N

bits N ××= 2
1

(3)

As seen in equation 3, the growth is no longer exponential with n, instead, it is

exponential with the parameter N which is fixed and determines the CAM block width.

The expression is also independent of M, meaning CAM blocks can be of any depth (less

 11

than m) without affecting the amount of memory used overall. As a result, it remains

only to choose a suitable N. The function N

N
2

1
 is monotonically increasing for integer

values of N greater than zero, hence, the optimal N is the minimal N allowed. Because of

constraints on the aspect ratio of the RAM blocks in Xilinx’s Virtex, the smallest possible

N, or shallowest memory, occurs for N=8. The CAM block depth M is then assigned a

value such that it utilizes the entire 4096 bit RAM block, and hence the Xilinx

implementation uses a 16 x 8 CAM block to build larger CAMs.

 As shown above, the re is certainly a recognizable advantage in cascading smaller

CAM blocks to build larger sized CAMs. This scalability is provided by the CAM’s

decoded address. The output of the CAM block has one bit for each word in the CAM.

Thus, to add more depth to the CAM, one need only increase the number of bits in the

output. This can be done with some additional logic by simply using multiple CAM

blocks in parallel. The additional logic is required to select the correct CAM block when

write operations occur. The width of the CAM can also be extended by simply

performing a logical AND of the output of multiple CAM blocks. Each CAM block

receives a subsection of the input pattern; the full pattern is in the CAM if each CAM

block experiences a match in the same address.

 The major limitation in this design is that there is poor support for erasing values

from the CAM. The CAM can easily remove a given pattern from a given address, but

can not remove all patterns at a given address. Doing so requires erasing it from every

possible entry in the CAM. Looking at Figure 1, this would require writing a zero to the

correct column of each of the 256 rows in the RAM. Using 256 cycles to erase data is

impractical, hence requiring designers to remedy or avoid this erasing problem.

 12

3 Design of the Caches

 The automatic cache generator can be used to produce a variety of different

caches, each with a variety of different options. This flexibility allows designers to better

meet their unique needs for area, speed, and cache effectiveness. The dominant factor in

finding this balance is in choosing the associativity of the cache. With this generator,

designers can choose between fully-associative, direct-mapped, or two-way set-

associative caches. Each cache can then be configured to have different read and write

latencies. Latency here is exclusive of any time required to access peripherals outside the

cache, namely, a slower memory device. A tree diagram of the various cache designs and

their configurable read/write latencies is shown in Figure 2.

Figure 2: Tree of possible cache variants

Options also exist to provide an output port for indicating cache hits, and whether

to propagate control signals (read/write requests) to the memory immediately or only

after the cache discovers it has missed. These options can be used to meet certain

 13

interface requirements. However, neither produces an appreciable change in the area,

speed or functionality of the cache and hence will be ignored in this discussion.

Other characteristics of the cache are not configurable and are common to all the

caches. Since the generator can ideally be used with any type of memory, and by any

processor/device, these unconfigurable implementation decisions were often made in

favour of faster performance and smaller area. Hence, all generated caches employ a

write-through policy. For the same reason, none of the caches allow access to sub-

sections of the cache line. Cache operations work only on whole cache lines and the

cache line is equal to the size of the user-defined data word. Aside from these two

stipulations, there are other options to allow designers ample flexibility in choosing a

cache. A summary of the cache characteristics are shown in Table 1. Entries in italics

are user-selectable. A more detailed description of the individual caches and their

various configurations follow.

Table 1: Characteristics of Each Cache Type
Associativity Fully Associative Direct-mapped Two-way Set Associative
Read Latency 2/3 1/2 1/2
Write Latency 1 1 1/2
Replacement Policy Counter-based N/A LRU
Write Policy Write-Through Write-Through Write-Through
Depth any any any
Address Width any any any
Data Width any any any
Cache Line Size =Data Width =Data Width =Data Width
Cache hit Output yes/no yes/no yes/no
Propagate on Miss yes/no yes/no yes/no

3.1 Fully Associative Cache

The design of the fully associative cache involves 5 main components: A CAM,

an encoder, a data store, a tag store, and a counter. Before getting into the

implementation details of each component, the functionality of the cache will be

 14

described in terms of how these components help to achieve its function. A schematic of

a how the CAM, encoder, and data store satisfy a read operation is shown in Figure 3.

Figure 3: Topology of a cache read for the associative cache

After receiving a read request, the cache must determine which, if any, of the

locations in the data store contain the data associated with the given tag. This location

will be referred to as the data’s position. The CAM provides a mapping from tags to

positions, therefore the CAM will return where the data is located in the data store. Since

the CAM has an output line for each possible position in the data store, the line that

corresponds to the correct position will be set high. If none of the lines are high then a

miss has occurred and the data is not in the cache. A simple logical OR of all the CAM

outputs is used to detect this. However, while the decoded output of the CAM is ideal for

detecting cache hits and cascading CAM blocks (as discussed previously), it is slightly

inadequate here since the data store is a block of RAM which requires an encoded

address. Hence an encoder must be used between the CAM and the data store as shown.

 The optional registers allows for the choice in 2 or 3 cycle read latenc ies. To

implement the 2 cycle read latency, the optional registers are taken out of the design

leaving the CAM lookup, logical OR, and encoding to be done in one clock cycle. In the

3 cycle read latency case, the optional registers are employed to isolate the CAM lookup

 15

in the first cycle. The logical OR and encoding is done in the second cycle, and the third

cycle performs the data fetch.

 When a cache miss occurs the difference is only in the last cycle. Instead of

fetching from the data store, a read is issued to memory and the cache waits for the data

to be retrieved. Upon receiving the data, it passes it to the processor (or other bus master

device) and performs a write operation in order to cache the new data.

Write operations have a completely different structure than reads. A write

requires two clock cycles though the first is done in the same clock cycle the write is

requested. This first cycle merely deletes whatever cached value is located at the position

targeted by the counter replacement algorithm. Performing this deletion requires

overcoming the previously discussed erasing problem of the Xilinx CAM which is used

in this design. To this end, a tag store is included with the associative cache, despite the

fact that ideally the CAM should serve as the tag store. Since the Xilinx CAM

implementation allows multiple matching, which also enables its cascading ability, the

cache must explicitly enforce that only one tag can be associated with a cache location.

The tag store is used for this purpose since it can only store one tag in each location. The

CAM is a one-way mapping from tag to cache position, while the tag store is a one-way

mapping from cache position to tag. When data is being evicted from a given position in

the cache, the tag store is used to identify its tag so that it may be erased from the CAM.

This lookup requires one clock cycle; however in the design, it is ensured that this is done

before the end of any previous operation. Hence the tag to be evicted is available at the

start of any subsequent operation, enabling the first cycle to be used to erase this tag, and

 16

the following cycle used to write the data to the data store and the new tag into both the

CAM and tag store.

The counter-based replacement policy allows for a simple and effective way to

select data to evict from the cache. The counter points at the next value to be evicted in

the cache and increments with each new value cached. Hence, values which were entered

in the cache least recently are evicted first. The downfall of this method is that it does

not take into account how many times a piece of data was accessed since it was initially

cached. The advantage is that it requires much less resources and simpler control

circuitry. This method was also used in the sample code for an associative cache using

Altera CAMs [2]. Implementation details of the individual components follow.

3.1.1 CAM

 The CAM implementation used in this design is identical to the Xilinx CAM; the

only modification is in the chosen dimensions of the CAM blocks. The Xilinx 16 x 8

CAM blocks were implemented in 4096-bit RAM blocks since this is the only size of

RAM blocks available on Xilinx’s Virtex chips. From equation (3) it can be seen that the

coefficient N

N
2

1
 is solely responsible for the inflation of memory bits required. This

coefficient will be referred to as the waste factor. For N=8, as used in the Xilinx design,

the waste factor is 32. On Stratix, the parameter N can be made as small as 5 if

implemented in an M512 as a 16 x 5 CAM. This results in a waste factor of 6.4, which is

one fifth of that of the Xilinx design. Consequently, the M512 is used for the CAM

blocks in this design. This was done using Altera’s altsyncram megafunction.

 17

3.1.2 Encoder

 The encoder is the largest block of logic in the cache and is hence often within the

system’s critical path. The size of the encoder is determined solely by the depth of the

cache, thus increases in cache depth result in a longer critical path and smaller fmax. An

efficient implementation of an encoder is required to mitigate this reduction in fmax.

Standard implementations of encoders have outputs which are each a function of all the

inputs. The implementation used here separates the outputs and makes each of them a

wide logical OR of half the inputs. Since the output of the CAM is guaranteed to have at

most only one bit high, each output of the encoder needs only to examine the inputs

which can set it high and otherwise assume it is low. The zeroth bit, for instance, will be

high if any odd- indexed input is high. Similar, patterns can be found with the other

outputs. In addition to the reduction of the complexity of the function, further

performance gains are achieved by the ability of Stratix to implement fast wide OR

function using a direct connection to neighbouring LEs known as a carry chain.

3.1.3 Data store

 The data store is simply implemented as RAM using the altsyncram

megafunction. No specific RAM block is specified which allows the compiler to decide

which of the three blocks, or combination of blocks, should be used to meet the size

requirements of the data store. The data store has separate data input and data output

ports. The data input port contains a multiplexer which chooses between the data from

the processor or memory. Similarly, the data output port chooses between the cache’s

output and the memory’s output. This is the case for all cache designs.

 18

3.1.4 Tag store

 The tag store is also implemented as a RAM block using the altsyncram

megafunction. Again it is left to the compiler to decide which RAM blocks to use.

3.1.5 Counter-based Replacement

The counter is implemented using the built in lpm_counter megafunction.

However the design is slightly more elaborate, as seen in Figure 4, in order to save a

clock cycle as mentioned previously. It saves a clock cycle by ensuring that at the end of

any memory operation, the tag to be evicted on the next memory operation is outputted

from the tag store. Normally, this requires only that the counter value be used as the tag

store’s input, the exception is after an eviction. After an eviction occurs, the counter is

signaled to increment during the one latent cycle available during a write operation. The

counter will be updated in the next clock cycle meaning that the tag store won’t be

updated until the clock cycle after. The cycle spent incrementing the counter can be

concealed with a purely combinational incrementer. The circuit chooses between the

latched counter output and the combinational incremented output in a manner to ensure

that the output of the mux is a value which increments immediately upon being signaled.

Figure 4: Topology of counter-based replacement policy

 19

3.1.6 Optional Registers

 The optional registers were implemented using the built- in flip flops of the

memory blocks. The altsyncram function enables users to specify whether these registers

should be used or not. If not they are bypassed. Doing this small optimization allows the

optional registers to be added to the circuit without any increase in logic cells.

Throughout the design, optional registers will always be placed adjacent to the output of

memory blocks in order to capitalize on this savings.

3.2 Direct-Mapped Cache

 The direct-mapped cache has a very trivial design. It requires only a tag store,

data store, and comparator. Since only one tag in the tag store can match the tag input,

that tag is the only one read, and the only one that need be compared. Therefore only one

comparator is needed. A schematic of the read circuitry is shown in Figure 5.

Figure 5: Topology of a cache read for the direct-mapped cache

 The tag store and data store are in parallel in this configuration. Since the data

store does not require any output values from the tag store, the data fetch can be done

 20

concurrently with the tag lookup enabling single-cycle latencies. In the single cycle case,

the data is fetched while the tag is fetched and compared. If the tags match than a hit has

occurred and the mux is set to output the contents from the data store. Otherwise the

cache waits for the memory to fetch the data and passes it through the mux. The insertion

of the optional register can significantly increase the fmax of the cache by separating the

memory access time from the time to do a comparison.

 The individual components were implemented using the megafunctions available

in Quartus. The tag store and data store both used the altsyncram megafunction while the

comparator used the lpm_compare megafunction. The mux and any other small logic

were implemented with standard Verilog constructs.

3.3 Two-Way Set Associative Cache

 The two-way set associative cache is generally a slightly bigger and slower, but

more effective cache than the direct-mapped. Its purpose is to serve as a compromise

between the expensive fully associative cache and the oversimplified direct-mapped

cache. Because of this, it is designed to be more configurable in order to provide more

flexibility for designers. The two-way set associative cache can have either a one or two

cycle read latency coupled with either a one or two cycle write latency. It is also made

more effective by employing a true LRU replacement policy.

 The design of the two-way set associative cache is very similar to that of the

direct-mapped cache. In effect, the design is simply two direct-mapped caches arranged

in parallel. This makes the design ideal for taking advantage of Stratix’s bi-directional

dual port memory in order to compress the two caches into single RAM blocks. During a

read operation, the set is accessed in its entirety. Both tags, as well as both cached values

 21

in the set are read simultaneously using the dual port feature. Each of the tags are

compared to the input tag using two different comparators. If either tag matches, the

corresponding data is returned. If neither tags match, the cache must wait for the fetch

from memory to complete. A schematic of this operation is shown in Figure 6.

Figure 6: Topology of a cache read for the two way set associative cache

 The data store and tag stores are each implemented using the altsyncram

megafunction with the bidirectional dual port option set. The comparators are

implemented using the lpm_compare megafunction. The optional registers allow for

single or dual cycle read latencies in the same manner as in the direct-mapped cache.

Write operation are also identical to the direct-mapped cache except that the LRU

circuitry must specify which of the two cache lines in a set are to be overwritten. The

LRU circuitry must establish an ordering of all the values in each set. Since there are

only two possible values in the sets of a two-way set associative cache, an ordering can

be imposed using a single bit. The circuit needs only to toggle the bit when any change

 22

is made to the ordering. The implementation of this circuit is a one bit wide RAM block

with one bit for each set in the cache (in this case this is half the cache depth). The

circuit toggles by inverting its output and feeding it to its own input data lines. The RAM

can be used with optional output registers which allows the user to expand the write

latency to two and potentially speed up the design. Doing so isolates the LRU read

operations from logic that uses this result.

The LRU circuit can be implemented using LEs, which may be faster for small

cache sizes. However, by using block RAMs, the speed of the circuit is fixed for any size

cache. A cache with 4096 words would require 2048 LEs to implement a flip flop for

each set. This would use an enormous amount of area on the chip and would also require

a huge select circuit to choose which flip flop is currently being accessed. The larger this

circuit becomes, the slower it will perform. Surely its performance would quickly

become slower than the 3 ns (approximately) needed to access the one M4K block which

can be used instead.

3.4 Design Verification

 The designs of all caches were initially exposed to exhaustive testing to verify

their correct functionality. This was done using the waveform simulation in Quartus. All

read and write operations, the replacement policy, the assertion of the wait signal, and

overall functionality of the cache were confirmed using simulation. After the overall

structures of each cache variant were verified, the caches were further tweaked and

altered. In order to ensure that these changes did not introduce new bugs, a small subset

of the tests were performed on new versions of the caches. A sample of the waveforms

used is shown in Appendix B.

 23

3.5 Design of the Generator

 The program which generates the cache designs is a small C program which reads

input parameters from the command line and outputs the corresponding cache to a file.

This program is relatively small and simple since many of the configurables are

embedded in the Verilog output code using preprocessor directives. The program has a

template of Verilog code for each associativity, each containing preprocessor directives

which can be easily set to compile the desired cache. In fact, the direct-mapped and two-

way set associative caches can be entirely configured within the Verilog code by simply

defining or undefining the constants located at the top of the file. Additionally, the

dimensions of the cache are parameters to the module which can be set when instantiating

the cache. The C program simply returns this code with the correct parameters set or

unset. On the other hand, generation of the associative cache requires significantly more

effort. The cascading of the CAMs is a non-trivial task and is hence done in the C code.

Similarly, the encoder is also generated wholly from within the C generator program.

 24

4 Results

 There are many factors to consider when choosing the best cache for a system.

One such factor is the effectiveness of the cache in terms of its hit rate. There has been

an abundance of studies on the hit rates of caches with different sizes, associativities,

write policies, and replacement policies [6]. The statistics provided by these studies can

be combined to evaluate the effectiveness of one of the generated caches over another.

This thesis will not attempt to classify any generated cache with respect to hit rates or

overall effectiveness. Instead the focus will be on measurements related to the cache’s

implementation onto Stratix. Specifically, the designs will be compared with respect to

their speed, in terms of fmax, and area, in terms of both LEs and memories used, as

reported by Quartus II version 2.1.

Factors such as latency, size, and cache associativity will be treated as

independent variables. Each of these are parameters which designers can choose based

on the results to follow. Measurements were made for each of the eight cache variants,

that is, for each type of associativity and latency (as seen in Figure 1). Unfortunately, the

size parameter allows for an enormous amount of different caches. Taking measurements

for each one is clearly unfeasible; instead, the size of the cache is broken up into its three

components (cache depth, address width, and data width) so that each may be examined

independently. Thus, two of the components are held fixed while the third is varied in

order to observe the effect it has on the cache’s area and speed. A 32-word cache with a

32-bit address space and 32-bit data (32x32x32 respectively), is used as a common

reference point. Each dimension is increased individually starting from this reference

point.

 25

4.1 Area

 Area measurements were made by compiling the cache chip alone. If the cache

was compiled within some system, there is a good chance that logic could be merged

with logic from the system so that the effective area added to the system is less than that

reported here. In addition, parts of the design may be reduced by the compiler if unused

or aliased signals are found. Hence these measurements are an upper bound on the area

of the cache.

 Both LEs (logic elements) and memories (M512s, M4Ks, and Mega RAMs) will

be measured and discussed in this section. The effect of increased cache depth, address

width, and data width will be examined for all cache types. However, it was discovered

that changes in latency have a negligible impact on the area of the circuits. This is mostly

due to the savings attained by implementing the optional registers as part of the memory

blocks. Otherwise, only small changes to the control logic were made, and hence, the

area was scarcely affected. Because of this, the measurements will be made only for the

different associativities. This data is shown in Figures 7 through 9.

 26

LE Usage vs Cache Depth

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1024 2048 3072 4096

Cache Depth (No. of Words)

L
o
g
ic
 E

le
m

en
ts

Associative

Direct Mapped

Two Way Set Associative

Figure 7: Graph of LE usage vs. cache depth

LE Usage vs Address Width

0

200

400

600

800

1000

1200

1400

1600

1800

0 128 256 384 512

Address Width (No. of Bits)

L
o
g
ic
 E

le
m

en
ts

Associative

Direct Mapped

Two Way Set Associative

Figure 8: Graph of LE usage vs. address width

LE Usage vs Data Width

0

100

200

300

400

500

600

700

800

900

0 32 64 96 128 160 192 224 256

Data Width (No. of Bits)

L
o
g
ic
 E

le
m

en
ts

Associative

Direct Mapped

Two Way Set Associative

Figure 9: Graph of LE usage vs. data width

 27

 Figure 7 shows the logic elements used for implementing caches with depths

ranging from 32 to 4096 words. One important feature in this graph is that the number of

LEs used for both the direct-mapped and two-way set associative cache is independent of

the cache’s depth. They are fixed at 98 and 155 respectively (see Table A.1 in Appendix

A). This is expected since the logic components of those designs include only the

comparator, which depends on address width, and the output multiplexers, which depend

only on the data width. The increased cache depth only affects the memories used.

The effect of cache depth is particularly important, since larger cache depths

generally mean larger hit rates. The address width and data width are likely to be defined

by the system but the cache depth can be independently adjusted to attain a desired hit

rate. The results seem to suggest that in the direct-mapped and set associative caches,

this can be done without increasing the number of logic elements. Moreover, the number

of logic elements is seen to be very small. The smallest Stratix chip, the S10, contains 10

570 logic elements. The 98 or 155 LEs required by these caches will use up only a small

fraction of these, making the designs very inexpensive with respect to LEs.

 Conversely, the fully associative cache is quite expensive, as is expected. The

change in LEs with cache depth appears to be linear with a slope of 3.53 LEs/word. The

contributing factors are the CAM, the encoder, the LRU circuitry, and the wide logical

OR. Still the design is reasonably small in terms of LEs. A 16KB (4096 words x 4

bytes/word) associative cache, which is twice the size of the Pentium 4’s L1 data cache,

can be implemented with 14 438 LEs. This can be programmed on the slightly bigger

 28

S20 Stratix chip, and would need only a minute fraction of the LEs of the biggest Stratix

which has 114 140.

 In Figure 8, it is demonstrated that all cache types suffer increases in area with

increases in address widths. The direct-mapped and two way set associative cache

designs both exhibit increases because of the comparators which will now need to

compare larger tags. For tags of width n, the comparators are a function of 2n inputs.

Since this function is likely implemented using the fast carry-chains, one input of the

LUTs is used up and hence each LUT has only 3 available inputs. Thus the number of

LUTs (and hence LEs) needed for the function is 2n/3 or 0.667 LEs/bit. By no

coincidence, the increase seen in Figure 8 for the direct-mapped and two-way set

associative caches are linear with slopes of 0.667 LEs/bit and 1.33 LEs/bit respectively.

The two way set associative cache increases at twice the rate of the direct mapped since it

contains two comparators. The associative cache increases at a much higher rate of 3

LEs/bit. This figure is composed of the 1 LE/bit for the tag mux which inputs into the

CAM, added to the 2LEs/bit for cascading CAM blocks. Ideally only 1 LE/ bit is

required for cascading CAM blocks, but two CAM blocks are required to expand the

CAM’s depth to the reference value of 32, therefore 1 LE/bit is required for each. Still

LE usage is reasonably small allowing for an absurdly large 512-bit address space to use

only 1673 LEs for a fully associative cache.

 The effect of increasing data width on the number of LEs used is shown in Figure

9. The only logic which depends on the data width are the two muxes on the data input

and data output ports of the data store. Thus the growth is linear with slopes of 2 LEs/bit

(1 LE/bit for each mux) for the associative cache and direct-mapped cache. The two-way

 29

set associative cache contains an additional data multiplexer to choose between the two

values in a give set. Thus its slope is 3 LEs/bit. Again these increases are rather

moderate.

 While all the designs had relatively small LE requirements, the opposite is seen in

their memory requirements. The designs are quite memory intensive and this defines the

upper bound on the size of the cache that can be implemented on a given Stratix chip.

The number of M512, M4K, and MRAM (Mega RAMs) required for each cache design

is shown in Tables 2, 3 and 4. Again the latencies are ignored since this did not impact

the number of memories used.

Table 2: Memories used for different cache depths
 Associative Direct Mapped Two Way Set Ass.

Depth M512 M4K MRAM M512 M4K MRAM M512 M4K MRAM
32 14 2 0 0 2 0 1 4 0

128 56 2 0 0 2 0 1 4 0
256 112 4 0 0 4 0 1 4 0

1024 448 16 0 0 14 0 1 14 0
2048 NA NA NA 0 27 0 0 29 0
4096 NA NA NA 0 0 1 0 55 0

Table 3: Memories used for different address widths

Addr. Associative Direct Mapped Two Way Set Ass.
Width M512 M4K MRAM M512 M4K MRAM M512 M4K MRAM

32 14 2 0 0 2 0 1 4 0
128 53 4 0 1 4 0 3 8 0
256 105 8 0 0 8 0 3 16 0
512 207 15 0 0 15 0 3 30 0

Table 4: Memories used for different data widths

Data Associative Direct Mapped Two Way Set Ass.
Width M512 M4K MRAM M512 M4K MRAM M512 M4K MRAM

32 14 2 0 0 2 0 1 4 0
64 14 3 0 0 3 0 1 6 0
92 14 4 0 1 3 0 1 8 0

128 14 5 0 1 4 0 1 10 0
256 15 8 0 0 8 0 1 17 0

 30

 Most of these results are intuitive given the limitation in a memory block’s depth

and width. Memory blocks are cascaded appropriately to overcome this limitation and

create the desired memory space. In the case of the 2048 and 4096 word associative

caches, no Stratix chip has enough memory to do so, for this reason the values are not

available. Other more important observations will be discussed below.

One important observation is that using a memory block in bidirectional dual port

mode reduces the maximum allowed data width in half. Because of this, increases in

address and data widths require twice as many memories to increase the tag store and

data store in the two way set associative cache. The naïve designer might hence declare

that two way set associative caches are hence twice as big in area than a direct-mapped

cache but this is clearly not true. While the memory blocks needed are twice as many,

they use only half the depth. Therefore corresponding increases in cache depth would

eventually make the number of memory blocks used equal for both the direct-mapped

and two-way set associative cache. This can clearly be seen in the data corresponding to

increases in cache depth. The two-way set associative cache initially requires twice as

many M4Ks, but as the depth reaches 256, the two equalize since 256 32-bit words fit in

a single M4K.

Another important observation is the growth of the M512s used for the CAMs. In

the measurements for the associative cache, the number of M512s used are almost

entirely for the CAM. As seen in the tables, these measurements agree with the fact that

the growth of the CAM is linear with the growth in each dimension. The slope of this

linear growth is 1 M512 per word of depth, and 1 M512 per bit of address. Changes in

the data width obviously have no effect on the CAM and this too can be seen in Table 4.

 31

The most interesting observation occurs for the direct-mapped cache with a depth

of 4096 words. The compiler apparently merged the tag store and data store into a single

Mega RAM block, otherwise, the implementation would have required more than 50

M4K blocks as in the two way set associative cache. This is clearly a valid approach

since the Mega RAM can support data widths of up to 144 bits wide, or two 72-bit wide

data ports in dual port mode. The tag store requires only 27 bits (32 – log232), and the

data store 32 bits. Since both values are less than 72 and since each are used in single

port mode, they can each be assigned to one of the available ports of the Mega RAM and

each use a subsection of the memory. Implementing the design this way has two main

advantages. The first advantage is that it saves an enormous amount of memory blocks.

Only 1 Mega RAM block and 98 LEs are needed to implement this 16 KB direct-mapped

cache. This enables the design to fit on the smallest Stratix, the S10, while using less

than 1% of its logic elements and none of its M512 or M4K memories. The second

advantage is that it simplifies routing which can possibly speed up the circuit. Instead of

cascading several M4K blocks which span the entire chip, the design can be confined to

the small area near the Mega RAM. The disadvantage is that the Mega RAMs are

reported as being up to 35 MHz slower than the M4K [1]. More details about the speed

of all caches follow.

4.2 Speed

 Finding the system’s speed required taking measures to ensure the values were

consistent and accurate. First, the speed of the caches had to be measured by placing the

circuit in a test bed with registers on all inputs and outputs of the cache. Doing this

ensures that the fmax reported by Quartus would be the maximum clock speed allowed

 32

for any signal to travel from the inputs of the cache to the outputs of the cache. Another

potential inconsistency is in the different speed grades of Stratix chips. To remedy this

problem the compiler was instructed to use only the fastest speed grades. With both these

solutions in place, data was gathered for all cache types including different latencies since

latency plays a pivotal role in the system’s fmax. Figures 10, 11, and 12 depict graphs

generated from the measured data (see Appendix A) and plotted on a log base 2 scale.

Frequency vs Cache Depth

0

50

100

150

200

250

5 6 7 8 9 10 11 12

Cache Depth (Log2 of No. of Words)

F
re

q
u

en
cy

 (M
H

z)

Associative read2 write1

Associative read3 write1

Direct Mapped read1 write1

Direct Mapped read2 write1

Two Way Set Associative read-1 write-1

Two Way Set Associative read-1 write-2

Two Way Set Associative read2 write1

Two Way Set Associative read2 write2

Figure 10: Graph of frequency vs. cache depth

Frequency vs Address Width

0

50

100

150

200

250

5 5.5 6 6.5 7 7.5 8 8.5 9

Address Width (Log2 of No. of Bits)

F
re

q
u
en

cy
 (M

H
z)

Associative read2 write1

Associative read3 write1

Direct Mapped read1 write1

Direct Mapped read2 write1

Two Way Set Associative read-1 write-1

Two Way Set Associative read-1 write-2

Two Way Set Associative read2 write1

Two Way Set Associative read2 write2

Figure 11: Graph of frequency vs. address width

 33

Frequency vs Data Width

0

50

100

150

200

250

5 5.5 6 6.5 7 7.5 8

Data Width (Log2 of No. of Bits)

F
re

q
u
en

cy
 (M

H
z)

Associative read2 write1

Associative read3 write1

Direct Mapped read1 write1

Direct Mapped read2 write1

Two Way Set Associative read-1
write-1

Two Way Set Associative read-1
write-2

Two Way Set Associative read2
write1

Two Way Set Associative read2
write2

Figure 12: Graph of frequency vs. data width

 In all cases the direct-mapped cache with a two cycle read latency is the fastest of

the designs with a peak frequency of 218.91 MHz. This is definitely an expected result

since this was the motivation behind the birth of direct-mapped caches. Another

expected result is that the absolute slowest frequency occurred for the two cycle

associative cache of maximum allowed depth and was 52.12 MHz. The price of cache

effectiveness is hence a hefty one in these designs; though it is interesting to note that an

associative cache with a three cycle read latency often outperforms a single cycle read

latency direct-mapped cache. Single cycle reads are also an expensive commodity in

these caches. In the 32x32x32 case, the fmax is reduced by 70 MHz for all caches which

implement single cycle reads. On the other hand, the adjustable write latencies had a

very small impact on the fmax. As seen in the graphs, caches which differ only in write

latency exhibit almost identical performances. However, in a minute cache with

dimensions 16x10x8, this option produced speed ups of up to 70 MHz since in this and

some other caches, the LRU circuitry can become the critical path. This data can also be

found in Appendix A.

 34

 Enlarging the cache depth has a similar affect on speed as it did in area. The

direct-mapped and two-way set associative caches maintain a relatively consistent

frequency while the associative caches suffer from significant speed degradation. Speeds

reach as low as 52.12 MHz for a 1024 word associative cache. This reduction in speed

was expected since the critical path is certainly in the encoder and wide logical OR

circuits of the associative cache. Since both of these circuits increase with cache depth, it

was expected that the fmax would fall. Unfortunately, the two different latencies produce

converging frequencies, rendering this option ineffective for large depths. Initially, the

associative cache with a 3 cycle read latency is 40 MHz faster for a 32 word cache.

However it quickly decreases and converges until the two are within 12 MHz as seen in

Figure 10. This is also expected since the optional registers only isolate lookups in

individual CAM blocks, an unfortunate by-product of using the output registers of RAM

blocks as the optional registers. As the depth grows, the time to perform an individual

lookup does not increase though the encoding step does. The convergence arises since as

the encoding stage becomes slower, the savings, which are fixed, become less significant

relative to the time it takes to perform the encoding.

None of this is seen in either the direct-mapped or two-way set associative caches.

The critical path for both these caches is the comparator, which has no dependence on

cache depth. The fmax starts to decrease slightly as the design is dispersed over the chip,

causing the inputs to travel greater distances, but otherwise remains relatively consistent.

One important note is that the 4096 word direct-mapped cache implemented using the

single Mega RAM outperforms the caches of the same type with depths as low as 1024.

 35

Consequently, it seems the Mega RAM implementation improves the speed of the system

despite the fact that the Mega RAM is in fact slower than the smaller memory blocks.

 The effect of increasing address width has a devastating effect on all caches. It

increases CAM size, as well as the comparators, hence directly affecting the critical path

of all the cache designs. The aforementioned convergence also occurs here, but for all

cache designs, resulting in maximum and minimum speeds of 95.06 MHz and 59.8 MHz

for address widths 512 bits wide. Fortunately, widths this large are never used. In fact,

the Pentium 4 has only a 36-bit address space [8]. However, the results do show that

increases in the tag directly affect the fmax of the system.

 Increasing the data width does not alter the critical path. The only circuitry

affected are the muxes at the data ports of the data store. Hence, increases in data width

do not adversely affect the speed of the system. As seen in Figure 12, the caches

maintain a relative ly steady fmax for data widths of up to 128 bits. However a sudden

decrease is observed for all caches when the data width reaches 256 bits, which is the

same width as the bus on a Pentium 4 to the L2 cache [8]. With this width, it was

observed that the critical path had shifted and now included the data store and muxes. It

was also observed that the delay resulted largely from logic elements being forced in

locations far away from the RAM. This is a fundamental property of any digital system,

namely that even parts of the system which are not in the critical path can expand enough

that they become the critical path.

 Overall, a significant amount of information can be drawn from these results

which can aid designers in selecting appropriate cache parame ters. First, the purpose

behind the existence of direct-mapped and set associative caches, namely that they reduce

 36

area and speed up the design, are clearly exemplified in the data presented. The direct-

mapped and two way set associative caches are both smaller and faster, particularly when

comparing caches with the same latencies. Evidently, designs which require small and

effective caches can use associative caches, but when larger caches are needed, designers

have little choice but to use set associative or direct-mapped caches. The decision

between these latter two is less obvious. It is a matter of how eager a designer is for an

effective cache. For example, Altera’s newest soft processor, Nios version 3.0, uses a

direct-mapped cache while the Pentium 4 uses an 8-way set associative L2 cache. These

decisions are highly subjective and application specific.

 The adjustable latencies allows for a finer grain of tuning. Read latencies can

vary from 1 to 3 cycles while adding no additional area to the designs. Systems which

can tolerate an additional wait state can use this to replace a single cycle direct-mapped

cache for a more effective, and also much faster, two cycle two-way cache. Similar

tradeoffs can be made between two way and fully associative caches, though at the

expense of additional area.

 With respect to choosing cache dimensions, cache depth can be expanded to the

target chip’s capacity without significant penalties in LE area and speed for non-fully

associative caches. It was also seen that the most influential dimension of a cache is the

address width. Any increase in tag size will directly increase area and decrease fmax.

Growth in the data width will certainly increase area but in general doesn’t change the

speed of the system.

 37

5 Conclusion

 An automatic cache generator was crafted which emits Stratix specific cache

designs in a Verilog output file. The input to the generator is a set of parameters

describing the desired cache. Inputs include associativity, latency, cache depth, address

width, and data width. Cache designs were generated and evaluated for a wide variety of

input parameters. From this analysis, a number of trends were established concerning

their area and speed. Overall, it can be concluded that the generator is very robust

offering a wide variety of cache types, each able to satisfy a wide variety of size and

speed constraints.

 A few future modifications can be made to improve the generator. First is support

for accessing subsections of a cache line using the byte enable lines of the memory

blocks. A second improvement is support for the more popular 4-way set associative

cache. Another modification is the possibility of pipelining cached reads. Finally,

investigation into Mega RAM implementations for set associative caches may be of

interest.

 38

References

[1] Altera Corporation. “Altera Stratix FPGA Family Data Sheet”. December 2002,

http://www.altera.com/literature/ds/ds_stx.pdf

[2] Altera Corporation, “AN 119: Implementing High-Speed Search Applications with

Altera CAM,” in Altera Application Notes. July 2001,
http://www.altera.com/literature/an/an119.pdf

[3] J.L. Baer, Department of Computer Science & Engineering, University of

Washington. “2K papers on caches by Y2K: Do we need more?”. November 2000,
http://www.irit.fr/ACTIVITES/EQ_APARA/HPCA6/BaerHpca6.PDF

[4] J.L. Brelet. “Using Block RAM for High Performance Read/Write CAMs” in Xilinx

Application Note xapp204, May 2000.

[5] S. Brown, and Z. Vranesic. “Fundamentals of Digital Logic with Verilog Design”.

McGraw-Hill, 2003.

[6] J. L. Hennessy and D. A. Patterson. “Computer Architecture: A Quantitative

Approach, 3rd edition”. Morgan Kaufmann Publishers, 2003.

[7] C. Hamacher, Z. Vranesic, and S. Zaky. “Computer Organization”, 5th edition.

McGraw-Hill, 2002.

[8] Intel Corporation. “Intel® Pentium® 4 Processor with 512-KB L2 Cache on 0.13

Micron Process at 2 GHz – 3.06 GHz, with Support for Hyper-Threading
Technology1 at 3.06 GHz Datasheet”. January 2003,
ftp://download.intel.com/design/Pentium4/datashts/29864307.pdf

 39

Appendix A – Data Gathered

Note: Rx Wy refers to a cache with a read latency of x and write latency of y. Also, data
for the memory usage was given in the body of the thesis and will not be repeated here.

Table A.1: Measurements of LE usage for different cache depths

Depth Associative
Direct

Mapped
Two Way Set
Associative

32 235 97 156
128 575 97 156
256 1049 97 155

1024 3736 99 155
2048 7318 99 154
4096 14438 98 155

Slope 3.53 0.00 0.00

Table A.2: Measurements of LE usage for different address widths
Address
Width Associative

Direct
Mapped

Two Way Set
Associative

32 234 97 156
128 521 164 284
256 905 247 455
512 1673 417 796

Slope 3.00 0.667 1.33

Table A.3: Measurements of LE usage for different data widths
Data

Width Associative
Direct

Mapped
Two Way Set
Associative

32 234 97 156
64 298 161 252
92 354 217 336

128 426 289 444
256 682 545 828

Slope 2.00 2.00 3.00

Table A.4: Measurements of fmax for different cache depths
 Associative Direct Mapped Two Way Set Associative

Depth R2 W1 R3 W1 R1 W1 R2 W1 R1 W1 R1 W2 R2 W1 R2 W2
32 123.51 163.45 144.84 210.08 115.09 118.79 175.93 172.86

128 91.75 109.4 145.05 215.47 126.04 119.7 176.43 177.97
256 80.75 99.8 149.39 218.91 122.43 121.77 171.35 176.34

1024 52.12 65.23 140.19 206.78 121.4 118.37 162.53 152.93
2048 No fit No fit 139.3 195.2 120.4 113.29 147.97 150.44
4096 No fit No fit 133.28 199.44 116.02 111.74 134.66 162.95

 40

Table A.5: Measurements of fmax for different address widths

 Associative Direct Mapped Two Way Set Associative
Addr R2 W1 R3 W1 R1 W1 R2 W1 R1 W1 R1 W2 R2 W1 R2 W2

32 123.51 163.45 144.84 210.08 115.09 118.79 175.93 172.86
128 94.69 125.36 123.78 155.86 104.67 105.23 138.77 145.24
256 86.87 113.51 108.31 149.39 93.33 95.76 127.58 124.69
512 59.8 75.49 81.32 95.06 67.7 66.18 93.61 86.91

Table A.6: Measurements of fmax for different data widths

 Associative Direct Mapped Two Way Set Associative
Data R2 W1 R3 W1 R1 W1 R2 W1 R1 W1 R1 W2 R2 W1 R2 W2

32 123.51 163.45 144.84 210.08 115.09 118.79 175.93 172.86
64 117.34 141.34 142.94 198.22 114.08 115.93 165.87 170.88
92 112.66 135.15 139.97 192.72 113.3 116.18 170.44 171.7

128 107.41 137.25 132.33 193.42 110.49 113.06 166 161.73
256 90.61 108.71 119.98 163.4 94.26 95.98 146.74 141.98

Table A.7: Speeds of a minute cache

 Associative Direct Mapped Two Way Set Associative
Dimensions R2 W1 R3 W1 R1 W1 R2 W1 R1 W1 R1 W2 R2 W1 R2 W2

16x10x8 162.47 212.92 215.33 328.41 172.21 167.01 215.61 271.12

 41

Appendix B – Sample Waveform

Test of Associative Cache

1. Testing of basic read/write possibilities. Note that the read write operations need only
be signaled for the first cycle of the operation. Since this is an R2 W1 cache, reads will
complete two cycles later (if cached), and writes will complete one cycle later. Also,
note that the cache_hit signal is valid only for the second cycle of an operation. Finally,
note that M_ is prefixed to signals from the master (the processor), and S_ is prefixed to
signals to the slave (the memory).

Figure B.1: Waveform of sample cache test

2. Continuing, the associative cache is filled and it is ensured old values were kicked out.
Proof: Notice the last read operation results in a cache miss even though it was cached
above.

Figure B.2: Continued waveform of sample cache test

 42

Appendix C – Code

All source code, scripts, and sample outputs are on the included CD-ROM. Also,
all caches measured in the results section of this thesis can be found in the sample
outputs.

